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Abstract: Telomeres are the terminal part of the chromosome containing a long repetitive and non-
codifying sequence that has as function protecting the chromosomes. In normal cells, telomeres lost 
part of such repetitive sequence in each mitosis, until telomeres reach a critical point, triggering at that 
time senescence and cell death. However, in most of tumor cells in each cell division a part of the te-
lomere is lost, however the appearance of an enzyme called telomerase synthetize the segment that just 
has been lost, therefore conferring to tumor cells the immortality hallmark. Telomerase is significantly 
overexpressed in 80–95% of all malignant tumors, being present at low levels in few normal cells, mostly stem cells. Due 
to these characteristics, telomerase has become an attractive target for new and more effective anticancer agents. The ca-
pability of inhibiting telomerase in tumor cells should lead to telomere shortening, senescence and apoptosis. In this work, 
we analyze the different strategies for telomerase inhibition, either in development, preclinical or clinical stages taking in-
to account their strong points and their caveats. We covered strategies such as nucleosides analogs, oligonucleotides, 
small molecule inhibitors, G-quadruplex stabilizers, immunotherapy, gene therapy, molecules that affect the telo-
mere/telomerase associated proteins, agents from microbial sources, among others, providing a balanced evaluation of the 
status of the inhibitors of this powerful target together with an analysis of the challenges ahead. 
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1. INTRODUCTION 

Since the discovery of telomerase [1], an enzyme able to 
elongates telomeres. and the following discovery that such 
enzyme was mostly active in tumors [2], telomerase become 
a prominent target and different ways of inhibitions towards 
it were attempted. [3]. Telomerase has different components, 
a catalytic subunit, hTERT, a RNA component, hTR and 
associated proteins. But telomeres also comprise special 
structures, proteins that are associated with them and a varie-
ty of conformations, all of them allowing or not the activity 
of telomerase It is necessary then, to decode the structure of 
the complex telomere/telomerase in order to understand how 
each possible inhibitor functions and gain perspective about 
the chances of new developments. 

1.1. Telomere and Telomerase Structure 

The telomere is a nucleoprotein complex found in the ex-
tremes of the chromosomes, where their structure is different 
from the rest of the chromatin [4] consisting in short and 
repetitive sequences of d[TTAGGG] [5, 6]. The G-rich 
strand of telomeric DNA is always oriented 5′-3′ towards the 
terminal portion of the chromosome and had a protruding 
extreme of �200 nucleotides [7] as consequence of the prob-
lem of terminal replication. The 3′ protruding G-rich strand  
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can form complex structures of telomeres [8,9]. We also can 
observe different telomeric proteins that bind to mammal 
telomeres. In humans, telomeres are bound by a six-protein 
complex called shelterin, [10,11] comprised of TRF1 and 
TRF2 [12, 13, 14] which in turn recruits RAP1, TIN2, TPP1 
[15]. and POT1 which interacts with DNA.  

Another important structural parameter governing telo-
mere function is that they also contain RNA, called TERRAs 
[telomere repeat containing RNAs] [16], implicated in the 
negative regulation of telomerase [17].  

There are also TRF1 and TRF2 associated factors. The 
main factor associated to TRF1 is tankyrase, a positive regu-
lator of telomere length [18]. PINX1 is a TRF1-associated 
telomerase inhibitor, which associates with TRF1 [19]. 
PINX1 a negative regulator of telomere length is able to 
simultaneously interact with the telomerase catalytic subunit 
providing the enzyme a physical link with TRF1 [20].  

There is also a physical link between the human shelterin 
complex and telomerase providing new insight into the 
mechanism of processive telomere synthesis. [21]. 

In most mammals, the maintenance of telomeric length is 
carried out mainly by telomerase. The human holoenzyme 
telomerase is a ribonucleoprotein composed by a catalytic 
subunit, hTERT and an RNA component [hTR] which acts 
as a template for the addition of a short repetitive sequence 
[dTTAGGG]n in the 3′ end of the telomeric DNA and spe-
cies-specific accessory proteins. These accessory proteins 
regulate telomerase biogenesis, subcellular localization and 
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function in vivo. For instance, analysis of affinity-purified 
telomerase from HeLa cells has identified integral protein 
components of human telomerase: dyskerin, NHP2; NOP10,�
pontin/reptin, Gar1 and TCAB1 [22] Fig. (1). As described 
the complex telomere/telomerase is integrated by numerous 
molecules with different functions elegantly reviewed by 
Rubtsova et al [23].  

 
Fig. (1). Schematic representation of telomerase and its associated 
proteins. 

1.2. Telomerase Inhibiting Strategies 

As we just observed the complexity of the telo-
mere/telomerase complex, we can understand that there is a 
wide variety of strategies to inhibit telomerase. This com-
plexity allowed the development of several inhibitors and 
paves the way to the development of new ones. Although the 
numerous strategies and molecules can be classified in dif-
ferent ways, we choose to do so, based in the general ap-
proach to inhibition and then analyzing each molecule be-
longing to that group, but also understanding that one mole-
cule can belong to more than one category 
1.2.1. Nucleosides 

3-Azido-2,3 -dideoxythymidine [azidothymidine [AZT] 
or zidovudine] was the first reported telomerase inhibitor 
Fig. (2A) The similarity between HIV retrotranscriptase and 
telomerase led to the discovery that AZT was preferentially 
integrated into the telomeric region of CHO DNA [24]. 
Similar results, but by quantitative methods were found by 
us also [25]. Later, different groups demonstrated that AZT 
inhibited telomerase and/or reduce telomerase length [26, 
27]. Moreover, we demonstrated that telomere shortening by 
AZT was an irreversible process, [28]. Similar results were 
founded by other researchers. [29, 30]. Similarly, synergistic 
interactions between paclitaxel and AZT [31] and between 
AZT and 5-fluorouracil [32] were described. In 2001, we 
found that chronic in vitro AZT exposure on F3II mouse 
mammary carcinoma cells with 800 μM AZT for at least 30 
passages completely inhibited telomerase activity on F3II 
mammary carcinoma cells, leading to senescence and apop-
tosis [33], also corroborated by other authors [34]. Azido-

thymidine is used to treat several virus-associated human 
cancers [35]. In non-viral tumors, AZT has been used in 
phase I and II clinical trials alone or in combination for dif-
ferent solid tumors showing some rate of regression [36]. 
More clinical trials using AZT are needed to understand the 
full potential of this agent in a clinical setting.  

Other nucleosides have been studied as potential inhibi-
tors of telomerase. It has been demonstrated that carbovir, 
induced senescence-like processes in cultures of immortal 
mouse fibroblasts [37]. Also, it was reported that both Azdd 
GTP and C.OXT-GTP, the triphosphate derivatives of 3-
azido-2,3-dideoxyguanosine [AZddG] and carbocyclic ox-
etanocion G [C.OXT-g] showed potent telomerase-inhibitory 
activity and induce telomere shortening in human HL60 cells 
[38]. Later on, the same group found that AZddAA caused 
telomere shortening in the same model [39]. Tendian et al 
studied the interaction of five doxyguanosine nucleotide ana-
logs, 6-thio-2-deoxyguanosine, 5-triphosphate [T-dGTP], 5-
triphosphate of carbovir [CBV-TP], ddGTP, D-carbocyclic-
2-deoxyguanosine 5-triphosphate [D-CdG-TP] and L-
carbocyclic 2.deoxyguanosine 5-triphosphate [L-CdG-TP]. 
T-dGTP is the active metabolite of both 6-mercaptopurine 
and 6-thioguanine, which are two drugs used in the treatment 
of acute leukemia. CBV-TP is the active metabolite of Ab-
acavir, an agent approved for the treatment of AIDS and D-
CdG-TP is the active metabolite of D-CdG, an agent with 
activity against herpes simplex virus, cytomegalovirus, and 
hepatitis-B virus, founding that all of them inhibited te-
lomerase activity by 50% [40]. Numerous acyclic nucleoside 
phosphonates [ANPs] possess excellent antiviral activities 
against a broad spectrum of DNA viruses and retroviruses as 
well as significant antiproliferative potency. In cells, ANPs 
are phosphorylated to their diphosphates active antimetabo-
lites, which inhibit viral and/or cellular replicases and termi-
nate nascent DNA chain. The group of Hajec analyzed the 
antitelomerase activity of 15 of these diphosphates of ANPs 
and found that the most effective compound studied was the 
guanine derivative PMEGpp [41]. It has been patented that 
acyclic nucleoside analogs such us acyclovir, ganciclovir, 
penciclovir and the corresponding pro-drugs, i.e., valacyclo-
vir, valganciclovir and famciclovir, respectively have been 
identified as inhibitors or antagonists of telomerase [42]. The 
telomerase inhibitory effects of purine nucleosides bearing a 
3'-down azido group were also investigated. It was found 
that AZddGTP is a selective inhibitor of telomerase, produc-
ing a reproducible telomere shortening [43]. In 2001, a po-
tent telomerase inhibiting nucleoside was developed: 6-thio-
7-deaza-2´-deoxyguanosine 5'-triphosphate [TDG-TP] with a 
low and high specificity [44]. Previously, the same group 
found human telomerase inhibition by 7-deaza-2'-
deoxypurine nucleoside triphosphates using a cell-free bio-
chemical telomerase assay [45].  
1.2.2. Oligonucleotides 

Feng et al reported that antisense oligonucleotides com-
plementary to sequences within or near the human telomeric 
template RNA resulted in suppression of telomerase activity 
while antisense oligonucleotides against targets that were 
more distant from the telomeric template failed to inhibit the 
action of the ribonucleoprotein [46]. The advances in anti-
sense technology have led to improvements in the introduc-
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tion of the molecules into cells, stability, lengthening of half-
life, and specificity of target binding. Modifications of tradi-
tional antisense oligonucleotides used in telomerase inhibi-
tion include 2'-5'-oligoadenylate, 2'-O-methyl-RNA, phos-
phorothioate-modified oligodeoxynucleotides [PS-ODN], 
peptide nucleic acids [PNA] (Fig. 2B), and locked nucleic 
acids [LNA] [47]. PU27 is a sequence specific DNA oligo-
clenucleotide currently in preclinical stage for a wide variety 
of tumor type including leukemia, prostate cancer, renal can-
cer and breast cancer. PU27 has shown growth inhibitory 
effect because of its ability to bind and inhibit the enzymatic 
activity of a-enolase. It also demonstrated altered oncogene 
expression and inhibition of telomerase activity thus selec-
tively inhibit cancer cell metabolism and cell growth. [48]  
1.2.3. Small Molecule Inhibitors 

Among many small molecules tried with different suc-
cess aiming to inhibit telomerase activity BIBR1532 [2-[E]-
3-naphthalene-2-yl-but-2-enoylylamino]- benzoic acid] is the 
best known Fig. (2C). It is a non-competitive inhibitor of 
TERT and hTR that in vitro reduces telomere length, inhibits 
cell proliferation, producing finally cell senescence [49]. 
Although good results have been observed in preclinical 
studies on breast, prostate and fibrosarcoma cancer cell lines 
no further progress or entrance in clinical trials has been 
shown. In the last years, BIBR1532 have been used as a tool 
to inhibit telomerase and demonstrating in that way that de-
creases alpha-fetoprotein expression [50] and was also 
demonstrated that glucose restriction increase the activity of 
this inhibitor [51]. 
1.2.4. Stabilization of G Cuadruplexes 

As explained in the telomere structure section, one indi-
rect path to inhibit telomerase activity could be the stabiliza-
tion of the G cuadruplexes preventing hTR of recognizing 
the unfolded single-stranded telomere overhang. Most of 
these molecules contain a polycyclic heteroaromatic struc-
ture. In this group stands telomestatin (Fig. 2D) [52], RHPS4 
and BRACO19 [53]. Although effective they were poorly 
soluble or inefficient to cross biological barriers [54], there-
fore reducing their clinical significance. An extensive re-
search has been carried out in the modification of te-
lomestatin to increase its potency. More recently a series of 
macrocyclic molecules [telomestatin analogues] have been 
developed, with improved features over telomestatin parental 
structure [55]. Macrocyclic hexaoxazole L2H2-6M(2)OTD 
is one of the derivatives of telomestatin that interact with G-
quadruplex by p-stacking and electrostatic interactions [56]. 
Telomestatin is currently under clinical trials [57]. 

Daunomycin is basically an anthracyclin isolated from 
Streptomyces peucetius and it is well known for its DNA 
intercalation and G-quadruplex stabilization. 

Distamycin A was isolated from Streptomyces distallicus. 
Distamycin-A stacks on the terminal G-quadrets and inter-
acts with the flanking bases [58]. Distamycin inhibits protein 
interactions with G�quadruplex DNA. The first report of te-
lomerase inhibitory activity of distamycin derivatives was by 
Zaffaroni et al. They tested the antagonistic activity of MEN 
10,716, a derivative of distamycin in JR8 melanoma cell 
extracts [59]. Chemical modification of this compound has 
been carried out extensively to increase the potency of inhi-

bition. A study shows that introduction of more number of 
pyrrole groups allows binding with mixed groove/G-quartet 
in a stacking mode [60]. Some other compounds more water-
soluble have been developed such as quarfloxin, quarflox-
in/CX3543 [61] and RHPS4 [62]. Quarfloxin has reached 
phase II clinical trials, although results are not available. 

 Ascididemin and Meridine are two marine compounds 
with pyridoacridine skeletons known to stabilize G-
quadruplexes and inhibit telomerase in vitro. [63]  

The interaction of berberine and 9 different berberine de-
rivatives with human telomeric DNA indicated that these 
compounds could induce and stabilize the formation of anti-
parallel G-quadruplex of telomeric DNA. Compared 
with berberine, the derivatives exhibit stronger binding affin-
ity with G-quadruplex and higher inhibitory activity 
for telomerase [64] 

A cryptolepine derivative containing indole and quino-
line structures, SYUIQ-5 has been reported to induce and 
stabilize G-quadruplex, inhibiting c-myc promoter and te-
lomerase activity [65] 

In addition, cationic porphyrins are being studied as pos-
sible telomerase inhibitors due to their ability to bind and 
stabilize G-quadruplexes. The best studied molecule of this 
group is the cationic porphyrin TMPyP4. [66]  
1.2.5. Immunotherapy 

Many immunotherapeutic approaches are under devel-
opment, either at preclinical or clinical levels [67]. Basically, 
antitelomerase immunotherapy sensitizes immune cells to 
tumor cells expressing hTERT peptides as surface antigens 
via the human leukocyte antigen [HLA] class I pathway. 
Some 26 different hTERT peptides have been utilized to 
generate an antitelomerase immune response, many of them 
showing good preclinical and clinical results [68]. In clinical 
assays, different peptides produce a good immunological 
response with low toxicity and some promising results were 
published. For instance, Vx001 and I540 produced in re-
sponsive patients, a longer survival time than in those that 
were non-responsive [69]. However, biomarkers or indica-
tors to point out which patients are going to be responsive 
remain to be developed. 

Many clinical trials are currently ongoing with immuno-
logical peptides either alone or in combination. In phase I 
and phase II clinical trials: GRNVAC1, TERT and Survivin 
peptide loaded dendritic cells and dendritic cells transfected 
with TERT, surviving and p53 mRNA [70]. A promising 
vaccine is GV1001 [Tertomotide] Fig. (2E). This peptide 
vaccine consists of 15 amino acid epitope of hTERT. It gen-
erates telomerase-specific T-helper cells, activates antigen-
presenting cells and cytotoxic T cells, generating a good 
immune response and has successfully already completed 
several phase I and II clinical trials either alone or in combi-
nation with the alkylating agent Temozolomide. Currently 
has reached phase III clinical trials [Telovac] for non-small 
cell lung cancer and one NDA were filed for pancreatic can-
cer. Unfortunately, there was no significant difference in 
overall survival between the groups that received the vaccine 
and the control group receiving chemotherapy [71]. Another 
vaccine currently going through phase I clinical trial for 
hormone refractory prostate cancer is TeloB-VAX. It is 
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composed of the patients' own circulating B-lymphocytes 
harboring a unique patented engineered plasmid DNA be-
longing to Adamis Pharmaceutical Corporation [72]. Anoth-
er vaccine being studied by VAXON Biotech is Vx-001, 
composed of two separate peptides: the native cryptic pep-
tide ARG-Vx001 [TERT572] and its optimized variant 
TYR-Vx001 [TERT572Y]. The study included in vivo ex-
periments in mice, in vitro experiments on human lympho-
cytes, and a phase I/II clinical trial. Vx-001 vaccination of 
humanized mice protects them against tumor growth in vivo 
[73]. Furthermore, Vx-001 induces anti-tumor immune re-
sponses by human lymphocytes in vitro. Vx-001 has com-
pleted a phase I/II trial with 33 patients with NSCLC [74] 
demonstrating its safeness and tolerance and a strongly im-
munogenic response in 70% of patients.  

Vx-001 entered a randomized phase IIb clinical trial in 
HLA-A*0201 positive patients with TERT expressing 
NSCLC [stage IV and distant recurrent stage I-III] who con-
trolled disease after first line chemotherapy. Results are ex-
pected at the end of 2016. [75] 

Peptide540-548, peptide611-626, peptide672-686 and 
peptide766-780, which are derived from human telomerase, 
constitute the immunogenic component of the GX301 cancer 
vaccine which is being tested in phase II clinical trial for 
prostate cancer [76] 
1.2.6. Gene Therapy 

Labs and companies have been working for a very long 
time to bring gene therapy to the clinic, yet very few patients 
have received any effective gene-therapy treatment. Howev-
er, gene therapy is also a strategy used in the quest for target-
ing telomerase. Probably the best-known molecule is the 
antisense oligonucleotide Imetelstat or GRN163L [Geron 
Corporation] (Fig. 2F), a lipid-conjugated 13-mer oligonu-
cleotide sequence that is complementary to hTR that showed 
good in vivo and vitro results [77]. The molecule demon-
strates high resistance to cellular nucleases, which confers 
stability in plasma and tissues. Such results led to a number 
of phases I and II clinical trials either with Imetelstat alone 
or in combination for multiple oncology and hematologic 
myeloid malignancies indications. [78]. Interestingly, it has 
been demonstrated that Imetelstat could cross the blood-
brain barrier. Trials showed good results with the exception 
of a phase II clinical trial using Imetelstat plus paclitaxel in 
advanced breast cancer. This trial was stopped in September 
2012 due to the results of an interim analysis showing a 
worse survival time in patients receiving Imetelstat. On No-
vember 13, 2014, Geron entered into an exclusive collabora-
tion and license agreement with Janssen Biotech. Since then 
development of Imetelstat will proceed under a mutually 
agreed clinical development plan, which includes two phase 
II studies to be pursued initially, one in myelofibrosis, and 
one in myelodysplastic syndrome expected to be initiated 
during 2015.  

Other approach involves “suicide gene therapy”, viral 
vectors that are genetically modified to encode a prodrug 
activating enzyme [i.e. cytosine deaminase or carboxypepti-
dase G2] which in turn will replicate only in TERT-
overexpressing cells, activating the effect of cytotoxic pro-
drugs like 5-flucytosine or ZD2767P [79]. 

Furthermore, other strategy has already reached the clini-
cal phases. Telomelysin is an attenuated adenovirus-5 vector 
whereas TERT promoter element drives expression of E1A 
and B genes linked with and internal ribosome entry site. In 
this way, it induces virus-mediated lysis of cancer cells after 
viral propagation in the TERT-overexpressing cells. The 
drug is in phase I/II development stage for hepatocellular 
carcinoma and esophageal cancer [80] 
1.2.7. Targeting Telomere and Telomerase-Associated Pro-
teins 

One interesting strategy is targeting the associated pro-
teins rather than the main molecules. One interesting case is 
targeting tankyrases with PARP inhibitors. Also is interest-
ing the approach on inhibition of the chaperone HSP90. 
Studies show that HSP90-p23 co-chaperone complex is re-
quired for maturation and activation of telomerase [78]. With 
that idea on mind, Geldanamycin [GA] (Fig. 2G) was used. 
However since HSP90-P23 has low solubility and high hepa-
totoxicity, the analogs 17-AAG [Tanespimycin] and 17-
DAG were developed and are being tested in clinical trials at 
the moment [81]. Small interfering small RNAs having as a 
target TRF1, TRF2 and TIN2 have been studied. Some mol-
ecules against POT1 also have been analyzed [82]. 
1.2.8. Telomerase Inhibitors from Microbial Sources 

Telomerase inhibitors were isolated from various fungal, 
bacterial and actinomycetes sources (for review see [83]. 
Some of them are chemically modified in order to increase 
their potency and some were synthesized as such in the la-
boratory [84]. 

Actinomycetes spp. is the most widely explored microor-
ganism for telomerase inhibitors since possesses benzofuran 
and benzodipyran rings, which have been found to be poten-
tial inhibitors of telomerase. Rubromycins (Fig. 2H) isolated 
from Streptomyces collinus are extensively studied for their 
ability to induce apoptosis in cancer cells; however, their 
telomerase inhibitory activity was explored recently. They 
are primarily aromatic naphthoquinone and isocoumarin ring 
systems that competitively interact with the hTERT and/or 
hTR subunits of telomerase enzyme. Studies proved that the 
spiroketal moiety of rubromycin is the key pharmacophore 
for telomerase inhibitory action [85]. Griseorhodins are an-
other group of compounds that possess quinine moieties and 
inhibit telomerase in vitro. Fungi also have become sources 
of telomerase inhibitors among them Thelavin A and B, 
which are isolated from Thielavia terricola [86] and di-
azaphilonic acid, isolated from Talaromyces flavus [87]. 

1.3. Other Molecules 

Oleic acid is a fatty acid that occurs naturally in various 
animal and vegetable fats and oils Fig. (2I). In chemical 
terms, oleic acid is classified as a monounsaturated omega-9 
fatty acid and was found to be inhibitor of human telomerase 
[88]. Helenalin, a natural sesquiterpene lactone, is a potent 
and selective inhibitor for human telomerase [89]. Five new 
alkaloids, dictyodendrins A-E were isolated from the marine 
sponge Dictyodendrilla verongiformis as telomerase inhibi-
tors. Dictyodendrins are tyramine-based pyrrolocarbazole 
derivatives containing three or four p-hydroxybenzene
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B) 

 
Fig. (2). a) Structure of the most important inhibitory molecules belonging to each group. A) Nucleosides. B) Oligonucleotides. C) 
Small molecule inhibitors. D) Stabilizators of G quadruplex. E) Immunotherapeutic molecules. F) Gene therapy constructs. G) Molecules that 
target telomere and telomerase associated proteins. H) Inhibitors from microbial sources. I) Other inhibitors. 
b). Mechanism of action of the most important inhibitory molecules belonging to each group. A) AZT: Integrates into the telomeric DNA. B) 
PNA: This modified antisense oligonucleotide is complementary to sequences within or near the human telomeric template. C) BIBR1532: 
Competiting inhibitor of TERT and hTR. D) Telomestatin: stabilizes G cuadruplexes preventing hTR of recognizing the unfolded single 
stranded telomere overhang. E) Tertomide Generates telomerase specific T helper cells, activates antigen presenting cells and cytotoxic T 
cells, generating a good immune response. F) Imetelstat: A lipid=conjugated 13=mer oligonucleotide sequence that is complementary to hTR. 
G) Gedanamycin: targets the HSP90.P23 co.chaperone complex, required for maturation and activation of telomerase. H) Rubromycin: com-
petitive interact with the hTERT and.or hTR subunits of telomerase enzyme. I) Oleic acid. The three-dimensional structure of the active site 
of telomerase (i.e., the binding site of the primer and dNTP substrate) might have a "pocket" that could "join" these compounds. 
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groups. They inhibited telomerase completely at a concentra-
tion of 50 microg/mL [90]. 

CONCLUSION 

As has been analyzed many approaches and agents have 
been directed against telomerase, then it is time to analyze 
the challenges and perspectives we have ahead. 

 Although at the moment no therapy has been used as on-
cology treatment, telomerase inhibition is still one of the best 
targets to point out in oncology. Let us no forget that te-
lomerase was discovered only 30 years ago and that its rela-
tion with cancer was established 20 years ago. Also, as with 
the years have passed and increasing body of evidence has 
demonstrated the complex relationship between telo-
mere/telomerase at the different levels of regulation of te-
lomerase activity and with their relationship with associated 
proteins. Interestingly, those associated proteins could be an 
excellent target in our fight against cancer. 

We should take also into account some possible short-
comings. For instance, in the case of AZT, as the shortening 
of telomeres is a slow process, the dynamics of the disease 
could put at risk the life of the patient before the action of 
the drug is effective. Therefore, concerns must be expressed 
when attempting to treat advanced tumors with AZT [91]. 
However, AZT treatment could constitute a good adjuvant 
therapy in cases where conventional treatments reduce the 
bulk of the tumor giving time for AZT to act in the remnant 
surviving tumor cells. 

Firstly, the number of AZT-treated passages could be in-
sufficient for a senescence program to be triggered, and sec-
ondly telomeres shortening to a critical length could induce a 
compensatory mechanism of preservation so preventing fur-
ther losses, known as alternative lengthening of telomeres or 
ALT [92]. Thirdly, an AZT-resistant phenotype could have 
developed because of selection following treatment. 

However, one of the advantages of telomerase targeting 
therapies is that rapidly proliferating cancer cells have short-
er telomeres [5kb] compared to normal somatic cells and 
stem cells [10-20 kb] that have not yet reached critical 
lengths [78]. Some authors consider that in some cases, func-
tional p53 may be required to induce the response to te-
lomerase inhibitors in cells with critically shortened telo-
meres. [93]. Other aspect to consider is that clinical results 
many times are not successful due to poor pharmacokinetics: 
limited solubility, difficulties to pass through biological bar-
riers, etc [94] which leads to the search of other solubilizers 
or carriers. 

In addition, we should consider that some of these inhibi-
tors start their tumor deleterious effect after a variable 
amount of time. After telomerase inhibition, the telomere 
will start to become shorter, but tumor senescence and death 
will only start when reaching a critical length. Most often 
patients who join phase I clinical trials have advanced [meta-
static] cancer leaving this kind of inhibitor without the 
chance of demonstrating its effectivity in less advanced tu-
mors. Some authors have mentioned the importance of 
founding a “window of opportunity” for these inhibitors. 
Clearly, that will be the case of smaller tumors that requires 
a bigger number of mitosis, allowing the inhibitors to exert 

its action. Some other authors are suggesting changes in clin-
ical trials policies to allow this kind of molecules to have the 
chance to demonstrate its effectiveness without compromis-
ing the safety of the patient or the seriousness of the trial. 
Although clinical trials are, the basis where daily clinical 
practice should be based on, such evidence is scarce at the 
end-of life of cancer patients. Research in this patient’s pop-
ulation is hampered by the lack of clear definition of the 
study population, the study design, the definition of mean-
ingful endpoints and ethical considerations [95] In the mean-
time, some authors have advanced the path of therapy com-
bination with established oncological treatments. This ap-
proach is promising since it is tested as mainte-
nance/consolidation treatments to prolong remission in pa-
tients with advanced cancers. Some examples are combina-
tions with radiotherapy [96], trastuzumab [97], paclitaxel 
[98], doxorubicin [99], docetaxel [100] and etoposide [101]. 
Since many telomerase targeting molecules have a long lag 
time to produce critically shorter telomeres a combination 
therapy of telomerase inhibitors and standard of care may be 
the best approach to target effectively cancer cells. 

With their advantages and pitfalls, telomerase inhibition 
remains as one of the hottest targets in the quest for new an-
titumor drugs. More research in the subject will guarantee 
the answers to our questions, and eventually the finding of a 
blockbuster molecule. 
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