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A B S T R A C T

Background: The high recurrence rate after radical resection of pancreatic ductal adenocarcinoma (PDAC)
leads to its poor prognosis. We aimed to develop a model to preoperatively predict the risk of recurrence
based on computed tomography (CT) radiomics and multiple clinical parameters.
Methods: Datasets were retrospectively collected and analysed of 220 PDAC patients who underwent con-
trast-enhanced computed tomography (CE-CT) and received radical resection at 3 institutions in China
between 2013 and 2017, with 153 from one institution as a training set, the remaining 67 as a validation set.
For each patient, CT radiomics features were extracted from intratumoral and peritumoral regions to estab-
lish intratumoral, peritumoral and combined radiomics models using artificial neural network (ANN) algo-
rithm. By incorporating clinical factors, radiomics-clinical nomograms were finally built by multivariable
logistic regression analysis to predict 1- and 2-year recurrence risk.
Findings: The developed radiomics model integrating intratumoral and peritumoral radiomics features was
superior to the conventionally constructed model merely using intratumoral radiomics features. Further,
radiomics-clinical nomograms outperformed other models in predicting 1-year recurrence with an area
under the receiver operating characteristic curve (AUROC) of 0.916 (95%CI, 0.860-0.955) in the training set
and 0.764 (95%CI, 0.644-0.859) in the validation set, and 2-year recurrence with an AUROC of 0.872 (95%CI:
0.809-0.921) in the training set and 0.773 (95%CI, 0.654-0.866) in the validation set.
Interpretation: This study has developed and externally validated a radiomics-clinical nomogram integrating
intra- and peritumoral CT radiomics signature as well as clinical factors to predict the recurrence risk of
PDAC after radical resection, which will facilitate optimized and individualized treatment strategies.
Funding: This work was supported by the National Key R&D Program of China [grant number:
2018YFE0114800], the General Program of National Natural Science Foundation of China [grant number:
81772562, 2017; 81871351, 2018], the Fundamental Research Funds for the Central Universities [grant num-
ber: 2021FZZX005-08], and Zhejiang Provincial Key Projects of Technology Research [grant number: WKJ-ZJ-
2033].
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study

So far, due to lack of effective preoperative assessment, the
proneness for early recurrence after radical resection still
remains one of the major barriers to curing patients with PDAC.
Prior studies involving pancreatic CT radiomics mainly focused
on the features from intratumoral area to predict survival and
treament response with only poor to moderate performance.

Added value of this study

This is the first study to build and validate clinical-radiomics
models that preoperatively predict recurrence risk of PDAC
using not only intratumoral, but also peritumoral CT radiomics
features together with clinical factors in patients eligible for
radical resection frommulti-institutional datasets.

Implications of all the available evidence

PDAC is distinct from other solid tumors due to its dense
stroma. CT radiomics features from peritumoral volume could
add additional value to predict its tumor behaviour.
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1. Introduction

With the lowest 5-year survival rate of any epithelial carcinoma at
approximately 8%, pancreatic ductal adenocarcinoma (PDAC) is one
of the most lethal malignancies worldwide and expected to be the
second leading cause of cancer-related mortality [1, 2]. Only 10-20%
of patients were identified at an early stage and able to potentially
get cured through radical surgery, due to lack of early clinical symp-
toms and effective screening approaches [3]. However, up to 80% of
them will experience recurrence of the disease after curative resec-
tion, resulting in a 5-year survival of less than 20% [4-9]. Therefore,
there is an urgent need to construct efficient predictive models to
stratify patients preoperatively and further optimize individualized
treatment decision-making.

Currently, development of non-invasive approaches to accurately
predict treatment outcomes and prognosis is imperative to improv-
ing personalized medicine [10]. Several studies have achieved com-
parable performance in predicting the recurrence of resectable PDAC
by building conventional regression-based models merely based on
multiple clinicopathological factors [11-13]. In recent years, radio-
mics, as an emerging radiology analogue of “genomics” and “proteo-
mics”, has attracted extensive interest in developing clinical
predictive tools for diagnosis, prognosis and therapeutic response of
various malignancies [14-17]. By using high-throughput mining of
intratumoral medical imaging data to extract hidden information, it
has also been applied for predicting tumor behavior of PDAC [18-23].
While most studies mainly focused on the primary tumor, previous
reports have illustrated the unique value of peritumoral region for
clinical assessment of cancerous heterogeneity [24-26]. So far, it
remains unclear whether CT radiomics features from intra- and peri-
tumoral volume could add additional predictive value to traditional
clinical models for recurrence risk assessment of PDAC after radical
surgery.

Hence, this study intended to develop and validate clinical-radio-
mics models that preoperatively predict 1- and 2-year recurrence of
PDAC using intratumoral/peritumoral CT radiomics features and clin-
ical factors in patients eligible for radical resection. Predicting the
risk of recurrence before surgery could help distinguish high-risk
patients and select optimal surgical candidates for surgeons, which
will further facilitate individualized treatment strategies [27].
2. Materials and Methods

2.1. Study design

This study was conducted through four parts as shown in Figure 1.
Firstly, we preprocessed CE-CT and extracted radiomics features from
intratumoral volume (ITV) and peritumoral volume (PTV). Secondly, we
used feature selectionmethod to obtain the optimal features. Then, these
selected radiomics features were employed to develop ITV model, PTV
model, combined model, clinical model and radiomics-clinical model.
Finally, wemade a comparison among all models.

2.2. Study Population

Data of PDAC patients who underwent radical resection at 3 institu-
tions between January 2013 and December 2017were obtained. This ret-
rospective analysis was approved by the institutional ethical review
boards of three centers including the Second Affiliated Hospital (Institu-
tion I), the Forth Affiliated Hospital (Institution II), Zhejiang University
school of Medicine and the Zhejiang Cancer Hospital (Institution III). The
signed informed consent forms were waived. This study was conducted
according to the Declaration of Helsinki. The inclusion and exclusion
details of patients were as follows: Inclusion criteria: PDAC patients who
preoperatively underwent CE-CT and received radical resection at 3 insti-
tutions. Exclusion criteria: 1. Patients who had initially borderline resect-
able/unresectable cancers according to the NCCN guideline [28]; 2.
Patients who received neoadjuvant therapy; 3. Patients who did not
receive a contrast-enhanced CT scan within two weeks before surgery; 4.
Patients lacking complete clinical data or follow-up data; 5. Patients who
died from surgical complications within 30 days after surgery; 6. Patients
who received consecutive surgical operations.

The final study population consisted of 220 patients (173 patients
from the Second Affiliated Hospital, Zhejiang University school of
Medicine, 7 patients from the Forth Affiliated Hospital, Zhejiang Uni-
versity school of Medicine, 40 patients from the Zhejiang Cancer Hos-
pital). The training set included the first 153 patients since January
2013 from the first institution and the independent validation set
included the last 20 patients from the first institution, 7 patients
from the second institution and 40 patients from the third institution
(training: validation=7:3). The details of profile and information of
patients were presented in Table 1.

2.3. Data Collection

Preoperative blood biomarkers including carcinoembryonic anti-
gen (CEA), cancer antigen (CA) 19-9, CA125, white blood cell (WBC)
count, platelet count, neutrophil count, lymphocyte count, monocyte
count, albumin, globulin, aspartate transaminase (AST), alanine trans-
aminase (ALT), alkaline phosphatase (ALP), gamma-glutamyltransfer-
ase (GGT), total bilirubin (TB) and direct bilirubin (DB) were collected
using the measurements that were closest to the operation and
within at least 1 week before the surgery.

The follow-up of patients after surgery was initially conducted
every 3 months in the first two years, every 6 months during years 3
and 4, and then annually. The surveillance protocol included physical
examination, serum cancer antigens and abdominoperineal CE-CT.
Magnetic resonance imaging (MRI) scan and/or fluorodeoxyglucose
positron emission tomography (PET) would be implemented to fur-
ther clarify ambiguous CT findings every time imaging features were
consistent with a potential cancer recurrence.

2.4. Image acquisition and volume of interest (VOI) delineation

The patients in our study underwent an abdominal CE-CT preop-
eratively. CE-CT scan in Institution I was performed on five CT scan-
ners including a 16-slice CT (Sensation 16, Siemens), a 16-slice CT



Figure 1. The workflow of this study
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(BrightSpeed, GE MEDICAL SYSTEMS), a 64-slice CT (SOMATOM Defi-
nition AS, GE MEDICAL SYSTEMS), a 320-slice CT (Aquilion ONE,
TOSHIBA), an 800-slice CT (SOMATOM Definition Flash, GE MEDICAL
SYSTEMS). The CE-CT scan in Institution II was undertaken on two
scanners, including a 16-slice CT (BrightSpeed, GE MEDICAL SYS-
TEMS), a 64-slice CT (SOMATOM Definition AS, GE MEDICAL SYS-
TEMS). The CE-CT scan in Institution III was undertaken on three
scanners, including a 16-slice CT (BrightSpeed, GE MEDICAL SYS-
TEMS), a 64-slice CT (SOMATOM Definition AS, GE MEDICAL SYS-
TEMS), a 320-slice CT (Aquilion ONE, TOSHIBA). The scanning voltage
of 100 kVp to 120 kVp, tube currents were 240 to 1287 mAs. The slice
thickness ranged from 3 to 7.5 mm.

The 3D tumor VOI was manually segmented and validated using
the ITK-SNAP open source software (http://www.itksnap.org/
pmwiki/pmwiki.php) by two experienced oncologists, respectively.
The VOI regions were also agreed by both two oncologists. To explore
the predictive value of PTV, We also expanded the segmented mask
by 3mm to 7mm outward automatically according to the previous
study [29] in MATLAB (MathWorks, Natick, MA, USA). The ITV and
PTV area of one of the patients was shown in Figure 2.

2.5. Feature extraction

To reduce the variation in different scanners, a two-step method
of the image preprocessing was conducted before radiomics features
extraction. Firstly, due to different pixel sizes and slice thicknesses of
various CE-CT scanners, all the CT slices were resampled to 1 £ 1 £ 1
mm3 using the bicubic interpolation [30]. Secondly, the images were
normalized to 64 grey levels to compensate for the variation of CE-CT
scanners. For each ITV and PTV area, 547 radiomics features were
extracted covering 7 shape features, 7 histogram features, 22 gray-
level co-occurrence matrix (GLCM) features, 13 gray-level run-length
matrix (GLRLM) features, 13 gray-level size zone matrix (GLSZM) fea-
tures, 5 neighborhood gray-tone difference matrix features, and 480
wavelet-based features. Therefore, we could obtain 1094 radiomics
features for each patient. Radiomics features extraction process was
conducted using the radiomics tools available in MATLAB. More
details about the feature extraction methods could be found in the
study by Valli�eres et al. [31]

2.6. Feature selection and model construction

Before the process of feature selection, the extracted features
were normalized using the Z-score, with the mean and standard
deviation of the features in the training set utilized to normalize the
corresponding features in the validation set. To reduce the dimension
of radiomics features, we conducted a two-step feature selection
approach in the training set. Initially, each significant feature calcu-
lated by the Wilcoxon test (p-value<0.05) was maintained. After-
wards, the minimum redundancy maximum relevance (mRMR)

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php


Table 1
Characteristics of patients in the training and validation sets

Characteristic Training set (n=153) Validation set (n=67) p-value

Age (years) 64 (35-90) 63 (45-83) 0.6461
Sex (Male/Female) 94/59 62/25 0.1635
BMI (kg/m2) 22.1 (10.52-34.6) 22.35 (17.07-27.99) 0.9410
CEA (ng/mL) 3.1 (0.7-258.5) 3.8 (1.01-45.83) 0.5705
CA19-9 (U/mL) 240.4 (2-12000) 253.5 (2.2-12000) 0.2648
CA125 (U/mL) 15.2 (2.1-145.6) 19.2 (5.5-656.2) 0.1476
WBC (*10^9) 5.8 (2.3-14.5) 5.8 (1.8-13.2) 0.5025
Platelet (*10^9) 185 (67-401) 201 (61-335) 0.2750
Neutrophil (*10^9) 3.7 (1-11.68) 3.6 (0.9-10.8) 0.3332
Lymphocyte (*10^9) 1.37 (0.44-19.1) 1.48 (0.5-3.7) 0.7810
Monocyte (*10^9) 0.46 (0.07-1.32) 0.4 (0.1-12.6) 0.2245
Albumin (g/L) 39.6 (23.9-65.4) 40.4 (27.7-47.3) 0.7273
Globulin (g/L) 26.5 (14.9-42.4) 28.1 (18.4-41.4) 0.0565
AST (U/L) 42 (9-524) 44 (1.6-596) 0.9382
ALT (U/L) 47 (7-743) 51 (8-910) 0.6633
ALP (U/L) 147 (6-1197) 168 (16-1178) 0.9587
GGT (U/L) 159 (9-2839) 201 (10-2298) 0.4435
TB (U/L) 23 (4.4-358.3) 21.3 (4-408.3) 0.5572
DB (U/L) 6.8 (1-260.2) 7.8 (1-263.6) 0.8784
AGR 1.49 (0.83-2.61) 1.41 (0.74-2.18) 0.1757
NLR 2.72 (0.13-11.90) 2.5 (0.67-15.43) 0.7617
LMR 2.92 (0.63-44.42) 3.20 (0.06-17) __ 0.6848
PLR 134.92 (10.10-616.92) 141.54 (60-343.33) 0.6960

Note: CEA: carcinoembryonic antigen; CA19-9: serum carbohydrate antigen 19-9;
WBC: white blood cell; AST: aspartate transaminase; ALT: alanine transaminase;
ALP: alkaline phosphatase; GGT: gamma-glutamyl transferase; TB: total bilirubin;
DB: direct bilirubin; AGR: albumin-globulin ratio; NLR: neutrophil-lymphocyte ratio;
LMR: lymphcyte-monocyte ratio; PLR: platelet-lymphocyte ratio.
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feature selection algorithm was used to select the features most rele-
vant to the status of 1-year recurrence and 2-year recurrence, and
the selected features had minimal redundancy among each other
[32]. In this study, the artificial neural network (ANN) algorithm
(parameter: hidden layer = 3, initial random weight = 0.01, weight
decay = 5e-3, maximum number of iterations = 100) was used to con-
struct the prediction model. The area under the receiver operating
characteristic (ROC) curve (AUC) value was the scoring criterion to
obtain the optimal tumor radiomics features. The ITV model, PTV
model and combined model were developed, respectively. A radio-
mics score was calculated to reflect the risk of tumor recurrence for
each patient using the proposed radiomics model. To evaluate the
capability of predicting the status of recurrence, the constructed
model from the training set was verified in the independent valida-
tion set. To obtain the best prediction performance of PTV classifier,
we also explored the capability of different PTV models, with the
length of edge ranged from 3mm to 7mm.
Figure 2. VOIs of ITV and PTV (7mm) for radiomi
2.7. Clinical-based model and combined radiomics-clinical model
construction and evaluation

In addition to the radiomics model, we also constructed clinical
model and radiomics-clinical model. The clinical model and radio-
mics-clinical model were developed by multivariate logistic regres-
sion method. The backward step-wise search method with lowest
Akaike Information Criterion (AIC) score was used to selected the
optimal clinical factors [33]. Then, we used the univariate analysis to
select the clinical factors to combine with radiomics score to establish
the radiomics-clinical model. The performances of all models were
reported using the AUC in the training set and validation set. A
Hosmer-Lemeshow (H-L) test was used to evaluate the goodness-of-
fit of the radiomics-clinical model. The clinical utility of the models
was evaluated with a decision curve analysis (DCA) in two sets [14].
DeLong test was used to measure the differences in ROC curves
among all models. The comparison of all the models were carried out
in the validation cohorts.

2.8. Statistical Analysis

Statistical analysis was conducted in R v3.4.1 (www.Rproject.org)
and MedCalc v15.2.2 (www.medcalc.org). mRMR analysis, plotting of
nomograms and calibration curves, H-L test, ROC and AUC, and DCA
were performed on the packages “mRMRe”, ”rms”, ”generalhoslem”,
”pROC”, and “dca.R”, respectively. The reported significance levels
were two-sided and set at 0.05.

This manuscript is compliant with STrengthening the Reporting of
OBservational studies in Epidemiology (STROBE). A checklist is pro-
vided as an online supplement.

2.9. Role of Funding Source

All funding sources played no role in the design of the study; col-
lection, analysis and interpretation of data; in writing the manuscript,
and in the decision to submit the paper for publication.

3. Results

3.1. Basic Characteristics

Baseline clinical characteristics in the training and validation sets
were summarized in the Table 1. The median follow-up of the entire
population was 18.0 months (95% CI 16.0-20.5). The 1-year recur-
rence rate was 58.17% and 59.70% for the training set and validation
cs analysis. A: ITV area; B: PTV (7 mm) area.

http://www.Rproject.org
http://www.medcalc.org
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set, respectively. The 2-year recurrence rate was 73.20% and 71.64%
for the training and validation set, respectively. No significant differ-
ence was observed in the baseline patient characteristics between
the groups, indicating a good consistency of the two datasets. Univar-
iate analysis for the 1-year and 2-year recurrence was performed and
only CA19-9 showed statistical significance between recurrence group
and non-recurrence group in training and validation sets. Therefore,
CA19-9 factor was identified as an independent predictive factor in pre-
dicting the risk of recurrence of PDAC after radical resection.

3.2. Feature selection and model construction for 1-year recurrence

In this study, three types of prediction models were developed
and compared including radiomics model, clinical model and clini-
cal-radiomics model. For the radiomics one, we constructed three
sub-models including ITV model, PTV model and the combined
model. By univariate analysis, 295 intratumoral radiomics features
were found to be significant different between patients with 1-year
recurrence and non-recurrence in the training set, 9 of which were
finally selected by the mRMR algorithm to build the ITV model with
an AUC of 0.851 (95%CI, 0.784-0.903) in the training set and 0.713
(95%CI, 0.589-0.817) in the validation set. In order to construct a PTV
model with the best predictive performance, different regions of peri-
tumoral parenchyma ranging from 3mm to 7mm were explored. A
total of 270, 230, 229, 214, 209 radiomics features of five separate
PTV models (3mm, 4mm, 5mm, 6mm and 7mm), respectively, were
selected using univariate analysis. Then, 8, 10, 10, 6, 6 optimal fea-
tures were accordingly picked up by mRMR method to develop the
models using the ANN algorithm. Among them, the PTV7mm pre-
sented the best performance in predicting the different status of 1-
year recurrence with an AUC of 0.786 (95%CI, 0.713-0.848) for the
training set and 0.654 (95%CI, 0.528-0.766) for the validation set. To
further improve the prediction capability, the intratumoral and peri-
tumoral features were combined to yield higher AUCs in both train-
ing (AUC= 0.901 (95%CI, 0.842-0.943)) and validation set
(AUC = 0.732 (95%CI, 0.610-0.833)). The rank of mRMR score and uni-
variate analysis for the selected top 15 radiomics features were
shown in Figure S1.

Similarly, considering the potential effectiveness of clinical fac-
tors, we also constructed the clinical model and radiomics-clinical
model. The performance of the clinical factors-based model was infe-
rior to the radiomics models in both two datasets (training set: 0.630
(95%CI, 0.648-0.707); validation set: 0.644 (95%CI, 0.517-0.757)).
However, the radiomics-clinical model combined ITV, PTV7mm and
CA19-9 levels presented the optimal performance in predicting the
1-year recurrence with an AUC of 0.916 (95%CI, 0.860-0.955) in the
training set and an AUC of 0.764 (95%CI, 0.644-0.859) in the valida-
tion set. The ROC curves for each model were pictured in the
Figure 3A and 3B. The H-L test showed a satisfying accuracy of the
nomogram for predicting the status of 1-year recurrence both in the
training set (p-value=0.7191) and validation set (p-value=0.5929).

By the Delong test, although the radiomics-clinical model was
preferred, there was no significant difference in the predictive perfor-
mance compared with other predictive models in the validation set.
The detailed value of p-values among all models were listed in
Table S1. Furthermore, the nomogram was visualized in Figure 3E.
The DCA showed that the nomogram model (black) presented more
area than the model merely developed by clinical factors in two sets
which demonstrated the promising clinical decision utility of nomo-
gram. The DCA curves for the two datasets were separately shown in
Figure 3C and Figure 3D.

3.3. Feature selection and model construction for 2-year recurrence

To further explore the generalization of radiomics model in pre-
dicting the recurrence status of pancreatic cancer after radical
resection. We employed the similar method to construct radiomics
model, clinical model and radiomics-clinical model to evaluate the
prediction performance for 2-year recurrence. Compared with the
other two radiomics models, the combined model also showed the
best prediction capability in the validation set (combined model,
AUC=0.709 (95%CI, 0.585-0.814); ITV model, AUC=0.648 (95%CI,
0.521-0.701); PTV7mm model, AUC=0.0.658 (95%CI, 0.0.532-0.769)). In
accordance with the study of 1-year recurrence, the clinical model
for 2-year recurrence also achieved the worst prediction performance
with a poor AUC of 0.723 (95%CI, 0.645-0.793) in the training set and
an AUC of 0.541 (95%CI, 0.415-0.663) in the validation set. Finally, we
integrated the CA19-9 level and radiomics scores to establish the
radiomics-clinical model, which outperformed others in predicting
the status of 2-year recurrence (training set: AUC=0.872 (95%CI:
0.809-0.921); validation set: AUC=0.773 (95%CI, 0.654-0.866)). The
ROC curves for each model were pictured in the Figure 4A and 4B.
The nomogram and DCA curves for 2-year recurrence models could
be seen in Figure 4C, 4D and 4E. The H-L test showed that non-signif-
icant difference was observed between true calibration curves and
ideal curves both in the training set (p-value=0.2543) and validation
set (p-value=0.2678).
4. Discussion

Robust assessment tools with satisfying accuracy for individual
risk of recurrence after multimodal therapy would minimize unnec-
essary treatments and thus serve as a decision aid for clinical deci-
sion-making [34]. In this study, we have constructed and validated
nomograms integrating CT radiomics features and clinical character-
istics to predict the recurrence risk of PDAC after curative surgery. It
turned out that the combined clinical-radiological models were supe-
rior to conventional clinical factors-based ones in predictive capabil-
ity. Moreover, incorporating additional features from peritumoral
regions into the models could further improve their power.

In this study, to ensure the generalizability of the promoted
model, only most commonly measured lab test results in various
medical centers including cancer antigens, blood routine and bio-
chemical indicators were used in clinical models. Inflammation-
based prognostic scores, including albumin-globulin ratio (AGR) [35],
lymphcyte-monocyte ratio (LMR) [36], neutrophil-lymphocyte ratio
(NLR) [37] and platelet-lymphocyte ratio (PLR) [38], were calculated
as well but with no statistical significance. Other clinical features like
nutritional status could be reflected by patients’ BMI, which also
showed no statistical significance between recurrence group and
non-recurrence group by univariate analysis. In fact, the study popu-
lation we focused on in this study tended to have similar pre-opera-
tive nutritional status and Eastern Cooperative Oncology Group
(ECOG) performance as they could withstand radical surgery and
subsequent adjuvant therapy. Additionally, in alignment with various
studies investigating the predictive early recurrence parameters of
PDAC [6, 39-41], CA19-9 is independently associated with both 1-
year and 2 -year recurrence risk. To be clear, histopathologic data
was not included in this study for the purpose of guiding preopera-
tive decision-making.

So far, due to the paucity of comprehensive and in-depth preoper-
ative assessment, the proneness for early recurrence after radical
resection still remains one of the major barriers to curing patients
with PDAC [42]. It has been reported that early recurrence within 12
months occur in 50% to 60% of patients considered eligible for surgi-
cal resection [43], and in this study, the number was 58.17% and
59.70% for the training and validation set, respectively. Timely and
accurate prediction of recurrence risk is urgently needed to identify
patients at high risk, among whom more detailed examination, the
use of neoadjuvant therapy, or even the inclusion of these patients
into clinical trials could be considered.



Figure 3. The ROC curve, DCA curve and nomogram for the 1-year recurrence target. A, B: the ROC curve for training and validation set. C, D: the DCA curve for training and valida-
tion set. E: the nomogram for 1-year recurrence
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Nowadays, radiomics research in oncology is accelerating rapidly,
with potential applications in almost every aspect of cancer manage-
ment [44]. In patients with pancreatic cancer, preoperative CE-CT is
the preferred primary imaging modality for the initial evaluation
[45]. As is routinely used for screening, staging and monitoring the
progression of PDAC, CT scan is relatively faster and more inexpen-
sive compared to MRI, making it more easily available for use [46].
Previous studies involving CT radiomics mainly focused on the fea-
tures from intratumoral area to predict survival [2, 21, 23, 47, 48] and
treatment response [22, 49] with only poor to moderate perfor-
mance. However, characterized by its dense desmoplastic stroma
composed of stromal cells and extracellular matrix, PDAC is distinct
from other solid tumors [50]. Recent radiomics reports have revealed
the links between cancer behavior and peritumoral features in vari-
ous malignant neoplasms including esophageal carcinoma [17],
hepatocellular carcinoma [24], breast cancer [25] and lung adenocar-
cinoma [26], etc. Imaging characteristics of surrounding areas outside
tumor itself were found to be able to reflect the subtle change of sur-
rounding microenvironments and provide complementary informa-
tion on tumor heterogeneity. To date, similar researches regarding
PDAC have rarely been reported.
To the best of our knowledge, this is the first study to build and
validate clinical-radiomics nomograms that preoperatively predict
recurrence risk of PDAC using not only intratumoral, but also peritu-
moral CT radiomics features in addition to clinical parameters in
patients eligible for radical resection from multi-institutional data-
sets. Although the concept of “radiomics” has been raised for almost
a decade since 2012 by Lambin et al [51], there has never been an
article investigating the relationship between CT features and recur-
rence risk of PDAC after radical resection. We speculate that the
unsatisfying predictive capability of models merely based on intratu-
moral information might account for this delayed progress. There-
fore, the great clinical potential of peritumoral radiomics needs to be
further exploited in the future. As for the previously reported models
simply based on clinicopathological factors regarding this topic, each
of them has their own specific drawbacks with either a poor predic-
tive performance (AUROC=0.655) [11], or a lack of external validation
[12], or a very small sample size of less than 40 [34], respectively.

Several limitations of our work deserve to be acknowledged. First,
given the retrospective nature of this study, some selection bias
might be introduced, and the findings reported herein need to be
confirmed in prospective trials. Second, due to the low incidence of



Figure 4. The ROC curve, DCA curve and nomogram for the 2-year recurrence target. A, B: the ROC curve for training and validation set. C, D: the DCA curve for training and valida-
tion set. E: the nomogram for 2-year recurrence
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PDAC, the relatively limited sample size included might restrict the
statistical power for quantifying interpatient variability effects. Addi-
tional studies on large-scale datasets from multiple medical institu-
tions are required to further establish the robustness of the proposed
nomogram. Notably, although the sample size might be not large
compared with other tumors, it was at least not small considering
the strict inclusion criteria and was actually larger than most radio-
mic studies regarding PDAC [2,21-23,47,48]. Third, the time-consum-
ing and labor-intensive work of manual contouring of region of
interests (ROIs) still poses a major bottleneck for implementing cut-
ting-edge radiomics techniques in clinical practice at present. It is
worthy looking forward to some novel automatic volumetric seg-
mentation algorithms in PDAC radiomics analysis to simplify the pro-
cess in the near future [52, 53].

To conclude, we have developed and validated a comprehensive
radiomics-clinical nomogram integrating intra- and peritumoral
radiomics signature as well as clinical characteristics to preopera-
tively predict the recurrence risk of PDAC after radical resection.
Radiomics features extracted from CT scan can provide additional
prognostic prediction value for patients before surgery, facilitating
the non-invasive burgeon of individualized regimens in early treat-
ment course.
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