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ABSTRACT
Biotherapeutics are an important class of molecules for the treatment of a wide range of diseases. They 
include low molecular weight peptides, highly engineered protein scaffolds and monoclonal antibodies. 
During their discovery and development, assessments of the biophysical attributes is critical to under-
standing the solution behavior of therapeutic proteins and for de-risking liabilities. Thus, methods that 
can quantify, characterize, and provide a basis to inform risks and drive the selection of more optimal 
antibody and alternative scaffolds are needed. Nuclear Magnetic Resonance (NMR) spectroscopy is 
a technique that provides a means to probe antibody and antibody-like molecules in solution, at atomic 
resolution, under any formulated conditions. Here, all samples were profiled at natural abundance 
requiring no isotope enrichment. We present a numerical approach that quantitates two-dimensional 
methyl spectra. The approach was tested with a reference dataset that contained different types of 
antibody and antibody-like molecules. This dataset was processed through a procedure we call 
a Random Sampling of NMR Peaks for Covariance Analysis. This analysis revealed that the first two 
components were well correlated with the hydrodynamic radius of the molecules included in the 
reference set. Higher-order principal components were also linked to dynamic features between different 
tethered antibody-like molecules and contributed to decisions around candidate selection. The reference 
set provides a basis to characterize molecules with unknown solution behavior and is sensitive to the 
behavior of a molecule formulated under different conditions. The approach is independent of protein 
design, scaffold, formulation and provides a facile method to quantify solution behavior.
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Introduction

Protein-based therapeutics like monoclonal antibodies (mAbs) 
have found important clinical applications for a myriad of 
diseases. Their approval for clinical use has increased drama-
tically, with over 30 new mAbs being approved since 2018.1–3 

The traditional IgG mAb scaffold adopts a canonical fold in 
which two heavy and two light chains associate to create two 
antigen-binding fragments (Fab), composed of the variable 
heavy (VH) and variable light chain (VL) that can bind to 
a target.4 The Fabs are attached by a flexible hinge to the Fc 
domain, which is composed of heavy chain constant regions 
(CH2, CH3) that dimerize. In addition, the conventional mAb 
scaffold can also be modified by mutation to elicit unique 
functional behavior, including increasing half-life,5 organized 
higher-order multimer structure formation6 and reduced Fc 
receptor engagement,7 but other modifications have been 
documented.8–11 The clinical success of mAb therapeutics has 
spurred innovation and the engineering of a multitude of 
different therapeutic proteins that engage targets using unique 
structural folds. Therapeutic proteins cover a spectrum of 
scaffolds that range from small single variable heavy chain 
domains (approximate molecular weight (MW): 12–15 kDa), 
typically referred to as single-domain VHH monomers,12 to 
self-associating mAbs (MW: 100s – 1000 kDA hexameric 
IgG, IgM, respectively).6,13 Some of these scaffolds or their 

fragments, can also be tethered to form multidomain proteins 
that are referred to as multivalent molecules when they bind 
two or more antigens.14 Tethering allows creation of molecules 
that can engage multiple different epitopes on the same target 
or cross-link different targets. Furthermore, antibody-drug 
conjugates also present an exciting method to deliver payloads 
to specific cells.15,16 The availability of different protein scaf-
folds presents an exciting opportunity to discover novel ther-
apeutics with differentiated mechanisms of action.17,18 

However, antibody and antibody-derived protein therapeutics 
can present a developability challenge that can only be over-
come by leveraging biophysical and structural methods that 
characterize, quantify and differentiate their solution 
behavior.19,20 Novel methods that can help differentiate 
between candidates using simple comparators that are sensitive 
across different formulation conditions are thus needed.

The biophysical characterization of therapeutic proteins 
serves a critical role in guiding decisions within discovery 
and developability efforts.20–24 Chromatography, electrophor-
esis, thermal-melt fluorimetry, mass spectrometry and light- 
scattering techniques largely anchor many platforms that are 
used to qualify proteins that have therapeutic potential.25–29 

These approaches can capture the average state of the protein, 
informing on size, charge and distribution of aggregated states. 
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Some of these approaches are also sufficiently sensitive to 
detect site-specific modifications that can manifest as 
liabilities.26 Generally, these techniques are combined to 
develop fit-for-purpose platforms to qualify protein behavior. 
Over the past few years, Nuclear Magnetic Resonance (NMR) 
spectroscopy has emerged as a useful tool to profile a range of 
mAbs and other biologics. NMR is a technique that can profile 
molecules in solution, independent of formulation, while 
maintaining atomic resolution.30,31 NMR can also be sensitive 
to species that are sparsely populated (>1%) as long as they 
maintain favorable NMR relaxation properties.32 One- 
dimensional (1D) NMR-based methods are information rich 
and have been used to profile mAb and mAb-like molecules.33 

Herein, we will denote the collection of different classes of 
mAb, mAb-like and mAb fragment molecules, referred to 
here as Ab(L/F)s. The 1D spectrum can report on the overall 
fold and, with careful normalization, molecules with 
a common overall structural topology can be compared.31 In 
unique situations, if particular resonance peaks can be identi-
fied, site-specific modifications can be monitored for changes 
over time and detect different effects that affect the molecule 
studied.31 However, spectral overlap can still be a limitation 
with detailed analyses.

The application of Diffusion-NMR (commonly referred to as 
Diffusion Ordered Spectroscopy (DOSY) NMR) has also been 
demonstrated to be useful in directly measuring the translational 
diffusion rate of biological molecules.34 An advantage of DOSY 
NMR is the ability to profile molecules that are <1 kDa to several 
MDa, and it is sensitive to the distribution of translational diffusion 
rates that could be sampled by any detectable species.34 This can 
enable the quantification of stably formed aggregates. Coupled 
with1H NMR relaxation-based approaches, this provides additional 
ways to probe the average differences within mAb and mAb-like 
molecules.34,35 Modern NMR instrumentation has dramatically 
improved the sensitivity of conventional NMR experiments. This 
breakthrough, coupled with sparse sampling techniques, has 
enabled the detection of two-dimensional (2D) [1H, 13C]-HSQC 
or [1H, 13C]-HMQC fingerprint spectrum (also referred to as 
a methyl fingerprint spectrum), which report on the behavior of 
individual terminal methyl and/or aliphatic groups within mAbs 
and Fabs at natural abundance.30 This obviates the necessity to 
isotope label the samples using recombinant or cell-free expression 
systems. Although, examples of Ab(L/F)s being isotope labeled have 
been documented, this process is very challenging and not accessible 
to the many targets and scale typically required in a discovery 
setting.31,36,37 Natural abundance 2D NMR applied to mAbs and 
Fabs has largely been championed by the Marino group, where they 
demonstrated multiple applications including detected differences 
in mAb glycosylation, reported a statistical approach to assess large 
NMR signal differences between a set of biologics samples, and 
established the robustness and variability of 2D [1H, 13C]-HSQC 
fingerprinting for biosimilar comparison.30,36,38–41 However, 
extracting and comparing quantitative aspects between different 
types of Ab(L/F)s still remains a challenge.

A collection of 2D [1H, 13C] correlation spectra for a variety 
of Ab(L/F)s, with orthogonally qualified solution behavior, 
would provide a basis of comparison against novel molecules. 
We propose that the linewidths and relative peak intensities of 
the resonances from 2D correlation spectra should be used as 

a measure of contrasting solution behavior between different 
Ab(L/F)s. This is because the NMR linewidth is a direct repor-
ter on the overall rotational tumbling time of the molecule and 
conformational exchange events.32 The overall rotational tum-
bling time is directly related to the shape/size of the molecule 
and is the primary source contributing to relaxation phenom-
ena, which occurs on the nanoseconds timescale. 
Conformational exchange manifests as an addendum to the 
NMR linewidth and reports on lowly populated transient pro-
cesses that occur on the micro- to millisecond timescale. These 
processes can involve self-association and intra-/interdomain 
fluctuations that can induce unique structural states.42–44

From the above summary, linewidths and relative peak 
intensities, from different Ab(L/F)s could be used as proxies 
for NMR relaxation rates. Here, we propose that large random 
sampling of a subset of these spectral parameters and their 
incorporation into a Principal Covariance Analysis (PCA) 
simplifies their interpretation. This analysis provided 
a simplified basis to compare different Ab(L/F)s, and a trend 
emerged in which the largest components of the input data 
directly correlate with molecular hydrodynamic properties. By 
using a collection of different Ab(L/F)s, we could test the 
behavior of molecules with unknown behavior. The analysis 
also shows a sensitivity to changes in construct design that 
contribute to decisions around candidate selection. 
Furthermore, it is shown that the approach is sensitive enough 
to readout changes associated with a mAb formulated under 
three different conditions.

Results

Random sampling of principal components reveals an 
excellent correlation with hydrodynamic properties of Ab 
(L/F)s

We acquired natural abundance 2D [1H, 13C]-HMQC datasets 
for 20 different molecules that span four different Ab(L/F) 
classes with MWs between 12 and 150 kDa (Table S1). 
Figure 1 displays examples of 2D NMR datasets from the 
four different classes of Ab(L/F)s evaluated here. The set 
included individual VHH domains (Figure 1a; red), multivalent 
or tethered VHH domains (Figure 1b; blue), antigen-binding 
fragment (Fab; Figure 1c; green) and full-length mAb 
(Figure 1d; cyan). From the 2D NMR datasets, only qualitative 
differences between the classes of molecules are evident in 
Figure 1a-d. The classes were specifically chosen to enable 
construction of a set that could distinguish features based on 
their modular construction. As a rough approximation, the 
selected classes are composed of single to multiples of small 
immunoglobulin domain(s) that are folded or tethered 
together.

These datasets report on individual methyl-bearing 
amino acids and some methylene groups within each mole-
cule. The smaller molecules (Figure 1a, b) maintain 
a smaller number of peaks as compared to larger counter 
parts because Fab and mAb molecules (Figure 1c, d) con-
tain more methyl groups. An important difference between 
all class of molecules is the heterogeneity in peak intensities 
and resonance peak linewidths in both 1H and 
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13C dimensions. For each observed resonance, within a 2D 
spectrum, two linewidths can be extracted corresponding to 
the 1H nuclei and its bonded 13C atom. The linewidth of 
a resonance peak is directly associated to NMR relaxation 
phenomenon that are modulated by different physical pro-
cesses that affect the molecule.32 Many approaches have 
been developed to accurately measure relaxation rates, 
which can be analyzed to determine parameters that define 
molecular reorientation and conformational exchange.32,44 

However, with Ab(L/F)s at natural abundance, the accurate 
extraction of these rates in an artifact-free fashion would 
require unrealistically long acquisition times for small 
molecules. For a majority of larger Ab(L/F)s, this would 
also not be amenable because of signal-to-noise restrictions. 
It is important to note that linewidths from [1H, 13C]- 
HMQC datasets report on multiple relaxation pathways 

because of the generation of anti-phase and in-phase coher-
ences during chemical shift labeling in both direct (1H) and 
indirect (13C) dimensions, and are not directly comparable 
to NMR-based methods, which extract precise relaxation 
rates.45 Therefore, we refer to linewidths extracted from 
a [1H, 13C]-HMQC spectrum as an apparent linewidth 
(LWapp). This complexity can also complicate procedures 
that analyze line-shapes of resonance peaks, unless time- 
dependent changes in coherence evolution are taken into 
account.46 However, as long as experimental acquisition 
parameters are constant, across all datasets, comparison is 
possible. Therefore, we propose that linewidths and relative 
intensities of resonance peaks detected from [1H, 13C]- 
HMQC (Figure 1a-d) can serve as a proxy to report on 
the aforementioned physical processes and can provide 
a basis to quantitatively compare different Ab(L/F)s.

Figure 1. (a-d) [1H, 13C]-HMQC correlation spectra for four different classes of Ab(L/F)s recorded at natural abundance. The four different classes of Ab(L/F)s that are 
represented include an individual VHH domain (a; red), multivalent VHH domains (b; blue), a fragment antigen binding domain (Fab) (c; green) and a full monoclonal 
antibody (mAb) (d; cyan). The [1H, 13C]-HMQC datasets reveal resonance peaks which correspond to individual methyl groups and reveal that high quality structural 
fingerprint spectra of Ab(L/F)s (with molecular weights (MW) spanning approximately 12–150 kDa) can be collected without the need of isotope labeling. As we 
progress from the smaller MW Ab(L/F)s (a, b) to the large fAb (c) and mAb (d) particles the number of peaks can vary and the “relative sharpness” of the peaks change 
significantly. The change in peak quality is related to its intensity and linewidth, which can be quantitated by the apparent linewidth (LWapp) for both the 1H and 
13C dimensions. (e) No correlation exists between LWapp for both 1H and 13C dimensions across individual peak resonances and is largely indistinguishable between 
different types of protein therapeutics. The plot has the LWapp plotted for twenty different protein therapeutic molecules. The data points are colored with respect to the 
type of protein therapeutic as defined in panels a-d. (f) Low correlation is observed between the average LWapp between 13C and 1H for twenty different Ab(L/F)s. Each 
data point represents the average LWapp and the error bars are derived from the standard deviation across all values for a given Ab(L/F) sample.
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An automated procedure is required to enable facile analysis 
of natural abundance [1H, 13C]-HMQC spectra of antibody 
and antibody-like molecules. In order to remove human bias 
from the peak selection protocol, [1H, 13C]-HMQC spectra we 
used the automatic peak selection tool from the NMRPipe 
software package,47 where resonances were selected based on 
a minimum signal-to-noise ratio criteria and were identified 
from within a constant spectral window (see Materials and 
Methods). A comparison of the linewidths from detected reso-
nance peaks rendered no clear pattern that would enable 
quantitative comparison amongst different antibody and anti-
body-like molecules (Figure 1e, f). The raw individual LWapp 
values make it difficult to draw meaningful conclusions about 
molecular behavior. However, we note that the single VHH 
domain resonances maintain smaller 13C LWapp as compared 
to the larger molecules (Fab and mAb, green and cyan 
Figure 1e, 1f), and when the average LWapp, in both dimen-
sions, is compared (figure 1f), a qualitative binning is achiev-
able. In general, the average LWapp for smaller Ab(L/F)s, like 
VHH domains, show some separation between larger mole-
cules. However, within a specific class the dispersion among 
the data points is poor and highly overlapped. Therefore, 
quantitative comparison by bulk LWapp parameters is of very 
limited value. In order to provide a basis, for which 2D spectra 
of Ab(L/F)s at natural abundance can be directly compared, we 
developed and evaluated a numerical approach that could 
highlight changes within spectral parameters.

An approach that can uniformly “normalize” the data from 
any 2D spectrum could allow the detection of unique differ-
ences, potentially providing the ability for more quantitative 
comparison between Ab(L/F)s. We hypothesize that using peak 
parameters from an array of different molecules, which main-
tain different structural scaffolds, could allow the identification 
of subtle differences between molecules. A variety of numerical 
approaches have been developed to assign quantitative simila-
rities or dissimilarities between datasets that are complex in 
nature or that are dependent on many variables.48 In particu-
lar, Principal Component Analysis (PCA) is a powerful 
approach that can take the same type of data from any number 
of samples composed of any number of observables that are 
dependent on any number of variables and can reduce their 
complexity by projecting their components into a simplified 
representation that allows facile detection of correlated or 
uncorrelated aspects between the input datasets.48 Data sub-
jected to a PCA are simplified, whereby the number of random 
variables that contribute to the data are reduced by projection 
into a lower dimensionality space. This projection identifies the 
minimum number of components that contribute to the input 
datasets and can establish how they might be distinguishable 
from other ones used in the calculation (i.e., how much is the 
variance between them). The power to distinguish subtle dif-
ferences that are not readily apparent from the original data 
has led to PCA being used in a myriad of applications.49,50 PCA 
approaches have also been applied to 2D NMR spectra in cases 
when the atomic peak assignments are accessible. For example, 
PCA has been applied to ascertain complex-binding mechan-
isms during NMR-based titrations where changes to one 
assigned polypeptide sequence are monitored upon step-wise 
addition of a ligand.51 This technique can also be used to 

evaluate the behavior of one molecule that is subjected to 
different solution or instrument conditions.38,40 One criterion 
for PCA is that the input data array, across all samples, must 
have an equivalent number of values. Therefore, the direct 
application of PCA to 2D NMR, of different Ab(L/F)s, is not 
straightforward because the structural scaffolds, size and beha-
vior of samples will generate a different number of resonance 
peaks within each spectrum. Here, peak assignment of many 
Ab(L/F) samples is not readily feasible, as uniform isotope 
labeling is not always possible, and/or the MW of the molecule 
can be large making assignment experiments intractable. 
Furthermore, we aim for any approach to remain indifferent 
to the type of molecules that could be tested, and thus, any 
method would benefit if it could operate without the need to 
label.

In order to avoid the necessity of peak assignment and 
enable comparisons of the natural abundance [1H, 13C]- 
HMQC spectrum of any Ab(L/F), we combined the PCA 
with a procedure in which a subset of resonance peaks is 
selected, at random, from each spectrum and their PCs are 
calculated (see Materials and Methods). This random sampling 
of spectral information is repeated in a Monte Carlo fashion 
and the distributions of the calculated eigenvectors that arise 
from the repeated PCA are analyzed. We have termed the 
procedure “A Random Sampling of NMR Peaks for 
Covariance Analysis”. Hereafter, we will refer to this procedure 
as a Covariance Analysis (CA) method. From each spectrum, 
the LWapp in both 1H and 13C dimensions and normalized peak 
amplitude (normalized to maximum peak intensity) were used 
as input data for this procedure.

All molecules were processed through this CA and the top 
PCs were analyzed (Figure 2). The first four PCs account for 
approximately 90% of the entire reference dataset and remain 
constant with limited variability throughout different iterations 
of the calculation (Figure S2). The values of the first two PCs 
that were determined from this CA method showed 
a separation between the different classes of antibody and 
antibody-like molecules. We hypothesized that since the 
input data are proxies for NMR relaxation phenomena, 
which is largely affected by the size and shape of the 
molecule,32 the first two PCs could correlate with parameters 
that are sensitive to this attribute. To that end, we determined 
the apparent hydrodynamic radius (Rh) for all the reference 
molecules using Diffusion NMR in order to compare with the 
results from the CA34 (see Materials and Methods for details 
regarding the Diffusion NMR data). We compared the magni-
tude of the eigenvectors that were extracted for the reference 
set of antibody and antibody-like molecules and their MWs 
(Figure 2a, 2c) and to their Rh (Figure 2b, 2d). Interestingly, 
a very high correlation is observed between the first two PCs 
and these macroscopic properties with Pearson correlation 
coefficients (r) between 0.81 and 0.89. This demonstrates that 
peak parameters that are extracted from 2D NMR datasets and 
that are processed through this CA method are sensitive to 
properties of molecules. However, MW does not completely 
capture the distribution of values that came from this method. 
Although, the Pearson correlation coefficients of PC1 and PC2 
between MW and Rh, are nearly equivalent, a reduced variance 
is observed when PC1 and PC2 are compared to the apparent 
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Rh of the molecule (Figure 2b and 2d). This is because Rh is 
sensitive to not only the size, but the overall shape of the 
molecule, which is dependent on the tertiary and quaternary 
structure of the molecule. This approach also allows us to 
generalize features from the reference dataset. The red dashed 
lines in Figure 2 are linear fits to the data and permit back 
calculation of an observable parameter like Rh. The variance for 
larger molecules like multidomain VHH (Figure 2; blue points), 
Fab (Figure 2; green points) and mAb (Figure 2; cyan points) 
molecules are reduced. However, the variance remains high in 
both PC1 and PC2 for individual VHH domains when they are 
compared to MW and Rh. This indicates that there may be 
other effects that contribute to PC1 and PC2 for individual 
VHH domains that are not captured by Rh. Our numerical 
approach is an application of PCA that can quantify natural 
abundance NMR data from a range of different Ab(L/F)s and 
reveals how relative shape and size can be discerned and rank 
ordered.

Visualizing the first two PCs and the effect of higher order 
principal components

Our CA protocol can be applied to Ab(L/F)s with unknown 
solution behavior. By having a well profiled reference set, 
a test molecule, with unknown behavior can be bench-
marked against previously characterized molecules (vide 
infra). However, within the reference set of molecules 
tested here, a comparison of PC1 and PC2 already high-
lights that some molecules within the same class can have 
unique features (Figure 3a). Directly plotting PC1 against 
PC2 (Figure 3a) constructs a “molecular ruler”; 
a measurement that is very sensitive to subtle differences 
due to the inclusion of multiple types of molecules in the 
analysis. The plot is linear in nature, indicating correlation 
between the largest contributor to LWapp, the molecule’s 
overall tumbling time, and Rh. The linearity is due to the 

fact that the MW of proteins, between 10s to 100s kDa, will 
cause LWapp to scale LWapp / τc= 1þ ωτcð Þ

2� �
; τc and ω are 

the overall tumbling time and the Larmor frequency for 
a given type of nucleus. This presentation provides a facile 
way to evaluate any additional molecule or to identify 
a unique feature within a molecule, when they are com-
pared to one another. For example, one of the mAbs 
included in the reference set was the NISTmAb,52 a well- 
studied biologics reference standard. Interestingly, the 
NISTmAb (cyan point highlighted by the black arrow 
labeled by an asterisk (Figure 3a)) falls within a region 
where smaller Ab(L/F)s are located and is distinct from 
the other mAb molecules. This result agrees with reports 
of NISTmAb Rh measurement (by Dynamic Light 
Scattering) of 4.9 nm, which is lower than the 5.1 to 
5.5 nm range for typical IgG mAbs.53,54 This is distinct 
from the Fabs that were included in the reference set 
(Figure 3; green points). The Fabs largely cluster together 
indicating that, within these select molecules, they share 
a similar Rh. A similar trend is observed for the individual 
VHH domains (red points; Figure 3a), but with improved 
separation between them as compared to direct evaluation 
against MW or Rh (Figure 2).

When PC1/PC2 are compared, increased scatter is 
observed for the multivalent VHH molecules (blue points; 
Figure 3a). This class of Ab(L/F) can be tethered by engi-
neered amino acid linkers, and the effect of linker compo-
sition and length with respect to solution conformation of 
the whole molecule remains poorly understood.15,18,55 It is 
important to have tools that can isolate differences in 
a molecule’s valency and linker length. This can affect the 
presentation of the antigen-binding surface, which can 
affect affinity, but also introduce aberrant intermolecular 
interaction that could lead to aggregation or stability 
issues.56–58 In particular, understanding the effect of linker 
length can be empirical and relies on orthogonal in vitro 

Figure 2. The molecular weight (MW) (a, c) and hydrodynamic radius (Rh) (b, d) of an array of Ab(L/F)s correlate very well with the first Principal Components (PC) 
derived from natural abundance 2D correlation spectra. All data points within the plots were generated from the CA protocol involving twenty different natural 
abundance 2D datasets. The points are colored with respect to the class of Ab(L/F). They include VHH domains, multivalent VHH domains, fragment antigen binding (Fab) 
domains, and monoclonal antibodies and are colored red, blue, green and cyan, respectively. A comparison of the MW and Rh with respect to the first two Principal 
Components (PC) reveals a strong correlation. Although a high Pearson correlation coefficient (r) is observed for MW it is improved when Rh is used as it is a better 
measure of the shape/size of a molecule in solution.
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datasets that could provide degenerate results. We used this 
CA to differentiate different multivalent VHH constructs 
and their solution behavior.

Differentiation between multivalent VHH constructs with 
varying linker lengths

Candidate selection between two multivalent VHH molecules 
(Figure 3a, b; highlighted by a black arrow), that have identical 
domain topology, but that have linkers that vary in length is 
not straightforward. Linker length can modulate potential 
interactions between individual domains but when these inter-
actions are absent, each domain can act independently and 
behave as if they were isolated in solution.58,59 Importantly, 
these dynamic events can influence peak parameters within 
NMR data. The large variance in the magnitude of the NMR 
peak parameters for multivalent VHH domains (Figures 2, 3) is 
a strong indicator that their dynamics are complex. For 

multivalent VHH constructs, interdomain interactions are not 
desired because they can affect target binding and solution 
stability.56 Therefore, it would be advantageous to identify 
multivalent VHH domains that do not cluster near their indi-
vidual VHH counterparts and be able to flag them for the 
existence of interdomain fluctuations. In Figure 3a and b, the 
two molecules are labeled as short and long. Both molecules 
maintain identical domain topology, but the long molecule 
contains a four-fold longer linker as compared to the short 
molecule. Earlier studies (Figure S3) revealed that the short 
linker construct sampled states that were larger in the effective 
MW. This solution behavior was devoid in the longer linker 
construct (Figure S3), and is attributed to intermolecular inter-
actions that restrict individual domains to tumble indepen-
dently, causing it to sample configurations that are larger in 
apparent size. This solution-based characteristic was flagged as 
a risk for the short linker construct. These molecules were 
included in order to pressure test the sensitivity of the CA 
approach. Indeed, the short linker along the PC1/PC2 

Figure 3. PC3 and PC4 do not report the same correlation as compared to PC1 and PC2. PC3 and PC4 are also sensitive to the impact of interdomain interactions 
between multivalent VHH molecules. (a) Three multivalent VHH molecules (highlighted with arrows in the second subset) consist of the same individual VHH domains but 
with different linker lengths. The data point highlighted with an arrow attached to an asterisk corresponds to the NISTmAb (b) A comparison of PC3 and PC4 show 
a deterioration away from the correlation with Rh (Figure 1). Arrows indicate two multivalent VHH molecules whose linker lengths differ. (c) The bottom subset 
represents a rank-ordering of the magnitude from PC3. A general trend appears where certain classes of Ab(L/F)s can be separated by the magnitude of PC3. This may 
indicate that in general Fabs, multivalent VHH domains, individual VHH domains, and mAbs larger to smaller inter-domain fluctuations, respectively. However, this 
approach is only sensitive to dynamic fluctuations that can manifest on a timescale that can significantly impact a resonance’s linewidths. The absence of significant 
value to PC3 for mAbs could indicate that their fluctuations may occur on another timescale (faster than μs or longer than ms).The blue point with an asterisk is 
a multivalent VHH domain that has behavior similar to single VHH domains. (d-f) The sensitivity of this CA to detect differences of Test-mAb formulated under different 
conditions. In d-f the natural abundance spectrum of Test-mAb within a different condition (Test-mAb d-f) was added as an additional dataset and compared against 
the twenty original Ab(L/F) datasets. The average apparent behavior of Test-mAb formulated under different conditions can be distinguished based on a comparison of 
where the dataset lies with respect to the plot of PC1 and PC2.
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trajectory lies toward the right of the long linker (Figure 3a), 
recapitulating the same observation as was seen from orthogo-
nal datasets (Figure S3). An advantage of the CA method is that 
the peak parameters can be sensitive to lowly populated (<10%) 
transiently sampled self-associated configurations that inter-
convert (fast kinetic transitions; microseconds-milliseconds) 
.42,60 However, establishing increased confidence in the ability 
to differentiate these possible features with the CA method are 
needed. To that end, we further investigated the higher order 
PCs in order to evaluate if additional confidence regarding 
dynamic features of molecules can be differentiated.

The first four PCs accounted for 90% of all input data. 
Although, PC1 and PC2 are strongly correlated and report on 
the shape and size of different Ab(L/F)s (Figure 2), we inves-
tigated if the third and fourth PCs provide additional differ-
entiation toward solution behavior. In Figure 3b, PC3 and PC4 
are plotted against each other and are significantly less corre-
lated compared to PC1 and PC2. This indicates that these 
higher-order PCs may report on different aspects of the peak 
parameters that were input for this CA. Visual inspection of 
Figure 3b shows a regrouping as to how the different classes of 
Ab(L/F)s cluster. Fab and multidomain VHH molecules fall to 
the right of the plot, single domain VHH molecules cluster to 
decreased values and mAbs group to having no significant 
variance within PC3 and PC4. Since the input data are sensitive 
to the amplitude and timescale of motional processes, we 
hypothesized that the higher order PCs may reflect features 
that are encoded from dynamic events that add to LWapp rather 
than size and shape information.

We tested whether higher order PCs may reveal dynamic 
features by simulating different distributions of synthetic 
methyl relaxation rates and relative peak intensities and then 
processing the data through our numerical CA (see the 
Supplemental Figure S4). In brief, distributions of relaxation 
rates of 1H and 13C nuclei were randomly generated for three 
different classes of Ab(L/F)s including individual VHH 
domains, Fabs, and mAb molecules. A bimodal distribution 
was used to model the relaxation behavior of molecules with 
increased internal or interdomain dynamics. The simulation 
parameters we used were rudimentary and do not completely 
capture the intricate complexities that can modulate Ab(L/F)s 
(Figure S4). However, the simulation did recapitulate a critical 
observation that was made from the experimental data. 
A positive correlation between PC1 and PC2 (Figure S4; 
r = 0.86) from the simulated dataset was recovered and is 
very similar to the experimental reference datasets in 
Figure 3a. This again supports that LWapp is an appropriate 
metric to capture size/shape differences between Ab(L/F)s. 
Projection of PC3 against PC4 from the simulated data 
revealed plots with increased scatter for the larger Fab and 
mAb molecules that were modeled to maintain dynamic pro-
cesses and fell to the right of the PC3/PC4 plot. The short and 
long linker multivalent (Figure 3a, b) VHH domains are also 
further separated along PC3 and PC4, providing additional 
confidence that this protocol can discern interdomain interac-
tions. The absence of features, within PC3 and PC4, for the 
molecules tested here, may indicate that dynamic events are 
not well sampled within their natural abundance [1H, 13C]- 
HMQC datasets. Interestingly, Fab molecules that were 

included in the reference set display significant values for 
PC3 and PC4 (Figure 3b), indicating that some dynamic pro-
cess may affect these select Fabs. Ordering by decreasing mag-
nitude of PC3 reiterates this observation, providing a way to 
rapidly identify differences between the different class of Ab(L/ 
F)s (Figure 3c). Rank ordering highlights outliers that differ 
amongst a single class of Ab(L/F)s. In particular, the long chain 
multivalent VHH domain (Figure 3c; blue point with an aster-
isk) has diminished dynamics as compared to the shorter chain 
multivalent VHH constructs, which may suffer from aberrant 
interdomain interactions. A combination of rank ordering PC3 
by magnitude and the higher order components PC3/PC4 
provides increased confidence in defining solution behavior 
for multivalent VHH domains with differing linker lengths.

A random sampling of NMR peaks for covariance analysis 
is sensitive to change in formulation

Development of Ab(L/F)s requires assessments of protein 
behavior in a variety of different buffers. Techniques that detect 
changes of a molecule, under different formulated conditions 
are required in order to identify the best means to develop 
a molecule. 1D NMR-based methods have been previously 
used to measure changes to a mAb because of formulation.31 

The PROFILE method was applied to evaluate one mAb, under 
two unspecified conditions, and the authors reported that small 
changes in a correlated parameters (4%) could be discerned 
from 1D 1H NMR spectra. We propose that 2D NMR finger-
prints processed through this approach are also sensitive to 
certain formulation conditions because differences in the NMR 
data are related to physical mechanisms that depend directly 
on shape/size, reorientation time or molecular dynamics 
(Figure 1, S1; Figure 2). We evaluated three samples of 
a mAb (called Test-mAb) formulated under three different 
conditions labeled A (Figure 3d), B (Figure 3e) and C (figure 
3f), but with the mAb concentration kept constant. Each 2D 
dataset was processed through this CA, compared alongside 
the original reference set of Ab(L/F)s, and then the PC1/PC2 
trajectory was plotted. Each new dataset was added as an 
additional input array. Importantly, each condition did not 
induce any significant change to the rank of the other Ab(L/ 
F)s across PC1 and PC2 (Figure S5). This indicates that the 
addition of one new molecule still preserved the PC1/PC2 
trajectory, permitting quantitation of any new mAb. It is pos-
sible to add all three conditions to the input array simulta-
neously for the calculation, but we prefer to add one at a time 
because their behavior is not known a priori and comparison of 
the single dataset is easier. Each condition for the Test-mAb 
plotted in a unique position along PC1/PC2 (Figure 3d-f; 
enlarged black point), with conditions A to C falling in ascend-
ing order along the PC1/PC2 trajectory. This indicates that the 
three different conditions perturb Test-mAb in such a way that 
their resonance peak properties are affected to different 
amounts. Importantly, the magnitude of PC1/PC2 eigenvectors 
reported changes greater than 50% between conditions 
A through C. The CA approach revealed that condition 
A causes the Test-mAb to have an apparent behavior similar 
to molecules that are smaller than other mAbs, while condition 
C causes the Test-mAb to display characteristics comparable to 
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the mAbs included in the reference set. It should be stressed 
that the conditions tested here likely stem from changes in the 
molecule’s overall tumbling time or changes in dynamic pro-
cesses that can contribute to LWapp. We propose that this level 
of differentiation is an important feature because it allows 
a molecule’s behavior to be flagged, due to formulation. For 
example, if a molecule falls along an extreme of the PC1/PC2, 
the magnitude of the eigenvectors can be recorded for each 
formulation and used for comparison. Also, it could be useful 
to use this approach to flag molecules that have extreme devia-
tions on PC1/PC2 from their known MWeff. This is because 
values that are too large (e.g., aggregation, slowed behavior) or 
too small (e.g., degradation) could be due to aberrant effects. 
This could also be accentuated by the effect of excipients that 
alter viscosity of the solution. Importantly, a change of multi-
meric or aggregated state could be identified by this approach, 
as that is highly sensitive to the input LWapp.

Discussion

Natural abundance NMR of Ab(L/F)s have a growing role in 
the qualification of different molecules.30,41 This approach 
provides the ability to monitor the behavior of Ab(L/F)s at 
atomic resolution, under near-native or different formulated 
conditions. We have demonstrated that a collection of [1H, 
13C]-HMQC datasets, of different antibody and antibody-like 
molecules (Figure 1) can be directly compared. A numerical 
approach that uses resampling of resonance peak parameters 
coupled with PCA creates a common basis that projects and 
simplifies these datasets. An advantage is that this approach is 
sensitive to the molecular size, shape and dynamics of the input 
molecules. Random sampling of resonance peak perturbations 
through this CA method identified an excellent correlation 
along the PC1/PC2 trajectory (Figure 2) that is well correlated 
with the relative shape/size of different Ab(L/F)s (Figure 2). 
Analysis of other PCs also revealed some sensitivity to differ-
ences to interdomain interactions between multivalent VHH 
molecules (Figure 2a-c). A comparison of the first four 
modes highlighted that this approach can flag undesired beha-
vior in multivalent VHH constructs (Figure 3). Simple simula-
tions of LWapp qualitatively corroborated these findings 
(Figure S4), but further investigations are required to reveal 
the exact nature that define these higher order PCs. We also 
evaluated this method’s ability to detect changes of the same 
molecule formulated under different conditions (Figure 3d-f). 
The formulations that were tested induced significant changes 
in LWapp and caused the Test-mAb (Figure 3d-f) to project in 
different locations along the PC1/PC2 trajectory. This presents 
an opportunity to inform on how formulation can affect Ab(L/ 
F)s using data that is sensitive to rotational tumbling properties 
in solution as opposed to more traditional techniques (e.g., 
laser-based, UV and/or optical).

The selection of molecules that were used here establish 
a proof of concept on how parameters from 2D NMR datasets 
can be quantified across different Ab(L/F)s. However, this 
technique could be enhanced with a larger number of unique 
but qualified molecules within the reference set. The addition 
of molecules with different behavior will enhance the precision 
to which new molecules, of unknown behavior, can be mapped. 

A limitation of this approach is that only processes with 
a significant amplitude can modulate LWapp and the relative 
peak intensity. For example, processes like self-association, 
multi-domain protein fluctuations, or intrinsic large amplitude 
changes like slowed loop dynamics could contribute to these 
NMR observables, but if these processes occur on a fast time-
scale (<μs) or too slow (>100s ms), they will not have signifi-
cant impact on the input peak parameters. We anticipate that 
more accurate modeling of Ab(L/F)s through coarse-grained 
or atomistic molecular dynamics simulations, coupled with 
back calculation of NMR-based observables, could reveal the 
sensitivity of this CA to the intrinsic dynamic properties of Ab 
(L/F)s.

Our method requires protein concentrations greater than 
1 mg/ml for small VHH domains and greater than approxi-
mately 20 mg/ml for mAbs (Table S1), although high-quality 
natural abundance datasets could be recorded with the 
NISTmAb at only 10 mg/mL. Based on these sample require-
ments, this technique could have applications in late discovery/ 
early process development, whereby it could be plugged into 
existing workflows or used to obtain orthogonal insight into 
a molecule’s behavior (Figure S6). The sensitivity to subtle 
differences and weak physical processes makes it attractive 
when chromatographic or light scattering type experiments 
cannot discern differences. Another advantage of NMR-based 
solution characterization of Ab(L/F)s is that the sample 
requires no modification to its environment, unlike chromato-
graphic techniques, which subject the Ab(L/F) to a column 
matrix environment that can induce unwanted interactions 
with the matrix. This presents a unique opportunity for our 
approach to be applied to coformulations where resonance 
parameters could be monitored in bulk (all resonance peaks) 
or for each molecule independently (assuming a sufficient 
number of unique resonances are observed; see Materials and 
Methods). That would allow each molecule’s behavior, under 
a given formulation, to be compared and quantitated. Bulk 
NMR relaxation rates can be measured via integration of dif-
ferent spectral regions for an Ab(L/F)s spectrum. For mole-
cules that exhibit uniform relaxation behavior, it is possible to 
draw conclusions because the rate measured is an accurate 
average value for the molecule. However, Ab(L/F)s are 
dynamic in nature and the use of a bulk relaxation rate fails 
to capture an accurate assessment of their molecular 
behavior.35

Comparing multiple Ab(L/F) types to one another with this 
parameter alone is not trivial. 1D PROFILE and Diffusion 
NMR are rapid tools that can be used to obtain a general idea 
about sample properties (e.g., folded-ness and size),31,34 but the 
data derives from 1D information that can cause complications 
in analysis because of signal overlap. Here, we aimed to expand 
upon these efforts by taking advantage of high-quality 2D 
methyl spectra that are accessible for a broad range of Ab(L/ 
F)s (Figure 1a-d). First, use of the NMR peak parameters from 
these datasets ensures that the input data are collected at 
residue-level resolution. Then, use of the CA method presented 
here allows a foundation to be established regarding how 
a quantitative comparison can be made between different 2D 
methyl spectra. Typically, using high-resolution NMR data for 
decision-making when comparing non-identical molecules or 
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when trying to discern differences in the context of formula-
tion has been challenging. We propose that our approach can 
alleviate these difficulties by providing an orthogonal platform 
for quantitative comparison of Ab(L/F)s that can enable deci-
sions around the discovery and developability of these types of 
molecules. Novel scaffolds, including non-antibody molecules 
(e.g., Alphabody,61 DARPin,62 biased cytokines63,64), are 
attractive options for biological signaling modulation. 
Understanding their behavior will require additional spectro-
scopic tools that can illuminate their differences as compared 
to more conventional scaffolds. A random sampling of NMR 
Peaks for covariance analysis is a tool that functions indepen-
dent of scaffold. We envision that this tool can contribute to 
the decision-making around the discovery of molecules that 
may have therapeutic potential.

Materials and methods

Nuclear Magnetic Resonance Spectroscopy: All antibody and 
antibody-like molecules were queried with 2D SOFAST- 
HMQC experiments. A total of 50 complex points were 
used in the indirect (t1,max = 13.3 ms) with 1,024 complex 
points for the direct dimension (t2,max = 63.9 ms). For each 
point in the indirect dimension, 2,048 transients were 
acquired. All 2D spectra were collected at 300 K on a spectro-
meter operating at a Larmor frequency of 800 MHz. All NMR 
data were processed using the SMILE algorithm within 
NMRPipe.47 Although, the SMILE algorithm is used for non- 
uniformly sampled data matrices, this approach still improves 
the quality of processed spectra on a fully sampled data 
matrix. Prior to application of the SMILE algorithm, the 
indirect dimension was forward predicted by a factor of 
two. A shifted sine-bell was applied in both the direct and 
indirect dimensions and spectra were zero-filled to 4k points 
in both dimensions. This was done to improve the detection 
of peak amplitudes by the auto peak picker. All of these 
operations were performed in the NMRPipe software suite. 
Data was acquired for the variety of samples (Figure S1) that 
maintained concentrations between 1 and 25 mg/mL. All 
spectra were collected on the same NMR instrument, acquisi-
tion parameters and were processed identically. For data 
collected across different static magnetic field strengths (e.g., 
1 GHz, 800 MHz, 600 MHz) a scaling factor could be applied 
to facilitate their comparison. However, we suggest that data 
be collected across the same static magnetic field strength. 
Small differences in base frequency will not translate to sig-
nificant differences in LWapp and will not impede application 
of this CA method. Acquisition parameters like the total 
number of points in the direct dimension and processing 
parameters should be preserved. Intensities were normalized 
when each spectrum was initially peak picked, therefore small 
variations in the number of transients per point collected will 
not affect downstream analysis. Resonances were picked from 
within the 2D NMR datasets using an automated picking 
protocol that used signal-to-noise ratio constraints in order 
to distinguish resonances from spurious noise or buffer peaks. 
Peaks were required to be at least two times the baseline noise 
of the spectrum. A constant spectral window that spans the 
methyl region typical for proteins samples was used for all 

spectra analysis. For each spectrum, the peaks were picked 
within a spectral range of −0.5 to 1.9 ppm (8 ppm to 31 ppm) 
for the 1H (13C) dimensions. For each peak that was detected 
within a given spectrum, the LWapp in both 1H and 
13C dimensions and the relative peak amplitude (Ipeak/Imax; 
where Imax denotes the peak within the spectral window with 
the largest peak amplitude) were kept for input into the 
resampled PCA protocol. Peaks arising from buffer compo-
nents that overlapped within the constant spectral window 
were manually inspected and removed from the respective 
spectrum’s final peak list.

Computational Analysis: The calculation of PCs used 
a random subset of 60 peaks per calculation. The input arrays 
contained the 1H, 13C linewidths and relative intensities for 
the 60 peaks. Note that even for the lowest MW Ab(L/F)s 
used here (individual VHH domains), at least 50 methyl reso-
nances alone are expected. This means that some methylene 
peaks may have been detected within this spectral window. 
The total number of peaks per spectrum that were chosen at 
random was determined from the Ab(L/F)s spectrum with the 
least number of resonances (individual VHH). The number of 
peaks selected per iteration was set to approximately 70% the 
total number of observable resonances. We also evaluated if 
reducing the number of peaks, selected at random, would 
affect the results derived from the calculation. We evaluated 
a range of peak subset selections from 30% to 70%. Even 
reducing the minimum subset to 30% of the observable reso-
nances was well correlated with the selection set at 70% (PC1; 
r = 0.99, PC2; r = 0.8, PC3; r = 0.77, PC4; r = 0.86). A key 
component of the calculation is ensuring that a sufficient 
number of selections is made in order to minimize the effect 
of individual outlier LWapp values. For each collection of 
NMR spectra, PCs were calculated over 10,000 resampled 
input peak lists. Although, the relaxation behavior of methy-
lene groups is different from methyl groups, we found that 
a small number of these methylene resonances have small 
significance during the calculation as the peak selection is 
repeated many times and is random. Therefore, the effect is 
averaged out within the distribution of eigenvectors that are 
solved during the resampling of PCs.

Individual methyl resonances can overlap in larger Fab and 
mAb molecules. Here, we choose to keep possibly overlapped 
peaks in the calculation in order maximize the number of 
possible input peak parameters. When the overlap is very 
severe (>2–3 methyl resonances), an overlapped peak can 
give an exaggerated LWapp and can generate an outlier 
LWapp. We found that resampling the data 10,000 times was 
sufficient to remove their impact on the distribution of 
extracted eigenvectors. The first four PCs captured approxi-
mately 90% of all the input data (Figure S2) and the magnitude 
of the eigenvalues were well preserved throughout all iterations 
of the calculation. The distribution of eigenvectors from each 
sample and for each PC is fitted to a gaussian function (Figure 
S6). This value is used for the variance of that sample within 
that PC. Here, we are concerned with the magnitude of the 
eigenvectors and not their eigenvalues. During the PCA calcu-
lation, the covariance matrix is maximized. The output eigen-
vectors from each individual PCA calculation can have altered 
signs depending on the iteration of the calculation. However, 
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the sign only induces a change in the direction, which is 
arbitrary for our purposes here, as we are interested in the 
variance, which stays the same (i.e., the magnitude of the 
eigenvectors is preserved). Therefore, here only the absolute 
value of the eigenvectors was retained for further analysis. All 
calculations were performed with in-house written Python 
scripts that use the Numpy/Scipy libraries. A copy of the source 
code for “Random Sampling of NMR Peaks for Covariance 
Analysis” is available in the Supporting Information.

The test set of Ab(L/F)s molecules was probed by DOSY/ 
Diffusion NMR following previously published protocols.34 

Diffusion NMR was used to determine the translational diffu-
sion coefficient (Dt) for a given molecule. Diffusion NMR 
experiments were conducted using conventional pseudo 2D 
Pulse Field Gradient (PFG) filtered 1Ds where the gradient 
amplitude was varied from 5% to 95% of the maximum value 
tolerated by the probe and a total of 32 different gradient 
amplitudes were collected per sample. The delay between 
recovery gradients was set to 300 ms where each gradient was 
applied for 1.5 ms. The maximum gradient amplitude was set 
to 58.9 G⋅cm−1. Each 1D was adopized using a shifted sine-bell 
and zero-filled prior to Fourier transform.

The Diffusion NMR spectrum was subsequently Laplacian 
transformed, using the processing protocol in Bruker 
TopSpin®. The translational diffusion coefficient was deter-
mined by plotting all diffusion values across the 1D spectrum 
and fitting the values to a Gaussian distribution. The average 
was taken as the translational diffusion coefficient. An offset 
between the measured translational diffusion coefficients and 
the real translational diffusion coefficients can exist. This offset 
was corrected for by measuring a set of standard molecules, 
with known diffusion coefficients/Rh, plotting them against one 
another and fitting to a straight line (slope set to 1). An offset of 
−0.167 [log10(Dt)] was determined and applied to the mea-
sured diffusion coefficients. This corrected value was then 
used to back calculate Rh using the Stokes-Einstein equation. 
Viscosity was assumed to be constant for all samples studied 
here. This assumes that the molecule is spherical and was 
applied uniformly across all Ab(L/F)s studied here. This is 
a simplified view as different topologies may require shape- 
specific models. Future incorporation of computational models 
that describe hydrodynamic properties, from structure, could 
improve the correlations observed in Figure 1. All diffusion 
experiments were conducted at the same temperature that the 
2D datasets were collected.

Abbreviation

1D one-dimensional
2D two-dimensional
Ab antibody
Ab(L/F) Antibody-like and Antibody fragments
CA Covariance Analysis
DOSY Diffusion Ordered Spectroscopy
Dt translational diffusion coefficient
Fab antigen binding fragment
H(S/M)QC Heteronuclear (Single/Multiple) Quantum Coherence
IgG Immunoglobulin G
LW Linewidth

(Continued)

1D one-dimensional
2D two-dimensional
Ab antibody
Ab(L/F) Antibody-like and Antibody fragments
CA Covariance Analysis
DOSY Diffusion Ordered Spectroscopy
Dt translational diffusion coefficient
Fab antigen binding fragment
H(S/M)QC Heteronuclear (Single/Multiple) Quantum Coherence
IgG Immunoglobulin G
LW Linewidth
mAb monoclonal antibody
ms millisecond
MW molecular weight
NMR Nuclear Magnetic Resonance
PC Principal Component
PCA Principal Component Analysis
ppm parts per million
Rh hydrodynamic radius
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