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Mesenchymal stem cells (MSC) are a cellular component of the supportive microenvironment 
(stroma) found in the bone marrow, umbilical cord, placenta, and adipose tissues. In addition to 
providing cellular and extracellular cues to support the proliferation and differentiation of cells that 
comprise functional tissues, MSC also contribute to tissue repair and have immunomodulatory 
properties. Their ability to modulate immunologic reactions while themselves not provoking 
immunologic responses from alloreactive T-lymphocytes and/or other effector cells, make 
MSC a potentially ideal therapeutic agent with which to treat graft versus host disease (GvHD) 
following hematopoietic transplantation. Despite in vitro experiments confirming that MSC 
suppress mixed lymphocyte reactions (MLR) and in vivo evidence from mouse models that 
show evidence that MSC can ameliorate GvHD, clinical trials to date using MSC to treat GvHD 
have shown mixed results. Whether this is a consequence of suboptimal timing and dose of 
administered MSC remains to be clarified. It is clear that immunomodulatory potential of MSC 
as a cellular therapy for GvHD remains to be realized in the clinic.

Keywords: mesenchymal stem cell, graft versus host disease, animal models, clinical trials

MSC as Immunomodulators
Mesenchymal stem cells possess intrinsic immunoregulatory 
activities that, while not yet fully characterized, broadly modu-
late innate and adaptive immune responses (Uccelli et al., 2008; 
Auletta et  al., 2010). Within the context of innate immunity, 
MSC alter antigen-presenting cell (APC) development, matu-
ration, and function. Dendritic cells (DC) are potent APC for 
naïve T-cells, and are critical in donor T-cell activation during 
acute GvHD (Shlomchik, 2007). MSC inhibit differentiation of 
monocytes to DC, and furthermore, affect DC differentiation, 
activation, and function (Uccelli et al., 2008). MSC also inhibit 
natural killer (NK) cell proliferation and cytokine production, 
and could potentially modulate DC function through their effects 
on NK cells (Spaggiari et al., 2006). In the light of these effects, 
MSC might suppress allo-reactivation of donor T-cells against 
the host in the setting of GvHD, although acute GvHD typically 
results in high levels of interferon gamma (IFNγ) which may 
increase MHC class II expression on MSC (Shlomchik, 2007; 
Welniak et  al., 2007) and could paradoxically compound the 
development of GvHD.

Within the context of adaptive immunity, MSC inhibit allo-
reactive T-cell responses via contact-dependent mechanisms 
and soluble factors (Keating, 2008; Uccelli et al., 2008). Some 
studies suggest MSC effect a shift in T-cell function toward a 
more regulatory phenotype (Prevosto et al., 2007). Importantly, 
the effects of MSC on T-cells are independent of HLA matching 
between MSC and lymphocytes (Le Blanc et al., 2003; Sundin 
et al., 2009) and MSC can be administered repeatedly without 
provoking an immunologic response from the recipient (Sundin 
et al., 2009).

Introduction
Mesenchymal stem cells (MSC) are a population of phenotypi-
cally heterogeneous cells that are an important cellular component 
of the supportive stromal microenvironment within functional 
tissues. They have the capacity to differentiate into osteoblasts, 
chondroblasts, and adipocytes in vitro (Pittenger et al., 1999; Jiang 
et al., 2002; Horwitz et al., 2005; Dominici et al., 2006) and since 
they do not express class II human histocompatibility antigens 
(HLA-II), or accessory molecules (CD40, CD80, and CD86) they 
do not provoke an immunologic response if transplanted. As a 
consequence, HLA matching does not present as a major hurdle 
against their use in cellular therapies (Le Blanc et al., 2003). In 
addition, MSC have the capacity to modulate immune reactions 
(Di Nicola et al., 2002; Aggarwal and Pittenger, 2005; Ramasamy 
et al., 2008; Uccelli et al., 2008), are important for effective tis-
sue repair and regeneration (Deans and Moseley, 2000; Horwitz 
et  al., 2002; Toma et  al., 2002) and can be isolated, expanded, 
and purified ex vivo, from many tissues including bone marrow 
(McNiece et al., 2004; Robinson et al., 2006; Najar et al., 2010a), 
umbilical cord (Majore et al., 2011; Najar et al., 2010a,b; Tong et al., 
2010), placenta (Zhang et al., 2004a), and adipose tissue (Najar 
et  al., 2010a,b). Since immunoprivileged MSC do not provoke 
immunologic responses in an HLA-unmatched recipient and are 
able to modulate immunologic interactions, they are an attractive 
candidate as a potential cellular therapy for the treatment of graft 
versus host disease (GvHD). GvHD remains a significant cause 
of morbidity and mortality following allogeneic hematopoietic 
stem cell transplantation and any therapy that might ameliorate 
or eliminate the symptoms of GvHD, especially steroid-refractory 
GvHD, would have great clinic significance.
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Uccelli et al., 2008). Increased T
Reg

 activity is ultimately thought 
to suppress the activity of the donor T-cells that are ultimately 
responsible for the acute GvHD observed, thereby ameliorating 
the symptoms of the disease and improving the survival rate of 
the mice. The amount of any immunoregulatory factor liberated 
by the MSC is proportional to the numbers of MSC, therefore it is 
likely that a specific dose of MSC might be required before levels 
sufficient to maximally stimulate T

Reg
 proliferation and ameliorate 

the symptoms of GvHD are achieved in vivo. Recent data have 
further confirmed that there is an interaction between MSC and 
T

Reg
 (Kavanagh and Mahon, 2011). In this instance, MSC induce 

the proliferation and activation of T
Reg

 in vivo and reduce a specific 
allergen-driven pathology.
(b)	Determining the correct time for administration of MSC: 

Experiments have been performed to investigate the opti-
mal timing for administration of MSC to best ameliorate the 
symptoms of GvHD. A murine GvHD model was generated 
by the transplant of lethally irradiated male BALB/c (H-2Kd) 
mice with bone marrow and splenocytes from female 
C57BL/6 (H-2Kb) mice (Polchert et  al., 2008). MSC were 
introduced into this model concurrently with bone marrow 
infusion, or 2, 20, or 30  days after bone marrow infusion. 
While mice died of the symptoms of acute GvHD when they 
received no MSC, death was also observed when MSC were 
administered at the time of bone marrow infusion (early 
time point), or 30  days after bone marrow infusion (late 
time point). However, when MSC were administered 2, or 
20 days after bone marrow infusion, significantly increased 
survival rates were observed indicating that the administe-
red MSC acted to ameliorate the symptoms of the acute 
GvHD (Polchert et al., 2008). The apparent failure of MSC 
to ameliorate the symptoms of GvHD when administered 
early (<2  days) was possibly due to levels of immunomo-
dulatory factors being too low to elicit any beneficial effect. 
The apparent failure of MSC to ameliorate the symptoms 
of GvHD when administered later (30  days) was possibly 
attributable to the presence of overwhelming numbers of 
activated T-cells at this time point. To explain the apparent 
“window” of opportunity for effective MSC immunomo-
dulation of GvHD and significantly increased survival rates 
(observed at 2  and 20  days after bone marrow infusion), 
it is suggested that a pro-inflammatory milieu needs time 
to develop. Within this milieu the MSC become activated. 
MSC are activated by IFNγ (Croitoru-Lamoury et al., 2007) 
and their migration might be driven, at least in part, by 
an IFNγ-associated upregulation of chemokine receptors 
expressed by MSC (New et  al., 2002; Wang et  al., 2002). 
Once activated, MSC are possibly drawn to sites of T-cell 
activation where they may block interactions between donor 
T-cells and DC which may prevent the activation of the 
donor T-cells thereby ameliorating the symptoms of GvHD 
(Zhang et  al., 2004b; Aggarwal and Pittenger, 2005; Beyth 
et  al., 2005; Gur-Wahnon et  al., 2007). The importance of 
IFNγ in this activation process was shown when bone mar-
row and splenocytes were transplanted from IFNγ knock-
out mice. In the absence of IFNγ MSC were not activated 
and failed to immunosuppress the donor T-cells leading to 

MSC and Tissue Repair
Currently, the role of MSC in tissue repair and regeneration 
is under extensive study. Of specific relevance to mechanisms 
associated with the development of GvHD, a number of animal 
models of injury including cerebral ischemia (Li et al., 2010), 
total body irradiation (Chapel et al., 2003; Devine et al., 2003), 
and myocardial infarction (Pittenger and Martin, 2004) have 
demonstrated a chemotactic response of MSC to the site of 
injury. Such sites of injury might include lesions associated with 
GvHD. Once at the site of injury, or inflammation, it has been 
proposed that MSC can stimulate tissue repair (Prockop and 
Olson, 2007).

Immunomodulatory role for MSC in murine models 
of GvHD
Murine models have been used to investigate the immunomodula-
tory potential of MSC in ameliorating (preventing and/or treating) 
GvHD. Such studies have revealed a mix of results with some show-
ing immunomodulatory efficacy and others not (Chung et al., 2004; 
Sudres et al., 2006; Min et al., 2007; Tisato et al., 2007). However, 
they have highlighted a number of important questions which 
might impact the clinical efficacy of MSC as a cellular therapy for 
GvHD. Such questions include:

(a)	 Defining the optimal dose of MSC,
(b)	Determining the correct time for administration of MSC, and
(c)	 Studying the biodistribution of MSC.

(a)	 Defining the optimal dose of MSC: Given that the number 
of MSC available for transplant is likely a limiting factor, 
the target doses that should be utilized to ameliorate GvHD 
in the clinic become an important consideration. Using 
the mixed lymphocyte reaction (MLR) optimal inhibition 
of splenocyte proliferation was achieved in the presence of 
MSC at a ratio of 0.5–1 MSC: 1 splenocyte (Joo et al., 2010). 
MSC were administered into a murine model of GvHD 
at this ratio. GvHD was established in lethally irradiated 
BALB/c mice when 5 × 106 bone marrow cells and 1 × 106 
spleen cells from C3H/he donor mice were injected. In this 
model, death occurred after 12  days due to severe acute 
GvHD. Against this background, mice also received 0.5 × 106 
MSC (low dose), 1.0  ×  106 MSC (intermediate dose), or 
2.0 ×  106 MSC (high dose) at the time that 1 ×  106 spleen 
cells were infused. These doses reflect MSC:splenocyte ratios 
of 0.5:1, 1:1, and 2:1. While the low dose of MSC did not 
prevent death, the survival rate of mice receiving the inter-
mediate and high doses of MSC were significantly improved 
(Joo et al., 2010).

Consistent with previous findings (Casiraghi et al., 2008; Di 
Ianni et al., 2008; Ye et al., 2008; Gonzalez-Rey et al., 2010), the 
beneficial impact of MSC administration in this GvHD model 
appeared to be, at least in part, to an MSC-associated activation 
of regulatory T-cells (T

Reg
). Indeed, an increase in T

Reg
 numbers 

(CD4+25+Foxp3+ cells) was observed in vivo in mice receiving both 
splenocytes and MSC as compared to those receiving splenocytes 
alone (Joo et al., 2010). It is thought that TGFβ secreted by the MSC 
may induce the proliferation and activation of T

Reg
 (Keating, 2008; 
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suggest that timing and dose of MSC administration are critical if 
optimal immunomodulation of GvHD by MSC is to be achieved 
(Mielcarek et al., 2011).

Clinical trials with MSC to treat GvHD
Clinical trials were developed based on the pre-clinical data 
with the limitations inherent to murine models (summarized in 
Tables 1–3). MSC therapies have been most extensively studied in 
steroid-refractory GvHD. The first case of successful treatment of 
severe refractory acute GvHD of the gut and liver in a pediatric 
patient using ex vivo expanded haplo-identical human MSC was 
reported by Le Blanc et al. (2004). While a prompt amelioration of 
GvHD was observed after the administration of MSC, symptoms 
recurred. However, these symptoms were responsive to a second 
administration of MSC (Le Blanc et al., 2004). Of eight patients with 
steroid-refractory GvHD that were subsequently treated with MSC 
a complete response (CR) was achieved in six patients (75%). One 
month after MSC administration, analysis of a colon biopsy from 
one of the six patients in CR revealed DNA from the donor MSC 
(Ringden et al., 2006). These encouraging results were subsequently 
corroborated in a non-randomized, multicenter trial reported by 
the European Blood and Marrow Transplant MSC consortium (Le 
Blanc et al., 2008).

European Blood and Marrow Transplant MSC study
The EBMT MSC trial shared expansion protocols and common 
reagents and 25 pediatric and 30 adult patients with steroid-
refractory GvHD were treated with MSC. MSC were derived from 
HLA-identical and haplo-identical sibling donor bone marrow, 
or third-party mismatched, bone marrow. A single median dose 
of 1.4 ×  106 MSC/kg was given and a 70% initial response rate 
(complete or partial remission) was achieved. First response was 
observed after a median of 18 days of MSC administration. Patients 
that responded to the MSC therapy and achieved CR at 6 weeks had 
a statistically significant reduced level of treatment-related mor-
tality (TRM) at the 1-year time point when compared to patients 
that did not respond (37 vs. 72%, P = 0.002, respectively). Further, 
overall survival (OS) was also significantly improved in patients 
in CR after MSC therapy, when compared to patients that did not 
respond (53 vs. 16%, P = 0.018, respectively; Le Blanc et al., 2008). 
MSC infusions were well tolerated and no significant adverse events 
were reported. Responses in pediatric patients were generally bet-
ter than adult patients, with a statistical improvement in survival 
achieved. Since most patients received third-party (unmatched) 
donor MSC and achieved encouraging amelioration of GvHD, these 
data suggests that any concerns regarding HLA disparity between 
donor and recipient are of little significance.

Phase II clinical trials of third-party MSC to 
ameliorate steroid-refractory acute GvHD
Further to the EBMT MSC trial, a pediatric phase II study of 
third-party, “off-the-shelf,” mismatched MSC (Prochymal®, Osiris 
Therapeutics, Inc.) for steroid-refractory acute GvHD has also been 
reported (Table 1). Fifty-nine patients (median age 8 years) with 
steroid-refractory acute GvHD received 8  biweekly infusions of 
2 × 106 MSC/kg for 4 weeks, followed by an additional 4 weekly 
infusions as “maintenance.” The majority of patients presented 

the development of GvHD, irrespective of the time or dose 
of administration (Polchert et  al., 2008). Given that IFNγ 
appears to have an important role in the activation of MSC 
and given that serum levels of IFNγ the factor remained low 
for up to 2 days after transplantation (Polchert et al., 2008), 
it is perhaps not a surprising observation that MSC admini-
stered early (<2 days) fail to ameliorate GvHD. These data 
provide strong evidence that the time of administration of 
MSC after transplant is a critical consideration if effective 
amelioration of GvHD is to be achieved.

(c)	 Studying the biodistribution of MSC: Imaging can be used to 
reveal the biodistribution of MSC in murine models of GvHD 
(Joo et al., 2011). In one such model, recipient BALB/c-nude 
mice received a lethal 500 cGy radiation dose and 5 × 106 BM 
cells from normal C57BL/6 donor mice. To induce GvHD, 
1  ×  106 splenocytes from C57BL/6 donor mice expressing 
the enhanced green fluorescent protein (EGFP) was injected. 
EGFP signal allowed the trafficking of splenocytes and iden-
tified sites of GvHD in situ. To study the biodistribution 
of MSC in this model, MSC were generated from C57BL/6 
donor mice expressing red fluorescent protein (RFP). RFP-
MSC were transplanted at 1  ×  106  MSC/mouse. All cells 
were injected into the lethally irradiated BALB/c-nude mice 
within 24 h of irradiation. After 2 days, EGFP signal, associa-
ted with donor splenocytes, was detected in the lungs. At this 
same time point RFP signal associated with MSC was also 
detected in the lungs (Gao et al., 2001; Lee et al., 2009; Joo 
et  al., 2011). After 7  days, EGFP (splenocyte) signal inten-
sity reduced in the lungs and increased in the GI tract. A 
similar change in the pattern of RFP (MSC) signal intensity 
was observed. After 22–37 days, EGFP and RFP signals co-
localized to the liver, skin, and lymph nodes, illustrating that 
MSC can home to sites of progressive and on-going GvHD 
and thereby potentially exert direct cell-cell contact mediated 
and/or indirect paracrine immunosuppressive effects.

No evidence of an immunomodulatory role for MSC 
in a canine model of GvHD
While the mouse provides genetically well-defined models with 
which to investigate the immunomodulatory role of MSC against 
experimentally induced GvHD in vivo, the use of less rigorously 
defined models might be more representative of clinical transplan-
tation. When such a model (canine) is used, researchers report no 
benefit associated with MSC administration in the treatment of 
GvHD and prevention of graft rejection (Mielcarek et al., 2011). 
These negative observations were made despite the demonstra-
tion of in vitro suppressive activity in canine MLR experiments by 
allogeneic canine MSC and despite the observation that that the 
pattern of allogeneic canine MSC distribution in vivo in canine 
recipients was similar to that observed in mice after intravenous 
administration of mouse MSC (namely accumulation in lungs 
immediately after administration followed by redistribution to 
GI tract, liver, spleen and bone marrow). The failure to demon-
strate any benefit associated with MSC administration in this dog 
model also occurred despite frequent, repeated MSC administra-
tion (2–3 doses/week) at doses of up to 30 × 106 MSC/kg which 
is somewhat inconsistent with data from murine studies which 
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Table 1 | Results of clinical trails utilizing MSC for steroid-refractory acute GvHD.

Study N Age 

(range)

GvHD 

organ/

grade

MSC 

source

Passage/

media

Dose (M, 106 MSC)/schedule Results

Ringden 

et al. (2006)

    8 56 

(8–61)

All Gl

Grade III: 6

Grade IV: 2

BM, third 

party/slb/

haplo

1–4/FBS 1 M/kg (range 0.7–9); 1 dose, 

n = 5; 2 dose, n = 3

6/8 CR (1/2 kids); 5/8 OS; no 

infusional toxicity; one disease 

relapse

Fang et al. 

(2007)

    6 39 

(22–49)

S+L or Gl  

Grade III: 2

Grade IV: 4

Adipose, 

third party/

haplo

5/FBS 1 M/kg MSC; 1 dose, n = 5; 2 

dose, n = 1

5/6 CR, 4/6 OS at 40 months; no 

infusional toxicity; one disease 

relapse

Le Blanc 

et al. (2008)

  55 22 

(0.5–

64)

S10, GI 31, 

L2

Grade II: 5

Grade III: 25

Grade IV: 25

BM, third 

party/slb/

haplo

2 (1–4)/FBS 1.4 M/kg (range 0.4–9); 1 dose 

(range 1–5)

CR: 68% kids, 43% adults; PR: 16% 

kids, 17% adults; 2-year OS: 53% 

for CR vs. 16% others; no infusional 

toxicity; 3 relapse

Von Bonin 

et al. (2009)

  13 58 

(21–69)

All S+L+GI

Grade III: 2

Grade IV: 11

BM, third 

party

1–2/platelet 

lysate

0.9 M/kg (range 0.6–1.1); 2 

doses (range 1–5);

2/13 CR, 5/13 mixed response; 4/13 

OS at median 257 days; No 

infusional toxicity; no relapse

Muller et al. 

(2008)

    2 4, 14 Grade II (S, 

Gl)

Grade III (S, 

L, Gl)

BM, haplo/

third party

Max 

6 weeks 

culture/FBS

0.4 M/kg, 3 M/kg 1 dose 1 CR, 1 NR with subsequent 

relapse; no infusional toxicity

Lucchini 

et al. (2010)

    8 10 

(4–14)

Grade I: 3, S

Grade II: 1,S

Grade III: 0

Grade IV: 4, 

Gl

BM, third 

party

Platelet 

lysate

1.2 M/kg (range 0.7–2.8); 1 

dose

3/8 CR, 2/8 PR, 3/8 NR 5/8 OS; no 

infusional toxicity; no relapse

Kurtzburg 

et al. (2009)

  59 8 Grade II: 6

Grade III: 20

Grade IV: 33

BM, third 

party 

(Prochymal)

5/FBS 2 M/kg; 8 biweekly × 4 weeks, 

followed by 4 infusions 

weekly × 4 if PR

64% ORR at day 28; 76 vs. 9% 

survival at day 100; no infusional 

toxicity

Martin 

et al. (2010)

260 44 

MSC; 

40 

control

MSC/

control

B: 38 vs. 23

C: 88 vs. 50

D: 47 vs. 14

BM, third 

party 

(Prochymal)

5/FBS 2 M/kg; 8 biweekly × 4 weeks, 

followed by 4 infusions 

wkly × 4 if PR

No diff in durable CR between MSC 

and control; liver, Gl GvHD 

significantly better response 81 vs. 

68%, p = 0.035

Table 2 | Results of clinical trails utilizing MSC for de novo acute GvHD.

Study N Age 

(range)

GvHD 

organ/

grade

MSC 

source

Passage/

media

Dose (M, 106 MSC)/schedule Results

Kebriaei 

et al. (2009)

32 52 

(34–67)

Grade II: 21

Grade III: 8

Grade IV: 3

BM, third 

party 

(Prochymal)

5/FBS 2 or 8 M/kg at 1 and 3 days 

after GvHD + steroids

94% initial response (77% CR, 16% 

PR), 61% sustained CR; No 

difference between high/low MSC 

dose; No infusional toxicity; three 

disease relapse

Osiris 

Therapeutics, 

Inc. (2009)

192 18–70 B–D BM, third 

party 

(Prochymal)

5/FBS 2 M/kg; twice wkly × 2 

weeks, followed by 

weekly × 2; MSC vs. placebo

No difference in durable CR 

between MSC and placebo, 45 vs. 

46%

with severe gut and liver GvHD, and had received prior therapy 
for GvHD. At day 28, the overall response rate was 64% and patients 
that showed responses had a significantly better survival at the 

100 day time point (76 vs. 9%) as compared to patients who did 
not (Kurtzberg et al., 2009). Similar findings have been reported 
in other studies (Table 1; von Bonin et al., 2009).
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Table 3 | Results of clinical trails utilizing MSC for chronic GvHD.

Study N Age 

(range)

GvHD organ/

grade

MSC 

source

Passage/

media

Dose (M, 106 MSC)/schedule Results

Muller et al. 

(2008)

3 15 

(15–17)

Extensive 

chronic

BM, third 

party/sib/

haplo

Max 

6 weeks 

culture/FBS

2.0 M/kg (range 1.4–3.0); 1 

dose, n = 1; 2 dose, n = 2

1/3 improvement; no infusional 

toxicity; no relapse

Lucchini 

et al. (2010)

5 9 

(5–15)

Chronic 

skin + mucosa, 

n = 4; chronic 

skin + liver, 

n = 1

BM, third 

party

expanded in 

platelet-

lysate 

medium

1.1 M/kg (range 0.7–1.4); 1 

dose, n = 4; 2 dose, n = 1

1/5 CR with reflare, 2/5 PR, 2/5 

NR; no infusional toxicity; no 

relapse; in vivo 

immunomodulation noted in 

responsive group

Zhou et al. 

(2010)

4 42 

(38–43)

Extensive, 

sclerodermal 

features

BM, third 

party

3–6/FBS 1–2 × 107MSC/kg; 4–8 

intra-BM injections per patient

4/4 significant improvement; no 

infusional toxicity

Weng et al. 

(2010)

19 29 

(18–39)

Extensive 

chronic

BM, third 

party

2–3/FBS 0.6 M/kg (range 0.2–1.4); 1–5 

doses

74% ORR (4 CR, 10 PR), five 

patients able to stop 

immunosuppression, 2  year OS 

78%; in vivo immunomodulation 

noted in responsive group

MSC as an adjunct to steroid therapy in the 
treatment of steroid responsive acute GvHD
While there are many reports of the use of MSC to treat steroid-
refractory GvHD (Table 1), there are fewer studies of MSC as 
an adjunct therapy for the treatment of steroid responsive acute 
GvHD (Table 2). The results of such a phase II trial for patients 
with grades II-IV acute GvHD have been reported (Kebriaei et al., 
2009). Thirty-two adult patients received two treatments of MSC 
(Prochymal®) at a dose of either 2 or 8 × 106 MSC/kg in com-
bination with a conventional corticosteroid regimen. Patients 
continued to receive GvHD prophylaxis with tacrolimus, cyclo-
sporine, or mycophenolate mofetil. Thirty-one patients were 
evaluable, with 94% initial response rate noted (24 CR, 5 PR). 
Nineteen of 24 CR were maintained for at least 90  days. No 
infusional toxicities or ectopic tissue formation were reported. 
While the trial was not designed to detect differences between 
the two MSC doses administered, no obvious differences were 
observed (Kebriaei et al., 2009).

Phase III clinical trials of third-party MSC to 
ameliorate steroid sensitive and steroid-
refractory acute GvHD
Preliminary results from two multicenter, randomized, phase 
III clinical trials for de novo acute and steroid-refractory acute 
GvHD have been reported by Osiris Therapeutics, Inc. (2009). 
In both studies, third party, “off-the-shelf ” MSC (Prochymal®) 
were administered weekly or biweekly for 4 weeks with indi-
vidual dosing at 2 × 106 MSC/kg. Neither the steroid-refractory 
nor the newly diagnosed GvHD trials reached the primary 
endpoint of durable CR ≥ 28 days. However, select patients 
with steroid-refractory liver or gastrointestinal GvHD were 
reported to have significantly improved response rates (81 

vs. 68%, P = 0.035). No significant difference was noted with 
respect to toxicity or recurrent malignancy rates (Martin et al., 
2010).

MSC as a cellular therapy to ameliorate  
chronic GvHD
Experience with MSC for the treatment of chronic GvHD is more 
limited, and summarized in Table 3. One pediatric patient showed 
slight improvement after infusion of 3 × 106 MSC/kg administered 
7 and 26 months after transplant (Muller et al., 2008). A second 
patient with extensive chronic GvHD was treated with 0.6 × 106 
haplo-identical MSC/kg 5 months after transplant, but showed no 
response (Ringden et al., 2006). Of note, this patient and a patient 
with chronic GvHD treated with MSC in a previous study, died 
eventually of complications associated with the development of 
EBV-PTLD (Ringden et al., 2006; Muller et al., 2008). Consistent 
with observations that suggest only limited (if any) improve-
ment in chronic GvHD following MSC infusion, reports from 
other pediatric patients with chronic GvHD of skin and mucosa 
treated with “off-the-shelf ” MSC, reveal a limited transient ben-
efit following MSC administration (Lucchini et al., 2010). Partial 
responses and a CR that subsequently reflared were reported in this 
instance. The median MSC dose delivered was 1.2 × 106/kg (range 
0.7–2.8 × 106/kg) as a single infusion at a median of 5 months 
following transplant (range 1–10 months; Lucchini et al., 2010).

In contrast, significant improvements have been reported fol-
lowing MSC therapy in patients with sclerodermal-type chronic 
GvHD (Zhou et al., 2010). Patients with extensive skin changes 
and ulcers showed significant improvement when treated with 
four to eight intra-bone marrow injections of MSC at a dose of 
1–2 ×  107 MSC/kg. One change noted following MSC admin-
istration and possibly associated with the improvement in the 
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