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Generation intervals, defined as the time between when an individual is
infected and when that individual infects another person, link two key quan-
tities that describe an epidemic: the initial reproductive number, Rinitial, and
the initial rate of exponential growth, r. Generation intervals can be
measured through contact tracing by identifying who infected whom. We
study how realized intervals differ from ‘intrinsic’ intervals that describe
individual-level infectiousness and identify both spatial and temporal
effects, including truncating (due to observation time), and the effects of sus-
ceptible depletion at various spatial scales. Early in an epidemic, we expect
the variation in the realized generation intervals to be mainly driven by trun-
cation and by the population structure near the source of disease spread; we
predict that correcting realized intervals for the effect of temporal truncation
but not for spatial effects will provide the initial forward generation-interval
distribution, which is spatially informed and correctly links r and Rinitial. We
develop and test statistical methods for temporal corrections of generation
intervals, and confirm our prediction using individual-based simulations
on an empirical network.
1. Introduction
An epidemic can be described by the exponential growth rate, r, and the repro-
ductive number, R. The reproductive number is defined as the average number
of secondary cases arising from a primary case; its value in a fully susceptible
population, also known as the basic reproductive number R0, is of particular
interest as it provides information about the final size of an epidemic [1,2] as
well as the endemicity level [3–5]. However, estimating the reproductive
number directly from disease life history requires detailed knowledge, which
is not often available, particularly early in an outbreak [6]. Instead, the repro-
ductive number is often indirectly estimated from the exponential growth
rate, which can be estimated from incidence data [7–11]. These two quantities
are linked by generation-interval distributions [12–16].

At the individual level, a generation interval is defined as the time between
when a person becomes infected and when that person infects another person
[13]. While this definition is widely used in the literature, it is not directly related
to a population-level distribution. There are important distinctions to be made
when defining generation-interval distributions at the population level. The
intrinsic generation-interval distribution describes the expected time distribution
of infectious contacts made by a primary case [17]. On the other hand, realized
generation-interval distributions describe the time between actual infection
events over the course of an epidemic. Since some infectious contacts will be
made with non-susceptible people, and thus not result in infection, realized
distributions can differ systematically from the intrinsic distribution.

The shape of the realized generation-interval distribution depends on the
reference time and perspective [17–21]. When an epidemic is growing
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Figure 1. Comparison of individual- and population-level kernels. (a) An individual-level kernel of an infected individual with a latent period of 11.4 days followed
by an infectious period of 5 days; this represents an individual realization of a random process. (b) A population-level kernel of infected individuals with latent and
infectious periods exponentially distributed with means of 11.4 days and 5 days, respectively; this represents a population average of a random process. Shaded areas
under the curves are equal to individual- and population-level reproductive numbers, both of which are set to 2 in this example. Parameters are chosen to reflect the
West African Ebola outbreak [25].
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exponentially, as often occurs near the beginning of an out-
break, the number of newly infected individuals will be
large relative to the number infected earlier on. A susceptible
individual is thus relatively more likely to be infected by a
newly infected individual. Thus, ‘backward’ generation inter-
vals, which look at a cohort of infectees and ask when their
infectors were infected, will be shorter on average than intrin-
sic generation intervals—the converse is true when an
epidemic is subsiding [17,19,21]. Likewise, we can define ‘for-
ward’ generation intervals, which look at a cohort of infectors
and ask when their infectees were infected. Mean forward
generation intervals tend to decrease over the course of an
epidemic as a result of susceptible depletion [17–20].

Realized generation intervals are also affected by spatial
structure. In a population that does not mix homogeneously,
susceptibility will tend to decrease more quickly in the neigh-
bourhood of infected individuals than in the general
population. This means that infectious contacts made late in
an individual’s infection aremore likely tobe ineffectivebecause
of contacts that were made earlier (because the contactee may
have been infected already). As a result, realized generation
intervals (from the perspective of an infector) will typically
have a shortermean than the intrinsic generation-interval distri-
bution in a non-homogeneous population. This perspective
allows us to reinterpret the finding of [22] that, given an intrinsic
generation interval and an observed growth rate, the reproduc-
tive number on various network structures is always smaller
than would be predicted from homogeneous mixing.

In practice, realized generation intervals are often difficult
to measure for many diseases, because it is difficult to
observe when individuals become infected; in most cases,
observable events are clinical (e.g. onset of symptoms).
There are some exceptions: for example, generation intervals
are commonly measured directly through contact tracing for
canine rabies, where infection events are bites [23]. Intervals
between observed disease progression events (commonly,
onset of signs or symptoms) are called serial intervals [13].
Serial intervals are in many ways similar to generation inter-
vals, but there are also complexities in their use [21]. We will
not address these complexities here.

While an epidemic is ongoing, realized generation inter-
vals, at least in theory, can be measured by identifying who
infectedwhom andwhen, and aggregated to form a single dis-
tribution. We typically want to try to make inference based on
this aggregated distribution— that is, on all available data that
have been gathered since the beginning of an epidemic. These
aggregated measurements are ‘truncated’ because we do not
knowwhat happens after the time of last observation. The dis-
tribution of these truncated intervals is similar to backward
intervals during the exponential growth phase: there is a bias
towards over-sampling shorter intervals, which are more
likely to have concluded in time to be observed. We therefore
predict that removing the truncation bias from aggregated
generation intervals early in an epidemic will yield the initial
forward generation-interval distribution, which contains
information about the population structure and allows us to
correctly infer the initial reproductive number from the initial
exponential growth rate.

In this study, we explore spatio-temporal variation in rea-
lized generation intervals. We extend previous frameworks to
investigate how aggregated generation-interval distributions
change over time. We classify spatial effects on realized gen-
eration intervals into three levels (egocentric, local and
global) and discuss how these affect realized generation-
interval distributions. Finally, we compare two methods for
accounting for temporal bias and test our prediction using
individual-based simulations.

2. Intrinsic generation-interval distributions
Generation-interval distributions are often considered as
population averages, but we can distinguish population-
level distributions from individual-level distributions [13,24];
making this distinction clear will be particularly useful
when we discuss spatial components later (figure 1). An indi-
vidual-level intrinsic infection kernel k(τ; a) describes the rate at
which an infected individual with ‘aspect’ a makes ‘infectious
contacts’ (contacts which will cause infection if the contactee is
susceptible). Individual aspects may represent variation in the
course of infection (e.g. duration of latent and infectious
periods) and the level of infectiousness, which can depend
both on biological infectiousness and on contact patterns.
Hereafter, we use t, s to represent calendar time and τ, x to
represent time since infection.
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Assuming that the individual properties are independent
of risk of infection, the population-level kernel is given by
integrating over these individual variations,

K(t) ¼
ð
k(t; a)f(a) da, (2:1)

where f (a) represents a probability density over a (possibly
multi-dimensional) aspect space. The population-level
kernel describes the rate at which infectious contacts are
made by an an infected individual, on average.

Assuming that a population mixes homogeneously, we
can write

K(t) ¼ R0g(t), (2:2)

where R0 ¼
Ð
K(t) dt is the basic reproductive number (the

expected number of secondary cases caused by a randomly
chosen infectious individual in a fully susceptible population
[1]) and g(τ) is the expected time distribution of infectious
contacts made by a primary case (the intrinsic generation-
interval distribution [17]). If the proportion of susceptibles
contacted is not changing (e.g. in a homogeneously mixed
population at the endemic equilibrium, or when the
number of cases is vanishingly small), g(τ) also describes
the realized (forward) generation intervals.

In a homogeneously mixing population, current disease
incidence at time t, i(t), is the product of the current infec-
tiousness of individuals infected in the past and the current
proportion of the population susceptible, S(t),

i(t) ¼ S(t)
ð
K(t)i(t� t) dt ¼ R0S(t)

ð
g(t)i(t� t) dt: (2:3)

This model, referred to as the renewal equation, can describe a
wide range of epidemic models [14,15,26–30]. Over a period of
time where the susceptible proportion remains approximately
constant (S(t)≈ S(0)), we would expect approximately expo-
nential growth in incidence i(t); assuming i(t) = i(0) exp(rt)
yields the Euler–Lotka equation [31], which provides a direct
link between the initial exponential growth rate r and the
initial reproductive number Rinitial ¼ R0S(0),

1
Rinitial

¼
ð
g(t) exp (�rt) dt: (2:4)

Under the homogeneous mixing assumption, the intrinsic
generation-interval distribution g(τ) provides the correct link
between r and Rinitial.
3. Realized generation-interval distributions
across time

Realized generation intervals can be measured either forward
(from the perspective of a cohort of infectors) or backward
(from the perspective of a cohort of infectees) in time
[17,21]. The forward generation-interval distribution ft(τ)
describes the infection time of infectees caused by a cohort
of infectors who were infected at time t. Similarly, the back-
ward generation-interval distribution bt(τ) describes the
infection time of infectors for a cohort of infectees who were
infected at time t. For a single infector–infectee pair, both
backward and forward measurements should give the identi-
cal generation interval. Therefore, the density of new
infections occurring at time t + τ caused by individuals
infected at time t can be expressed in terms of both the
forward and backward generation-interval distributions,

Rc(t)i(t)ft(t) ¼ i(tþ t)btþt(t): (3:1)

Here, Rc(t) represents the case reproductive number, which is
defined as the average number of secondary cases caused by
a primary case infected at time t over the course of their
infection [32].

In a homogeneously mixing population, the forward and
backward generation-interval distributions can be calculated
exactly. The density of new infections occurring at time t + τ
caused by infectors who were infected at time t is given by

it(tþ t) ¼ R0i(t)g(t)S(tþ t): (3:2)

As shown in [17], the forward generation-interval distribution,
ft(τ), is proportional to it(t + τ),

ft(t) ¼ g(t)S(tþ t)Ð1
0 g(x)S(tþ x) dx

: (3:3)

In this case, the initial forward generation-interval distribution
f0(τ) during the exponential growth phase (when S(t)≈ S(0)) is
equivalent to the intrinsic generation-interval distribution g(τ)
and, therefore, provides the correct link between r and Rinitial.
Likewise, the density of new infections occurring at time t
caused by infectors who were infected at time t− τ is given by

it�t(t) ¼ R0i(t� t)g(t)S(t): (3:4)

The backward generation-interval distribution, bt(τ), is
proportional to it−τ(t),

bt(t) ¼ i(t� t)g(t)Ð1
0 i(t� x)g(x) dx

: (3:5)

Substituting Rc(t) ¼ R0
Ð1
0 g(t)S(tþ t) dt confirms that

equation (3.1) holds for this model.
During an ongoing epidemic, generation intervals cannot

be measured for infection events that have not happened yet.
This effect is called ‘right truncation’. Therefore, even if we
aggregate all realized generation intervals by identifying
who infected whom through contact tracing (assuming that
infection events are observable), their mean will be shorter
than the mean intrinsic generation interval. The aggregated
generation-interval distribution, by definition, is a weighted
average of backward generation-interval distributions
(weighted by incidence) up until calendar time t,

at(t)/
ðt
�1

i(s)bs(t) ds: (3:6)

The aggregated generation-interval distribution can also be
expressed equivalently in terms of forward generation-
interval distributions (weighted by incidence and case
reproductive number),

at(t)/
ðt�t

�1
Rc(s)i(s)fs(t) ds: (3:7)

Equation (3.1) confirms that both expressions are identical.
For a single outbreak, the mean aggregated generation

interval will always be shorter than the mean intrinsic gener-
ation interval (figure 2). There are two reasons for this
phenomenon. First, longer generation intervals are more
likely than short intervals to be missed because of right trun-
cation. In particular, if we assume that the initial forward
generation-interval distribution remains constant (ft(τ)≈
f0(τ)) when an epidemic is growing exponentially (i(t)≈ i(0)
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Figure 2. Temporal variation in the mean backward and aggregated generation interval. A deterministic susceptible–exposed–infectious–recovered (SEIR) model is
simulated using Ebola-like parameters [25]: mean latent period 1/σ = 11.4 days, mean infectious period 1/γ = 5 days and the basic reproductive numberR0 ¼ 2.
The mean backward and aggregated generation intervals are calculated over the course of an epidemic. The dotted horizontal line represents the mean intrinsic
generation interval.
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exp (rt) and Rc(t) � Rc(0)), the initial aggregated (or back-
ward) generation-interval distribution is just the initial
forward generation-interval distribution discounted by the
rate of exponential growth [21],

a0(t) ¼ b0(t)/ f0(t) exp (�rt): (3:8)

A deterministic simulation confirms that the aggregated gener-
ation-interval distribution has the same mean as the backward
generation-interval distribution during this period (figure 2).
Second, the decreasing number of susceptibles over the
course of an epidemic makes long infectious contacts less
likely to result in infection [17]. Overall, we therefore expect
naively using the aggregated generation-interval distribution
to underestimate the initial reproductive number.
4. Realized generation-interval distributions
across space

The effects of spatial structure on realized generation inter-
vals can be understood in terms of effect of multiple
contacts. Infected individuals may contact the same suscep-
tible individual multiple times, but only the first infectious
contact gives rise to infection in a given individual (after
this, they are no longer susceptible). Therefore, we expect rea-
lized generation intervals from an individual in a spatially
structured population to have a smaller mean than their
mean intrinsic generation interval. To explore the effects of
spatial structure on realized generation intervals, we relax
our assumption that the population is homogeneous. Instead,
we assume that a disease spreads on a network; infected
individuals contact their ‘acquaintances’ at random, but
‘acquaintanceships’ are predetermined by the network
structure before the beginning of an epidemic [22].

We first consider the infection process from an ‘ego-
centric’ point of view, taking into account infectious
contacts made by a single infector. We define the egocentric
kernel as the rate at which secondary infections are realized
by a single primary case with aspect a in the absence of
other infectors,

k̂(t; a) ¼ k(t; a) exp �d(a)
ðt
0
k(x; a) dx

� �
, (4:1)

where k(τ; a) is the individual-level intrinsic kernel and
e�d(a)

Ð t

0
k(x;a) dx is the probability that a susceptible acquain-

tance has not yet been contacted by the focal individual.
The dilution term, δ(a), models how contacts are distributed
among the acquaintances.

Throughout this paper, we assume that there is a constant
per-pair contact rate λ [22]. In this case, the intrinsic infec-
tiousness of an individual R(a) ¼ Ð k(t; a) dt is the product
of the number of acquaintances N(a), which can vary
among individuals, the contact rate λ and the duration of
infectious period; the dilution term is equal to the reciprocal
of the number of acquaintances: δ(a) = 1/N(a). This assump-
tion can be relaxed by allowing for asymmetry [22] or
heterogeneity [33,34] in contact rates; for simplicity, we do
not pursue these directions here.

The population-level egocentric kernel is found by inte-
grating the individual-level kernel over individual variations,

K̂(t) ¼
ð
k̂(t; a)f(a) da, (4:2)

where f (a) represents a probability density over a (possibly
multi-dimensional) aspect space. Essentially, the popu-
lation-level egocentric kernel accounts for the probability
that a susceptible individual has not been infected by the
focal individual. Trapman et al. [22] used this same kernel
(also assuming a constant per-pair contact rate) to study the
effect of network structure on the estimate of the basic repro-
ductive number. The population-level egocentric generation-



observed mean: 16.3 days observed mean: 13.8 days observed mean: 12.8 days

intrinsic egocentric homogeneous

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
generation interval (days)

egocentric intrinsic

(a) (b) (c)

Figure 3. Spatial effects on realized generation intervals. Theoretical distributions and means are shown in colour (and are the same in each panel, for reference).
Simulated distributions and means are shown in black. (a) The intrinsic generation-interval distribution corresponds to all infectious contacts by a focal individual,
regardless of whether the contact results in infection. (b) The egocentric generation-interval distribution corresponds to the distribution of all infectious contacts by
the focal individual with susceptible individuals, in the case where the focal individual is the only possible infector (simulated on a star network). (c) Realized
generation-interval distributions have a shorter mean than egocentric distributions in general, because contacts can be wasted when susceptibles become infected
through other routes (simulated on a homogeneous network). All figures were generated using 5000 stochastic simulations on a network with five nodes
(one infector and four susceptibles) with Ebola-like parameters [25]: mean latent period 1/σ = 11.4 days and mean infectious period 1/γ = 5 days. Per-pair contact
rate λ = 0.25 days−1 is chosen to be sufficiently high so that the differences between generation-interval distributions are clear. Each simulation is run until all
individuals are either susceptible or have recovered.
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interval distribution is

ĝ(t) ¼ K̂(t)Ð
K̂(x) dx

: (4:3)

The population-level egocentric generation-interval distri-
bution describes the distribution of times at which
secondary infections are realized from an average infected–
susceptible pair; for convenience, we will often omit ‘popu-
lation level’. Finally, the initial exponential growth rate and
the egocentric reproductive number are linked by the ego-
centric generation-interval distribution (and the Euler–Lotka
equation) [22],

1
Regocentric

¼
ð
ĝ(t) exp (� rt) dt: (4:4)

As the egocentric distribution always has a shorter mean than
the intrinsic distribution,Regocentric will be smaller thanRinitial

estimated from the intrinsic distribution; this generation-
interval-based argument provides an alternative biological
interpretation for the result presented by [22].

For example, consider a susceptible–exposed–infected–
recovered (SEIR) model, which assumes that latent and infec-
tious periods are exponentially distributed. The intrinsic
generation-interval distribution that corresponds to this
model can be written as [30,35]

g(t) ¼ sg

s� g
(e�gt � e�st), (4:5)

where 1/σ and 1/γ are the mean latent and infectious
periods, respectively. Assuming a constant per-pair contact
rate of λ for any pair, we obtain the following egocentric
generation-interval distribution:

ĝ(t) ¼ s(gþ l)
s� (gþ l)

(e�(gþl)t � e�st): (4:6)

In this case, with constant transmission rate during the infec-
tious period, the effect of accounting for pairwise contacts is
the same as an increase in the recovery rate (by the amount of
the per-pair contact rate λ). Infecting a susceptible contact is
analogous to recovery because the contactee cannot be
infected again—the infector can no longer transmit infection
even if they are infectious (effectively losing infectiousness).
Therefore, the resulting egocentric generation-interval distri-
bution is equivalent to the intrinsic generation-interval
distribution with mean latent period of 1/σ and mean infec-
tious period of 1/(γ + λ). In practice, directly using the
egocentric distribution to link r and Rinitial using the Euler–
Lotka equation is unrealistic because it requires that we
know the per-pair contact rate. Instead, the per-pair contact
rate can be inferred from the growth rate r, assuming that
mean and variance of the degree distribution of a network
is known (see [22] supplementary material, §1.4.2); we briefly
describe this relationship in §7.3.

This calculation can be validated by simulating stochastic
infection processes on a ‘star’ network (i.e. a single infected indi-
vidual at thecentre connected tomultiple susceptible individuals
who are not connected with each other). Simulations (figure 3)
confirm that in this case the distribution of contact timesmatches
the intrinsic generation-interval distribution (a), while the distri-
bution of realized generation intervals (i.e. infection times)
matches the egocentric generation-interval distribution (b).

The egocentric generation interval (equation (4.3)) only
explains some of the reduction in realized generation inter-
vals that occurs on most networks, however. Generation
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intervals are also shortened by indirect connections: a suscep-
tible individual can be infected through another route before
the focal individual makes infectious contacts. Simulations on
a small homogeneous network (i.e. complete network) con-
firm this additional effect (figure 3c). We can think of
simulations on this network as an approximation of (local)
infection process in a small household, consisting of five indi-
viduals; we expect realistic local network structures (and
their effects on the realized generation intervals) to lie
between a star network and a complete network.

In general, spatial reduction in the mean realized gener-
ation interval can be viewed as an effect of susceptible
depletion and can be further classified into three levels: ego-
centric, local and global. Egocentric depletion, as discussed
previously, is caused by an infected individual making mul-
tiple contacts to the same individual. Local depletion refers to
a depletion of susceptible individuals in a household or neigh-
bourhood; we can think of these structures as small
homogeneous networks embedded in a larger population
structure (and therefore we can expect similar effects to those
seen in figure 3c). Both the egocentric and local depletion
effects can be observed early in an epidemic, especially in a
highly structured population, even if most of the population
remains susceptible. Finally, global depletion refers to overall
depletion of susceptibility at the population level, and explains
the reduction in realized compared with intrinsic generation
intervals that occurs even in awell-mixed population (figure 2).
5. Inferring the initial forward generation-
interval distribution

In a large homogeneously mixing population, the initial for-
ward generation-interval distribution is equivalent to the
intrinsic distribution and provides the correct link between
the exponential growth rate r and the initial reproductive
number Rinitial (see equation (3.3)). In a non-homogeneous
population, the initial forward generation-interval distri-
butions are subject to spatial effects and, therefore, are
different from the intrinsic distribution. Since spatial effects
have the same effect on how the epidemic spreads as they do
on realized generation intervals, we expect the initial forward
generation-interval distributions, which implicitly account
for the spatial structure, to correctly link r and Rinitial through
the Euler–Lotka equation (equation (2.4)). Spatial effects on
realized generation intervals are generally expected to be
analytically intractable, even in simple networks (e.g. see [20]
for discussion regarding the realized generation intervals in a
household with one infector and two susceptibles); therefore,
we rely on simulations to validate this prediction.

When realized generation intervals are aggregated over
the course of an epidemic, there will be four effects present in
the data (figure 4): (i) right-truncation effect, (ii) egocentric
depletion effect, (iii) local depletion effect, and (iv) global
depletion effect. We can correct explicitly for the egocentric
effect and, in the case of exponential growth, the right-truncation
effect; these effects shorten the mean realized generation inter-
vals, which in turn will reduce the estimate of the reproductive
number [15,16]. While the other two effects are difficult to
measure, we canmake qualitative predictions about their effects
on the realized generation intervals and reproductive numbers:
both local and global depletion effects also reduce the number
of infections that occur and shorten generation intervals. If we
can correct for the truncation bias early in an outbreak, during
the exponential growth phase, we should be able to infer the
initial forward generation-interval distribution, which incorpor-
ates egocentric and local spatial effects but not the global effects,
from the aggregated distribution.

Here, we investigate two methods for correcting for tem-
poral bias in aggregated generation-interval data (see
Methods for details). We refer to the first method as the
population-level method as it relies on realized generation
intervals aggregated across the entire population. When an
epidemic is growing exponentially, right truncation causes
the aggregated generation interval to be discounted by the
exponential growth rate (equation (3.8)); hence, we can
‘undo’ the truncation by exponentially weighting the
aggregated generation-interval distribution [19–21],

f0(t)/ a0(t) exp (rt), (5:1)

where r is the exponential growth rate.
We refer to the second method as the individual-level

method because it relies on individual contact information.
We model each infection as a non-homogeneous Poisson pro-
cess arising from the infector (equation (7.11)); incorporating
information about time of infection of an infector, time of infec-
tion of an infectee and time since the beginning of an epidemic
allows us to explicitly model the truncation process in the rea-
lized generation intervals. For both methods, the mean and
coefficient of variation (CV) of the initial forward generation-
interval distributions are estimated by maximum likelihood;
the inferred generation-interval distributions are then used
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this only partially. Both population-level and individual-level methods provide estimates of reproductive number that are consistent with the empirical estimates, which
we define as the average number of secondary cases generated by the first 75 infected individuals, as well as the estimates based on the initial forward generation intervals,
which are calculated by applying the Euler-Lotka equation to the realized generation intervals of all infections caused by the first 75 infected individuals. Boxplots are
generated using 100 stochastic simulations of the SEIR model on an empirical network using Ebola-like parameters [25]: mean latent period 1/σ = 11.4 days and
mean infectious period 1/γ = 5 days. Per-pair contact rate λ = 0.08 days−1 is chosen to be sufficiently high such that differences are clear.
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to estimate the initial reproductive number Rinitial from the
observed growth rate r using the Euler–Lotka equation.

To test these methods, we simulate 100 epidemics with
Ebola-like parameters on an empirical network [36] and com-
pare the estimates of the initial reproductive number with
empirical reproductive numbers, which we define as the aver-
age number of secondary cases generated by the first 75
infected individuals, as well as the initial reproductive
numbercalculated fromthe empirical initial forwardgeneration
intervals, which we define as the generation intervals for all
infections caused by the first 75 infected individuals (figure 5).
For simplicity, we assume that realized generation intervals
are observed without error and assume that there is no under-
reporting of generation intervals. We do not expect under-
reporting to affect the inference of generation-interval distri-
butions (see electronic supplementary material, appendix A.3)
unless there are systematic biases in the observation process.
On the other hand, it is difficult tomeasure generation intervals
precisely because (i) infection events are often unobserved and
(ii) there may be multiple potential infectors; these factors can
introduce biases to the estimates of the initial reproductive
number [21]. We do not pursue these directions in this study.

As expected, estimating the reproductive number based on
the intrinsic generation-interval distribution overestimates the
empirical reproductive number; estimates based on the ego-
centric generation-interval distribution (equation (4.3)) address
this problem only partially, as they do not account for indirect
(local) spatial effects. Direct estimates based on the aggregated
generation intervals from contact tracing (via Euler–Lotka)
severely underestimate the empirical estimates. While both
population- and individual-level correctionsprovide similar esti-
mates to the empirical estimates (aswell as to estimates based on
the untruncated empirical initial forward generation-interval
distribution) on average, population-level estimates are more
variable as they aremore sensitive to outliers in generation inter-
vals and our estimates of the initial exponential growth rate. For
smaller values of Rinitial, we expect the differences to become
smaller. In the electronic supplementary material, we present
the same figure using smaller Rinitial (see electronic supplemen-
tary material, appendix A.1) and using Erlang-distributed latent
periods (see electronic supplementary material, appendix A.2),
which better corresponds to Ebola. Overall, our qualitative con-
clusions do not change.
6. Discussion
The intrinsic generation-interval distribution, which
describes the expected time distribution of infectious
contacts, provides a direct link between speed (initial expo-
nential growth rate, r) and strength (initial reproductive
number, Rinitial) of an epidemic in a homogeneously mixing
population [13,15,16,24]. However, realized generation-
interval distributions can vary depending on how and
when they are measured [17,19–21]; determining which dis-
tribution correctly links r and Rinitial can be challenging.
Here, we analyse how realized generation intervals aggre-
gated over the course of an epidemic, possibly through
contact tracing, differ from intrinsic generation intervals.
Changes due to right truncation reflect observation bias,
whereas changes due to spatial or network structure reflect
the dynamics of the outbreak. Thus, correcting the aggre-
gated distribution for temporal, but not spatial, effects
provides the correct link between r and Rinitial.

Realizedgeneration intervals that havebeen aggregatedover
the course of an epidemic are subject to right truncation—it is
not possible to trace individuals who have not been infected
yet. The aggregated distributions can be thought of as averages
of ‘backward’ generation intervals (measured by looking at
infectors of a cohort of individuals infected at the same time)
[17–21]. During an ongoing outbreak, the aggregated gener-
ation-interval distribution will always have a shorter mean
than the intrinsic-interval distribution because of right trunca-
tion. Early in the outbreak, the initial aggregated intervals are
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expected tomatch the initial backward intervals.Near the end of
an outbreak, the effect of right truncation becomes negligible but
the aggregated generation intervals are still shorter on average
than intrinsic generation intervals, because of depletion of the
susceptible population.

We think of susceptible depletion as operating on three
levels: egocentric, local and global. Egocentric susceptible
depletion refers to the effect of an infected individual
making multiple contacts to the same susceptible individual.
Accounting for the egocentric effect allows us to link the
results by [22] to established results based on generation inter-
vals. Local susceptible depletion refers to the effect of multiple
‘linked’ individuals (e.g. in the same household or neighbour-
hood) making infectious contacts to the same susceptible
individual. Global susceptible depletion refers to the decrease
in the susceptible proportion of the whole population.

Susceptible depletion happening at all three levels short-
ens realized generation intervals but acts on different time
scales. Egocentric and local depletion effects are present
from the beginning of an epidemic, even when depletion in
the global susceptible population is negligible and can
strongly affect the initial spread of an epidemic. Therefore,
we predict the realized generation intervals during an expo-
nential growth phase to contain information about the
contact structure, allowing us to estimate the initial forward
generation-interval distribution by simply accounting for
the right truncation. Simulation studies confirm our
prediction: using the initial forward generation-interval
distribution provides the correct link between r and Rinitial.

We compare twomethods for estimating the initial forward
generation-interval distribution and assume that the initial for-
ward generation-interval distribution follows a gamma
distribution. The gamma approximation of the generation-
interval distribution has been widely used because of its
simplicity [9,37–40]; we previously showed that a gamma
approximation (requiring estimation of only two parameters)
can be sufficient to understand the role of generation-interval
distributions in linking r and Rinitial for Ebola, rabies and
measles [16]. However, further investigation of our methods
suggests that making a wrong distributional assumption can
lead to biased estimates of the mean and CV of a generation-
interval distribution (see electronic supplementary material,
appendix A.4), even though the estimated gamma distribution
may ‘look’ indistinguishable from the true shape of the intrinsic
generation-interval distribution (derived from the SEIRmodel).
These results are particularly alarming because it is impossible
to know the true shape of the generation-interval distribution
for real diseases. Nonetheless, biases in the parameter estimates
of a generation-interval distribution may have opposite effects
on the estimate ofRinitial (e.g. shorter mean generation interval
leads to lower Rinitial whereas narrower generation-interval
distribution leads to higher Rinitial) and, therefore, may have
small effects on the overall estimate of Rinitial (see electronic
supplementary material, appendix A.4).

Generation-interval-based approaches to estimating the
reproductive number often assume that an epidemic grows
exponentially [12,14–16]. In practice, heterogeneity in popu-
lation structure can lead to subexponential growth [41–46];
we therefore expect our simulations on an empirical network
to be better characterized by subexponential growth models
[46]. However, our simulations suggest that the initial expo-
nential growth assumption still provides a viable approach
for estimating the reproductive number.
Contact tracing provides an effective way of collecting
epidemiological data and controlling an outbreak [47–49].
In particular, using tracing information allows us to infer
real-time estimates of the time-varying reproductive
number [50–53]. Generation-interval distributions, which
can be either assumed or estimated, often play a central role
in analysing tracing data. Our study illustrates that realized
generation intervals over the course of an epidemic contain
information about the underlying contact structure, which
can be implicitly reflected in the estimates of the reproductive
number; this perspective can be particularly useful for char-
acterizing an epidemic because detailed information about
the contact structure is often unavailable.

The generation-interval distribution is a key, and often
under-appreciated, component of disease modelling and
forecasting. Different definitions, and different measurement
approaches, produce different estimates of these distri-
butions. We have shown that estimates based on
aggregated generation intervals (e.g. measured through con-
tact tracing) differ in predictable ways from intrinsic estimates
based on underlying measures of infectiousness (e.g. from
shedding studies). These predictable differences can arise
from temporal effects, egocentric spatial effects, local spatial
(or network) effects and population-level effects. Correcting
aggregated intervals for temporal effects allows us to estimate
a spatially informed initial forward distribution, which accu-
rately describes how disease spreads in a population. Future
studies should carefully consider how measurement influ-
ences estimated generation-interval distributions, and how
these distributions influence the spread of disease.
7. Methods
7.1. Deterministic SEIR model
To study the effects of right truncation on the realized generation
intervals, we use the deterministic SEIR model. The SEIR model
describes how disease spreads in a homogeneously mixing
population; it assumes that infected individuals become infec-
tious after a latent period. We use a SEmInR model, which
extends the SEIR model to have multiple equivalent stages in
the latent and infectious periods. This gives latent and infectious
periods with Erlang distributions (gamma distributions with
integer shape parameters, including the exponential distri-
bution), which are often more realistic than the exponentially
distributed periods in the standard SEIR model [54,55],

dS
dt

¼ �bS
XnI
k¼1

Ik,

dE1

dt
¼ bS

XnI
k¼1

Ik � nEsE1,

dEm

dt
¼ nEs(Em�1 � Em) for m ¼ 2, 3, . . . , nE,

dI1
dt

¼ nEsEm � nIgI1

and
dIn
dt

¼ nIg(In�1 � In) for n ¼ 2, 3, . . . , nI ,

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

(7:1)

where S is the proportion of susceptible individuals, Em is the
proportion of exposed individuals in the m-th compartment
and In is the proportion of infectious individuals in the n-th com-
partment. Parameters of the model are specified as follows: β is
the transmission rate, 1/σ is the mean latent period, nE is the
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number of latent compartments, 1/γ is the mean infectious
period and nI is the number of infectious compartments. We
scale the proportions of individuals in each compartment by
the total population size N. In the main text, we present results
based on exponentially distributed latent and infectious periods;
we show results based on Erlang distributed latent periods (nE =
2), which better match the incubation period distribution of
Ebola virus disease (see electronic supplementary material).
g.org/journal/rsif
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7.2. Stochastic SEIR model
We simulate an individual-based SEIR model on a contact net-
work, using an algorithm based on the Gillespie algorithm
[56,57]. We begin by randomly selecting individuals assumed
to be infected at t = 0. For each infected individual i, we randomly
draw the latent period Ei from an Erlang distribution with mean
1/σ and shape nE. We then construct the random infectious
period and infectious contact times simultaneously as follows.
For each of the nI stages of the infectious period, we draw the
number of infectious contacts (before transitioning to the next
compartment) from a geometric distribution with probability
nIγ/(Siλ + nIγ), where Si is the number of susceptible acquain-
tances and λ is the per-pair contact rate. We then choose the
time between consecutive events (the chosen number of contacts,
followed by exit from the given stage of infection) from an expo-
nential distribution with rate Siλ + nIγ. For each contact, a
contactee is uniformly sampled from the set of susceptible
acquaintances of the individual i. The infectious period Ii is the
sum of all of these waiting times.

After repeating the contact process for all initially infected indi-
viduals, all contacts are put into a sorted queue. The first person in
the queue becomes infected (thus decreasing Si by 1 for all individ-
uals i that are acquaintances of the newly infected individual), and
the current time is updated to infection time of this individual. Any
subsequent contacts made to this individual are removed from the
queue because they will no longer be effective. We repeat the con-
tact process for this newly infected individual. Then, new contacts
are added to the sorted queue. The simulation continues until
there are no more contacts left in the queue.
7.3. Egocentric relationship between r and R (SEIR
model)

Here, we show that the egocentric relationship between r and R
derived by Trapman et al. [22] (see the original source for
detailed derivations) matches what would be calculated by
applying the Euler–Lotka equation to the egocentric (rather
than the intrinsic) generation-interval distribution. Assume that
latent and infectious periods are exponentially distributed with
mean 1/σ and 1/γ, respectively. Assuming a constant per-pair
contact rate of λ for any pair, the egocentric generation-interval
distribution can be written

ĝ(t) ¼ s(gþ l)
s� (gþ l)

(e�(gþl)t � e�st): (7:2)

Substituting into equation (4.4), we get

Regocentric ¼ 1þ r
s

� �
1þ r

gþ l

� �
, (7:3)

where r is the exponential growth rate. Alternatively, the ego-
centric reproductive number can be expressed based on the
degree distribution (mean μ and variance v) of a network,

Regocentric ¼ kl|{z}
average contact rate

� 1
gþ l|fflffl{zfflffl}

mean effective infectious period

, (7:4)

where κ = v/μ + μ− 1, referred to as the mean degree excess [58],
describes the expected number of susceptible individuals that an
average infected individual will encounter early in an outbreak.
Combining the two equations, we get

l ¼ (gþ r)(sþ r)
(k� 1)s� r

, (7:5)

which completes the relationship between the growth rate and
the egocentric reproductive number [22],

Regocentric ¼ gþ r
gs=(sþ r)þ r=k

: (7:6)
7.4. Estimating the initial forward generation-interval
distribution

The population-level method estimates the initial forward gener-
ation-interval distribution by reversing the inverse exponential
weighting in the aggregated generation-interval distribution with-
out explicitly accounting for the infection process (i.e. who
infected whom) [19–21],

f0(t)/ a0(t) exp (rt), (7:7)

where r is the initial exponential growth rate. In order to do so,
we first approximate the aggregated distribution a0 with a
gamma distribution by assuming that realized generation inter-
vals (subject to right truncation) during the exponential growth
phase come from the same gamma distribution; specifically, we
estimate the mean �G and shape α of a gamma distribution
by maximum likelihood. Then, the initial forward generation-
interval distribution follows a gamma distribution with mean
a=(a=�G� r) and shape α. We then use the estimated initial
forward generation-interval distribution to infer the initial repro-
ductive number Rinitial from the estimated growth rate (using
the Euler–Lotka equation).

The individual-level method models each infection i from an
infected individual j as a non-homogeneous Poisson process
between the time at which infector j was infected (tj) and the
truncation time (ttruncate), with time-varying Poisson rate at
time t equal to Λf0(t− tj), where f0(t) is the initial forward gener-
ation-interval distribution [59]. We use a gamma distribution
(parameterized by its mean and shape) to model the initial for-
ward generation-interval distribution. Then, the probability
that an individual j infects nj individuals between tj and ttruncate
is equal to

LnjF0(ttruncate � tj; u)
nj exp

��LF0(ttruncate � tj; u)
�

nj!
, (7:8)

where θ is a (vector) parameter of the initial forward generation-
interval distribution f0 (and the corresponding cumulative distri-
bution function F0). On the other hand, the probability density
that the realized generation interval between infector j and infec-
tee i is equal to 0≤ si,j≤ ttruncate− tj can be expressed using a
truncated distribution [60,61],

f0(si,j; u)
F0(ttruncate � tj; u)

: (7:9)

Therefore, the probability density that individual j infects nj indi-
viduals between tj and ttruncate with realized generation intervals
si,j for i ¼ 1, . . . , nj is a product of equation (7.8) and equation (7.9),

Lnj exp
��L F0(ttruncate � tj; u)

�Qnj
i¼1 f0(si,j; u)

nj!
: (7:10)

The full likelihood of contact-tracing data, which include aggre-
gated generation intervals as well as information about who
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infected whom, until time ttruncate can be written as

L(L, u j s, t, n, ttruncate)

¼
YNI

j¼1

Lnj exp
��L F0(ttruncate � tj; u)

�Qnj
i¼1 f0(si,j; u)

nj!

 !
,

(7:11)

where NI is the total number of infected individuals (in the data).
This likelihood is a special case of the likelihood suggested in
[62],which assumes that the second event (observation of infection)
occurs simultaneously with the corresponding initiating event
(infection of an individual). Here, we estimate parameters Λ and
θ by maximum likelihood. In theory, the forward generation inter-
vals arising from the same infector may be correlated because of
non-independence in the contact process [35]; although we do
not account for this potential correlation in our likelihood, our
simulations (figure 5) suggest that approximating the initial for-
ward generation-interval distribution with a single distribution
provides aviable approach for estimating the reproductive number.

We use the estimated distribution f0 to infer the initial repro-
ductive number Rinitial from the estimated growth rate (using the
Euler–Lotka equation). When the entire transmission process is
known, we expect Λ to match Rinitial; otherwise, Λ will be sensi-
tive to under-reporting of the number of infections caused by
each infected individual. As we show in electronic supple-
mentary material, appendix A.3, the estimates of Rinitial using
the Euler–Lotka equation from f0 remain unbiased even in the
presence of random under-reporting.

7.5. Measuring the exponential growth rate
We estimate the initial exponential growth rate r of an epidemic
from daily incidence by modelling the cumulative incidence c(t)
with a logistic function [11],

c(t) ¼ K
1þ [(K=c0)� 1] e�rt : (7:12)

While the exponential growth rate (i.e. the rate of change in log
incidence) of the logistic function changes throughout an epidemic,
we focus strictly on estimating the initial exponential growth rate
(when t→−∞). The method of estimating the initial exponential
growth rate by fitting a logistic curve has been previously validated
against simulations of stochastic compartmental models [11].

Fitting directly to cumulative incidence can lead to overly
confident results [63]; instead, we fit interval incidence x(t) =
c(t + Δt) − c(t), where Δt is 1 day, to daily incidence, assuming
that daily incidence follows a negative binomial distribution
with overdispersion parameter θ. We estimate parameters r, K,
c0 and θ by maximum likelihood. The fitting time window is
defined from the last trough before the peak of an epidemic to
the first day after the peak of an epidemic.

7.6. Empirical network
To simulate epidemics on a realistic network, we use the
‘condensed matter physics’ network from the Stanford Large
Network Dataset Collection [36]. This graph describes
co-authorship among anyone who submitted a paper to the Con-
densed Matter category in arXiv between January 1993 and April
2003 [64]. It consists of 23 133 nodes and 93 497 edges. The same
network was used by [22] to study how network structure affects
the estimate of the basic reproductive number.

Data accessibility. All code is available at https://github.com/parksw3/
contact_trace.

Authors’ contributions. SW.P. led the literature review, performed analytic
calculations and simulations, and wrote the first draft of the manu-
script; J.D. conceived the study, performed analytic calculations and
wrote the first draft of the manuscript; all authors contributed to
refining the study design, literature review and final manuscript
writing. All authors gave final approval for publication.
Competing interests. The authors declare that they have no competing
interests.
Funding. This work was supported by the Canadian Institutes of
Health Research (funding reference no. 143486).
References
1. Anderson RM, May RM. 1991 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

2. Diekmann O, Heesterbeek JAP, Metz JA. 1990
On the definition and the computation of
the basic reproduction ratio R0 in models for
infectious diseases in heterogeneous populations.
J. Math. Biol. 28, 365–382. (doi:10.1007/
BF00178324)

3. Kribs-Zaleta CM, Velasco-Hernández JX. 2000 A
simple vaccination model with multiple endemic
states. Math. Biosci. 164, 183–201. (doi:10.1016/
S0025-5564(00)00003-1)

4. Van den Driessche P, Watmough J. 2002
Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease
transmission. Math. Biosci. 180, 29–48. (doi:10.
1016/S0025-5564(02)00108-6)

5. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW,
McKenzie FE. 2012 Ross, Macdonald, and a theory
for the dynamics and control of mosquito-
transmitted pathogens. PLoS Pathog. 8, e1002588.
(doi:10.1371/journal.ppat.1002588)
6. Dietz K. 1993 The estimation of the basic
reproduction number for infectious diseases. Stat.
Methods Med. Res. 2, 23–41. (doi:10.1177/
096228029300200103)

7. Chowell G, Fenimore PW, Castillo-Garsow MA,
Castillo-Chavez C. 2003 SARS outbreaks in
Ontario, Hong Kong and Singapore: the role of
diagnosis and isolation as a control mechanism.
J. Theor. Biol. 224, 1–8. (doi:10.1016/S0022-
5193(03)00228-5)

8. Mills CE, Robins JM, Lipsitch M. 2004
Transmissibility of 1918 pandemic influenza. Nature
432, 904–906. (doi:10.1038/nature03063)

9. Nishiura H, Castillo-Chavez C, Safan M, Chowell G.
2009 Transmission potential of the new influenza
A(H1N1) virus and its age-specificity in Japan.
Euro Surveill. 14, 19227. (doi:10.2807/ese.14.22.
19227-en)

10. Nishiura H, Chowell G, Safan M, Castillo-Chavez C.
2010 Pros and cons of estimating the reproduction
number from early epidemic growth rate of
influenza A(H1N1) 2009. Theor. Biol. Med. Model. 7,
1. (doi:10.1186/1742-4682-7-1)
11. Ma J, Dushoff J, Bolker BM, Earn DJ. 2014 Estimating
initial epidemic growth rates. Bull. Math. Biol. 76,
245–260. (doi:10.1007/s11538-013-9918-2)

12. Wearing HJ, Rohani P, Keeling MJ. 2005 Appropriate
models for the management of infectious diseases.
PLoS Med. 2, e174. (doi:10.1371/journal.pmed.
0020174)

13. Svensson Å. 2007 A note on generation times in
epidemic models. Math. Biosci. 208, 300–311.
(doi:10.1016/j.mbs.2006.10.010)

14. Roberts M, Heesterbeek J. 2007 Model-consistent
estimation of the basic reproduction number
from the incidence of an emerging infection.
J. Math. Biol. 55, 803–816. (doi:10.1007/s00285-007-
0112-8)

15. Wallinga J, Lipsitch M. 2007 How generation
intervals shape the relationship between
growth rates and reproductive numbers.
Proc. R. Soc. B 274, 599–604. (doi:10.1098/rspb.
2006.3754)

16. Park SW, Champredon D, Weitz JS, Dushoff J. 2019
A practical generation-interval-based approach to
inferring the strength of epidemics from their

https://github.com/parksw3/contact_trace
https://github.com/parksw3/contact_trace
http://dx.doi.org/10.1007/BF00178324
http://dx.doi.org/10.1007/BF00178324
http://dx.doi.org/10.1016/S0025-5564(00)00003-1
http://dx.doi.org/10.1016/S0025-5564(00)00003-1
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1371/journal.ppat.1002588
http://dx.doi.org/10.1177/096228029300200103
http://dx.doi.org/10.1177/096228029300200103
http://dx.doi.org/10.1016/S0022-5193(03)00228-5
http://dx.doi.org/10.1016/S0022-5193(03)00228-5
http://dx.doi.org/10.1038/nature03063
http://dx.doi.org/10.2807/ese.14.22.19227-en
http://dx.doi.org/10.2807/ese.14.22.19227-en
http://dx.doi.org/10.1186/1742-4682-7-1
http://dx.doi.org/10.1007/s11538-013-9918-2
http://dx.doi.org/10.1371/journal.pmed.0020174
http://dx.doi.org/10.1371/journal.pmed.0020174
http://dx.doi.org/10.1016/j.mbs.2006.10.010
http://dx.doi.org/10.1007/s00285-007-0112-8
http://dx.doi.org/10.1007/s00285-007-0112-8
http://dx.doi.org/10.1098/rspb.2006.3754
http://dx.doi.org/10.1098/rspb.2006.3754


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190719

11
speed. Epidemics 27, 12–18. (doi:10.1016/j.epidem.
2018.12.002)

17. Champredon D, Dushoff J. 2015 Intrinsic and
realized generation intervals in infectious-disease
transmission. Proc. R. Soc. B 282, 20152026.
(doi:10.1098/rspb.2015.2026)

18. Kenah E, Lipsitch M, Robins JM. 2008 Generation
interval contraction and epidemic data analysis.
Math. Biosci. 213, 71–79. (doi:10.1016/j.mbs.2008.
02.007)

19. Nishiura H. 2010 Time variations in the generation
time of an infectious disease: implications for
sampling to appropriately quantify transmission
potential. Math. Biosci. Eng. 7, 851–869. (doi:10.
3934/mbe.2010.7.851)

20. Scalia Tomba G, Svensson Å, Asikainen T, Giesecke J.
2010 Some model based considerations on
observing generation times for communicable
diseases. Math. Biosci. 223, 24–31. (doi:10.1016/j.
mbs.2009.10.004)

21. Britton T, Scalia Tomba G. 2019 Estimation in
emerging epidemics: biases and remedies.
J. R. Soc. Interface 16, 20180670. (doi:10.1098/rsif.
2018.0670)

22. Trapman P, Ball F, Dhersin JS, Tran VC, Wallinga J,
Britton T. 2016 Inferring R0 in emerging
epidemics—the effect of common population
structure is small. J. R. Soc. Interface 13, 20160288.
(doi:10.1098/rsif.2016.0288)

23. Hampson K, Dushoff J, Cleaveland S, Haydon DT,
Kaare M, Packer C, Dobson A. 2009 Transmission
dynamics and prospects for the elimination of
canine rabies. PLoS Biol. 7, e1000053. (doi:10.1371/
journal.pbio.1000053)

24. Svensson Å. 2015 The influence of assumptions on
generation time distributions in epidemic models.
Math. Biosci. 270, 81–89. (doi:10.1016/j.mbs.2015.
10.006)

25. WHO Ebola Response. 2014 Ebola virus disease
in West Africa—the first 9 months of the
epidemic and forward projections. N. Engl.
J. Med. 371, 1481–1495. (doi:10.1056/
NEJMoa1411100)

26. Heesterbeek J, Dietz K. 1996 The concept of R0 in
epidemic theory. Stat. Neerl. 50, 89–110. (doi:10.
1111/j.1467-9574.1996.tb01482.x)

27. Diekmann O, Heesterbeek JAP. 2000 Mathematical
epidemiology of infectious diseases: model building,
analysis and interpretation, vol. 5. New York, NY:
John Wiley & Sons.

28. Roberts M. 2004 Modelling strategies for
minimizing the impact of an imported exotic
infection. Proc. R. Soc. B 271, 2411–2415. (doi:10.
1098/rspb.2004.2865)

29. Aldis G, Roberts M. 2005 An integral equation
model for the control of a smallpox outbreak.
Math. Biosci. 195, 1–22. (doi:10.1016/j.mbs.2005.
01.006)

30. Champredon D, Dushoff J, Earn DJD. 2018
Equivalence of the Erlang-distributed SEIR
epidemic model and the renewal equation. SIAM
J. Appl. Math. 78, 3258–3278. (doi:10.1137/
18M1186411)
31. Lotka AJ. 1907 Relation between birth rates and
death rates. Science 26, 21–22. (doi:10.1126/
science.26.653.21-a)

32. Fraser C. 2007 Estimating individual and household
reproduction numbers in an emerging epidemic.
PLoS ONE 2, e758. (doi:10.1371/journal.pone.
0000758)

33. Ball F, Mollison D, Scalia-Tomba G. 1997 Epidemics
with two levels of mixing. Ann. Appl. Probab. 7,
46–89. (doi:10.1214/aoap/1034625252)

34. Ball F, Neal P. 2002 A general model for stochastic
SIR epidemics with two levels of mixing. Math.
Biosci. 180, 73–102. (doi:10.1016/S0025-
5564(02)00125-6)

35. Yan P. 2008 Separate roles of the latent and
infectious periods in shaping the relation between
the basic reproduction number and the intrinsic
growth rate of infectious disease outbreaks.
J. Theor. Biol. 251, 238–252. (doi:10.1016/j.jtbi.
2007.11.027)

36. Leskovec J, Krevl A. 2014 SNAP datasets: Stanford
large network dataset collection. See http://snap.
stanford.edu/data.

37. McBryde E, Bergeri I, van Gemert C, Rotty J,
Headley E, Simpson K, Lester R, Hellard M, Fielding
JE. 2009 Early transmission characteristics of
influenza A(H1N1 v in Australia: Victorian state,
16 May–3 June 2009. Euro Surveill. 14, 19363.
(doi:10.2807/ese.14.42.19363-en)

38. Roberts MG, Nishiura H. 2011 Early estimation of
the reproduction number in the presence of
imported cases: pandemic influenza H1N1-2009 in
New Zealand. PLoS ONE 6, e17835. (doi:10.1371/
journal.pone.0017835)

39. Trichereau J, Verret C, Mayet A, Manet G, Decam C,
Meynard JB, Deparis X, Migliani R. 2012 Estimation
of the reproductive number for A(H1N1) pdm09
influenza among the French armed forces,
September 2009–March 2010. J. Infect. 64,
628–630. (doi:10.1016/j.jinf.2012.02.005)

40. Nishiura H, Chowell G. 2015 Theoretical perspectives
on the infectiousness of Ebola virus disease. Theor.
Biol. Med. Model. 12, 1. (doi:10.1186/1742-4682-
12-1)

41. Szendroi B, Csányi G. 2004 Polynomial
epidemics and clustering in contact networks.
Proc. R. Soc. B 271, S364–S366. (doi:10.1098/rsbl.
2004.0188)

42. Chowell G, Viboud C, Hyman JM, Simonsen L. 2015
The Western Africa Ebola virus disease epidemic
exhibits both global exponential and local
polynomial growth rates. PLoS Curr. 7.
(doi:10.1371/currents.outbreaks.8b55f4bad9
9ac5c5db3663e916803261)

43. Chowell G, Viboud C. 2016 Is it growing
exponentially fast? – Impact of assuming
exponential growth for characterizing and
forecasting epidemics with initial near-exponential
growth dynamics. Infect. Dis. Model. 1, 71–78.
(doi:10.1016/j.idm.2016.07.004)

44. Chowell G, Viboud C, Simonsen L, Moghadas SM.
2016 Characterizing the reproduction number of
epidemics with early subexponential growth
dynamics. J. R. Soc. Interface 13, 20160659. (doi:10.
1098/rsif.2016.0659)

45. Kiskowski M, Chowell G. 2016 Modeling household
and community transmission of Ebola virus disease:
epidemic growth, spatial dynamics and insights for
epidemic control. Virulence 7, 163–173. (doi:10.
1080/21505594.2015.1076613)

46. Viboud C, Simonsen L, Chowell G. 2016 A
generalized-growth model to characterize the early
ascending phase of infectious disease outbreaks.
Epidemics 15, 27–37. (doi:10.1016/j.epidem.2016.
01.002)

47. Clarke J. 1998 Contact tracing for chlamydia: data
on effectiveness. Int. J. STD. AIDS 9, 187–191.
(doi:10.1258/0956462981921945)

48. Eames KT, Keeling MJ. 2003 Contact tracing and
disease control. Proc. R. Soc. B 270, 2565–2571.
(doi:10.1098/rspb.2003.2554)

49. Donnelly CA et al. 2003 Epidemiological
determinants of spread of causal agent of severe
acute respiratory syndrome in Hong Kong. Lancet
361, 1761–1766. (doi:10.1016/S0140-
6736(03)13410-1)

50. Cauchemez S, Boëlle PY, Thomas G, Valleron AJ.
2006 Estimating in real time the efficacy of
measures to control emerging communicable
diseases. Am. J. Epidemiol. 164, 591–597. (doi:10.
1093/aje/kwj274)

51. Hens N, Calatayud L, Kurkela S, Tamme T,
Wallinga J. 2012 Robust reconstruction and
analysis of outbreak data: influenza A(H1N1)v
transmission in a school-based population.
Am. J. Epidemiol. 176, 196–203. (doi:10.1093/aje/
kws006)

52. Jewell CP, Roberts GO. 2012 Enhancing Bayesian risk
prediction for epidemics using contact tracing.
Biostatistics 13, 567–579. (doi:10.1093/biostatistics/
kxs012)

53. Soetens L, Klinkenberg D, Swaan C, Hahné S,
Wallinga J. 2018 Real-time estimation of
epidemiologic parameters from contact tracing data
during an emerging infectious disease outbreak.
Epidemiology 29, 230–236. (doi:10.1097/EDE.
0000000000000776)

54. Anderson D, Watson R. 1980 On the spread of a
disease with gamma distributed latent and
infectious periods. Biometrika 67, 191–198. (doi:10.
1093/biomet/67.1.191)

55. Bailey NT. 1964 Some stochastic models for small
epidemics in large populations. J. R. Stat. Soc. C
Appl. Stat. 13, 9–19. (doi:10.2307/2985218)

56. Bartlett MS. 1953 Stochastic processes or the
statistics of change. J. R. Stat. Soc. C Appl. Stat. 2,
44–64. (doi:10.2307/2985327)

57. Gillespie DT. 1977 Exact stochastic simulation of
coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

58. Newman ME. 2003 The structure and function of
complex networks. SIAM Rev. 45, 167–256. (doi:10.
1137/S003614450342480)

59. Daley DJ, Vere-Jones D2007 An introduction to
the theory of point processes: volume II: general
theory and structure. New York, NY: Springer-Verlag.

http://dx.doi.org/10.1016/j.epidem.2018.12.002
http://dx.doi.org/10.1016/j.epidem.2018.12.002
http://dx.doi.org/10.1098/rspb.2015.2026
http://dx.doi.org/10.1016/j.mbs.2008.02.007
http://dx.doi.org/10.1016/j.mbs.2008.02.007
http://dx.doi.org/10.3934/mbe.2010.7.851
http://dx.doi.org/10.3934/mbe.2010.7.851
http://dx.doi.org/10.1016/j.mbs.2009.10.004
http://dx.doi.org/10.1016/j.mbs.2009.10.004
http://dx.doi.org/10.1098/rsif.2018.0670
http://dx.doi.org/10.1098/rsif.2018.0670
http://dx.doi.org/10.1098/rsif.2016.0288
http://dx.doi.org/10.1371/journal.pbio.1000053
http://dx.doi.org/10.1371/journal.pbio.1000053
http://dx.doi.org/10.1016/j.mbs.2015.10.006
http://dx.doi.org/10.1016/j.mbs.2015.10.006
http://dx.doi.org/10.1056/NEJMoa1411100
http://dx.doi.org/10.1056/NEJMoa1411100
http://dx.doi.org/10.1111/j.1467-9574.1996.tb01482.x
http://dx.doi.org/10.1111/j.1467-9574.1996.tb01482.x
http://dx.doi.org/10.1098/rspb.2004.2865
http://dx.doi.org/10.1098/rspb.2004.2865
http://dx.doi.org/10.1016/j.mbs.2005.01.006
http://dx.doi.org/10.1016/j.mbs.2005.01.006
http://dx.doi.org/10.1137/18M1186411
http://dx.doi.org/10.1137/18M1186411
http://dx.doi.org/10.1126/science.26.653.21-a
http://dx.doi.org/10.1126/science.26.653.21-a
http://dx.doi.org/10.1371/journal.pone.0000758
http://dx.doi.org/10.1371/journal.pone.0000758
http://dx.doi.org/10.1214/aoap/1034625252
http://dx.doi.org/10.1016/S0025-5564(02)00125-6
http://dx.doi.org/10.1016/S0025-5564(02)00125-6
http://dx.doi.org/10.1016/j.jtbi.2007.11.027
http://dx.doi.org/10.1016/j.jtbi.2007.11.027
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://dx.doi.org/10.2807/ese.14.42.19363-en
http://dx.doi.org/10.1371/journal.pone.0017835
http://dx.doi.org/10.1371/journal.pone.0017835
http://dx.doi.org/10.1016/j.jinf.2012.02.005
http://dx.doi.org/10.1186/1742-4682-12-1
http://dx.doi.org/10.1186/1742-4682-12-1
http://dx.doi.org/10.1098/rsbl.2004.0188
http://dx.doi.org/10.1098/rsbl.2004.0188
http://dx.doi.org/doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
http://dx.doi.org/doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
http://dx.doi.org/10.1016/j.idm.2016.07.004
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1080/21505594.2015.1076613
http://dx.doi.org/10.1080/21505594.2015.1076613
http://dx.doi.org/10.1016/j.epidem.2016.01.002
http://dx.doi.org/10.1016/j.epidem.2016.01.002
http://dx.doi.org/10.1258/0956462981921945
http://dx.doi.org/10.1098/rspb.2003.2554
http://dx.doi.org/10.1016/S0140-6736(03)13410-1
http://dx.doi.org/10.1016/S0140-6736(03)13410-1
http://dx.doi.org/10.1093/aje/kwj274
http://dx.doi.org/10.1093/aje/kwj274
http://dx.doi.org/10.1093/aje/kws006
http://dx.doi.org/10.1093/aje/kws006
http://dx.doi.org/10.1093/biostatistics/kxs012
http://dx.doi.org/10.1093/biostatistics/kxs012
http://dx.doi.org/10.1097/EDE.0000000000000776
http://dx.doi.org/10.1097/EDE.0000000000000776
http://dx.doi.org/10.1093/biomet/67.1.191
http://dx.doi.org/10.1093/biomet/67.1.191
http://dx.doi.org/10.2307/2985218
http://dx.doi.org/10.2307/2985327
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480


royalsocietypublish

12
60. Lagakos SW, Barraj LM, Gruttola Vd. 1988
Nonparametric analysis of truncated survival data,
with application to AIDS. Biometrika 75, 515–523.
(doi:10.1093/biomet/75.3.515)

61. Kalbfleisch J, Lawless J. 1991 Regressionmodels for right
truncated data with applications to AIDS incubation
times and reporting lags. Statistica Sinica 1, 19–32.
62. Kalbfleisch J, Lawless JF. 1989 Inference based on
retrospective ascertainment: an analysis of the
data on transfusion-related AIDS. J. Am. Stat. Assoc.
84, 360–372. (doi:10.1080/01621459.1989.
10478780)

63. King AA, de Celles MD, Magpantay FM, Rohani P.
2015 Avoidable errors in the modelling of outbreaks
of emerging pathogens, with special reference to
Ebola. Proc. R. Soc. B 282, 20150347. (doi:10.1098/
rspb.2015.0347)

64. Leskovec J, Kleinberg J, Faloutsos C. 2007 Graph
evolution: densification and shrinking diameters. ACM
Trans. Knowl. Discov. Data 1, 2. (doi:10.1145/1217299.
1217301)
i
ng.o
rg/journal/rsif
J.R.Soc.Interface

17:20190719

http://dx.doi.org/10.1093/biomet/75.3.515
http://dx.doi.org/10.1080/01621459.1989.10478780
http://dx.doi.org/10.1080/01621459.1989.10478780
http://dx.doi.org/10.1098/rspb.2015.0347
http://dx.doi.org/10.1098/rspb.2015.0347
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301

	Inferring generation-interval distributions from contact-tracing data
	Introduction
	Intrinsic generation-interval distributions
	Realized generation-interval distributions across time
	Realized generation-interval distributions across space
	Inferring the initial forward generation-interval distribution
	Discussion
	Methods
	Deterministic SEIR model
	Stochastic SEIR model
	Egocentric relationship between r and {{\cal R}} (SEIR model)
	Estimating the initial forward generation-interval distribution
	Measuring the exponential growth rate
	Empirical network
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	References


