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Abstract
We consider a reaction–diffusion system of densities of two types of particles, intro-
duced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for
a growth process: active, branching particles form the growing boundary layer of an
otherwise static tissue, represented by inactive particles. The active particles diffuse,
branch and become irreversibly inactive upon collision with a particle of arbitrary
type. In absence of active particles, this system is in a steady state, without any a
priori restriction on the amount of remaining inactive particles. Thus, while related to
the well-studied FKPP-equation, this system features a game-changing continuum of
steady state solutions,where each corresponds to a possible outcome of the growth pro-
cess. However, simulations indicate that this system self-organizes: traveling fronts
with fixed shape arise under a wide range of initial data. In the present work, we
describe all positive and bounded traveling wave solutions, and obtain necessary and
sufficient conditions for their existence.We find a surprisingly simple symmetry in the
pairs of steady states which are joined via heteroclinic wave orbits. Our approach is
constructive: we first prove the existence of almost constant solutions and then extend
our results via a continuity argument along the continuum of limiting points.
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1 Motivation and result

The mechanics of tissue-growth have drawn the attention of the scientific community.
A central question is, how the cells are organized, how they react to and communicate
with their environment on the microscopic level, and how their behavior during the
growth phase gives rise to distinct macroscopic structures. Mathematical models can
help to understand these processes and works regarding organoids, wound healing or
tumor growth are abundant (Montes-Olivas et al. 2019; Mammoto and Ingber 2010;
Falco et al. 2021; d’Alessandro et al. 2021; Jain et al. 2021). However, for most of
these models, our numerical skills far predominate the possibility to analyze them
rigorously. Hence, for understanding the basic mechanics of the underlying biological
processes, the need for simplified models arises.

Especially when studying spatiotemporal effects and macroscopic pattern forma-
tion, reaction–diffusion systems and their traveling waves have proven insightful.
One of the oldest and most studied models is the FKPP-equation (Fisher 1937; Kol-
mogorov et al. 1937), describing the advance of an advantageous population. The arise
of more complex spatial patterns due to the instability of a homogeneous state was
first described in Turings groundbreaking paper The Chemical basis ofMorphogenesis
(Turing 1952). More recently, systems of Keller-Segel type have been studied exten-
sively, where growth, movement and self-organization of a population are driven by
chemotactic guidance (Keller and Segel 1971; Perthame 2004; Painter 2019). Broad
introductions tomathematicalmodeling of pattern formation in developmental biology
have been written by Painter (2019) and Othmer et al. (2009), among others.

The group of Hannezo et al. proposed AUnifying Theory of BranchingMorphogen-
esis in epithelial tissues (Hannezo et al. 2017). They introduced a stochastic model,
related to branching and annihilating random walks (Cardy and Täuber 1996). In this
model, a branched structure is represented by a network. This network undergoes
stochastic growth dynamics, where each branch of the network grows independently
from the others and follows a set of simple, local rules. At its tip, each branch elon-
gates or splits up at certain rates and these tips are called active. When an active tip
comes too close to a different branch, it irreversibly ceases any activity and becomes
inactive. The numerical results of Hannezo et al. reveal that this stochastic growth
process self-organizes: the active tips concentrate at the boundary of the network and
form a rather sharp layer of growth. The center of the network is static and - rather
surprisingly - exhibits a homogenous geometry, in particular a constant density of
branches. Remarkably, as mentioned by the authors, this model self-organizes with-
out any signaling gradients. Even a directional bias of the branches can be achieved,
as the result of an appropriate spatial boundary. Moreover, the authors observed that
their simulations were in good agreement with biological data frommammary glands,
kidneys and the human prostate (Hannezo et al. 2017).

To study their model analytically, Hannezo et al. proposed the following system,
which corresponds to the diffusive limit of the above stochastic dynamics. We restrict
ourselves to the one-dimensional case. Due to a simple linear rescaling (“Appendix
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C”), we only need to consider the normalized reaction–diffusion system

At = Axx + A − A(A + I ),

It = A(A + I ) + r A.
(1.1)

Here, A, I : R × R+ → R+ are the densities of active particles and inactive par-
ticles. The diffusion term describes the movement of the active particles, all other
terms encode a growth process where the active particles eventually become inactive:
the active particles branch with rate 1, produce inactive particles with rate r ≥ 0,
and become inactive upon collision with either an active or an inactive particle. The
active particles grow logistically, which implies that the inactive particles grow at most
exponentially. The resulting simple time-dependent bounds on A and I yield unique-
ness and existence of smooth solutions, a suitable fixed-point theorem is presented in
chapter 14 of Smoller (1994). More details about the underlying stochastic processes
together with a non-rigorous derivation of this PDE can be found in Hannezo et al.
(2017). Note that without the inactive particles, i.e. when I = 0, the remaining equa-
tion for A reduces to the well-known FKPP-equation (Fisher 1937; Kolmogorov et al.
1937).

The System (1.1) can be interpreted as a twofold degenerate Keller-Segel system
(Keller and Segel 1971;ArumugamandTyagi 2020): the active particles are not guided
by a chemotactic gradient, but explore the space solely diffusively, and the inactive
particles do not diffuse at all. Still, simulations of System (1.1) show that general
solutions of (1.1) self-organize, a phenomenon which is typical for many different
Keller-Segel systems (Painter 2019). The invading front of the system converges to a
fixed shape: a pulse of active particles, that represents a layer of growth, is accompanied
by a monotone wave of inactive particles, the resulting static tissue, as demonstrated
in Fig. 1. This self-organization of the Reaction–Diffusion System (1.1) resembles
that of the stochastic dynamics.

For a wave speed c > 0, a right-traveling wave solves Eq. (1.1) via the Ansatz
A(x, t) = a(x − ct), I (x, t) = i(x − ct). We substitute z = x − ct , such that any
traveling wave must be a solution of

Fig. 1 Simulation of the Reaction–Diffusion System (1.1) for r = 0. Given a small initial heap of active
particles A(x, 0) = 1/2 exp(−x2) and I (x, 0) = 0, two identical traveling fronts arise, the right one is
shown. After the separation of the two fronts away from the origin, the density of the remaining inactive
particles is given by I = 2 and the front moves asymptotically with speed c = 2
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0 = azz + caz + a − a(a + i),

0 = ciz + a(a + i) + ra.
(1.2)

The occurrence of these seemingly stable traveling waves is quite surprising, since
the System (1.1) features a continuum of steady state solutions:

A = 0, I = K , K ∈ R+, (1.3)

which is due to the fact that the inactive particles do not degrade. This continuum of
steady states represents the difficulty when studying the system: we first need to find
out which limiting states are chosen by the growth process.

Hannezo et al. presented a rich discussion of the Wave-Equation (1.2) along with
numerics and several heuristics that show a deep connection with the original FKPP-
equation, and predicted some of the following results. The goal of this paper is to give
necessary and sufficient conditions for the existence of such traveling wave solutions
and to analyze the shape of the wave form. Our main result characterizes a family of
pulled traveling waves:

Theorem 1.1 Let r ≥ 0, c > 0 and consider the System (1.1) and its traveling wave
solutions given by (1.2). Set ic := max{0, 1 − c2/4}. For each pair i−∞, i+∞ ∈ R+
such that

i+∞ ∈ [ic, 1), i−∞ = 2 − i+∞, (1.4)

there exists a unique bounded and positive traveling wave a, i ∈ C∞(R,R2) with
speed c such that

lim
z→±∞a(z) = 0, lim

z→±∞ i(z) = i±∞. (1.5)

The function i(z) is decreasing, whereas a(z) has a unique local and global maximum.

If c2
4 + i+∞ − 1 = 0, then convergence as z → +∞ is sub-exponentially fast and of

order z · e− c
2 z . If c2

4 + i+∞ − 1 > 0, then convergence as z → +∞ is exponentially
fast. Convergence as z → −∞ is exponentially fast in all cases. The corresponding
rates are

μ±∞ = − c

2
+
√
c2

4
+ i±∞ − 1. (1.6)

Moreover, these are all bounded, non-negative, non-constant and twice differentiable
solutions of Eq. (1.2).

Notice that this result is independent of the reproduction rate r , which affects the
shape of the wave, but neither its limits nor the minimal speed of a positive solution.
Hence, all non-negative and bounded traveling waves resemble the ones depicted
in Fig. 2, consisting of a pulse of active particles and a monotone wave of inactive
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Fig. 2 Two different traveling waves with speed c = 2. The limits of the left wave are given by i−∞ = 2
and i+∞ = 0. The limits of the right wave are given by i−∞ = 1.8 and i+∞ = 0.2

particles. These traveling wave solutions share many similarities with classical FKPP-
waves of a single type of particles. Among other mathematical aspects, this will be
discussed at the end of the paper, in Sect. 9. Notably, Theorem1.1 analytically connects
two continua of fixed points via a continuum of traveling waves. Our constructive
approach is a novelty: we first prove the existence of almost constant solutions and
then continuously deform these solution along the continuum of possible limits.

Figure 1 shows a simulation of the System (1.1), starting with a small initial amount
of active particles. After a short transition phase, we observe a front with fixed shape.
Asymptotically, it equals the unique traveling wave with limits i−∞ = 2, i+∞ = 0
and speed c = 2, which is the minimal possible wave speed for this pair of limits.
We observed this behavior for all compact initial data that we chose. Moreover, this
wave seems to be stable against perturbations, as briefly discussed in the concluding
Sect. 9. Even though it is only a first step into this direction, this paper sheds light at
the ability of the Growth-Process (1.1) to self-organize and at the robustness of this
mechanism, e.g. against errors of individual particles. Our theoretical analysis fortifies
the numerical and biological findings ofHannezo et al., where a simple set of local rules
organizes the growth of a complex epithelial structure. The underlying assumption of
a logistic growth is quite natural, so similar rules might drive and regulate other growth
processes as well, without the need for guiding gradients.

2 Outline of the paper

A sketch of the central ideas and techniques is presented in Sect. 2. The identity
i−∞ + i+∞ = 2 is proved in Sect. 3. The asymptotic behavior around the stable
and unstable set of the traveling waves is analyzed in Sect. 4. A non-negative trapping
region of a lower-dimensional sub-system is analyzed in Sect. 5.Weuse our knowledge
about the sub-system to construct a suitable attractor of the full system in Sect. 6. Then,
we connect the unstable manifold of the unstable set with this attractor, see Sect. 7.We
complete the proof of Theorem 1.1 in Sect. 8. In Sect. 9, we highlight the similarity of
the traveling waves with those of the original FKPP-equation and give a short outlook
at their stability.
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2.1 Identifying the correct limits

We reformulate the System (1.2) for a traveling wave as an equivalent system of first-
order ODEs. Denoting differention with respect to z by a prime, we introduce the
auxiliary variable a′ = b, so that (1.2) becomes

a′ = b,

b′ = a(a + i) − a − cb, (2.1)

i ′ = −1

c
a (a + i + r) ,

with c > 0, r ≥ 0. We call a solution of Eq. (2.1) non-negative if a, i ≥ 0. If a
solution is in C1(R,R3), then it is also in C∞ by a simple induction. This equation
has a continuum of non-negative fixed points, similar to that of the PDE, cf. (1.3):

a = b = 0, i ∈ R+. (2.2)

Thus, in the first place, we need to find out which of these fixed points can be
considered as limits of right-traveling waves. Any bounded and non-negative solution
of System (2.1) can not be periodic and must converge since ci ′ = −a(a + i + r) ≤
0. It is now evident that the limits at z = ±∞ must be fixed points of Eq. (2.1),
thus we denote them as (a, b, i) = (0, 0, i±∞). Under mild assumptions regarding
integrability, we can interrelate two different points on a given traveling wave, see
Sect. 3. Most importantly, this leads to the correspondence of the limits

i+∞ + i−∞ = 2. (2.3)

In view of this, monotonicity of i implies that i−∞ ∈ (1, 2] and i+∞ ∈ [0, 1).
The fixed points of the ODE System (2.1) are not isolated, hence its Jacobian D is

degenerate there. It is easily verified that D is given by

D(a,b,i) =
⎛
⎝ 0 1 0

2a + i − 1 −c a
− 1

c (2a + i + r) 0 − a
c

⎞
⎠ . (2.4)

At a fixed point (a, b, i) = (0, 0, K ), the eigenvalues of D(0,0,K ) are

λ0 = 0, λ± = − c

2
±
√
c2

4
+ K − 1. (2.5)

Hence, we can not apply the classical Theorem of Grobmann-Hartmann to linearize
the asymptotic behavior around the fixed points. We apply center manifold theory to
work out the higher moments of the approximation, see Sect. 4. The center manifold
coincides with the continuum of fixed points. This implies that asymptotically, there is
noflowalong the direction of the eigenvector (a, b, i) = (0, 0, 1)with zero eigenvalue.
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Hence, the asymptotic flow around any fixed point is two-dimensional and the stability
of the fixed point (0, 0, K ) is dictated by the two eigenvalues λ±. When K > 1, the
fixed point is unstable, while for K < 1, it is stable.

At the same time, the analysis of the asymptotic behavior also yields a necessary
condition on the speed c of a non-negative wave. A traveling wave can only be non-
negative if a(z) does not spiral while converging to 0. Therefore, the two eigenvalues
λ± at the limiting fixed point must be real-valued. In view of (2.5), for a fixed point
(0, 0, K ), this is given if

c2

4
+ K − 1 ≥ 0. (2.6)

Thus, if the stable fixed point (0, 0, i+∞) is the limit of a non-negative traveling wave,
where i+∞ ∈ [0, 1), it must by (2.6) further hold that

c2

4
+ i+∞ − 1 ≥ 0 ⇔ i+∞ ≥ ic = max

{
0, 1 − c2

4

}
, (2.7)

as inTheorem1.1. In otherwords, ic is theminimal limiting density of inactive particles
that is necessary for the existence of a non-negative traveling wave with speed c.

2.2 Construction of a traveling wave

Wewill explicitly construct a non-negative traveling wave such that the two necessary
conditions i+∞ ≥ ic and i+∞ + i−∞ = 2 are fulfilled. Two key features of the
model make it tractable: first, the monotonicity of i(z) allows us to investigate the
convergence of the sub-system that arises for a fixed value of i , and then lift our result
to almost constant solutions of the full system. Second, for extending this result to
non-small solutions, we lean on an integral equation that allows us to interrelate two
points on a given trajectory. However, the central Proposition 3.2 depends essentially
on the logistic growth of the active particles. Apart from this, our general approach
seems to be applicable to a broader class of systems.

Regarding the ODE System (2.1), our analysis of the flow around the fixed points
in Sect. 4 reveals a suitable unstable set

S−∞ := {(0, 0, i) : i ∈ (1, 2]}, (2.8)

and a suitable stable set

S+∞ := {(0, 0, i) : i ∈ [0, 1)}. (2.9)

Each point (0, 0, i−∞) ∈ S−∞ has an unstable manifold of dimension one. Its restric-
tion to a ≥ 0 is the only possible candidate for the tail of a non-negative traveling
wave as z → −∞. Each point (0, 0, i+∞) ∈ S+∞ is Lyapunov stable, which can also
be seen in Fig. 3.
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Fig. 3 Two-dimensional phase
portrait of (a, i) of traveling
waves (2.1) for c = 2 and r = 0,
omitting the coordinate b = a′.
A unique trajectory emerges
from each point in S−∞ (where
i−∞ > 1) in positive direction
of a and converges to S+∞
(where i+∞ < 1). Notice the
correspondence
i−∞ + i+∞ = 2 of the limits

To begin with, we let (0, 0, i−∞) ∈ S−∞, where i−∞ ∈ (1, 2 − ic], and follow
its unstable manifold in positive direction of a. We prove that there exists a finite
phase-time z0 such that b(z0) = 0: the trajectory reaches a local maximum of active
particles, again see Fig. 3. We denote it as (az0 , 0, iz0). This is carried out in Sect. 7.

Thus, for finding a suitable attractor of S+∞, we analyze solutions that start in points
of type (a, b, i) = (a0, 0, i0). We first analyze the lower-dimensional subsystem in
coordinates (a, b), imposing a fixed value of i , which is done Sect. 5. We construct a
trapping region, wherein a converges and stays non-negative. Themonotonicity of i(z)
allows us to lift this result to the full system, see Sect. 6. Here, the continuum of fixed
points comes at help: we first prove the existence of almost constant solutions, where
a 	 1 and i ∼ i0, that stay non-negative and converge. Then, we continuously deform
these solutions: the Lyapunov-stability of the limits in S+∞ implies continuity of the
entire trajectory up to z = +∞ in initial data. We use this to derive sharp conditions
regarding (a0, 0, i0) such that the trajectory stays non-negative and converges.

We show that the first local maximum (az0 , 0, iz0) along the instable manifold of
(0, 0, i−∞) does fulfill these conditions, see again Sect. 7. The technique is the same
as for proving the identity i+∞ + i−∞ = 2, which is the starting point of our analysis
and presented in the next section. The proof of Theorem 1.1 is completed in Sect. 8,
where we bring together all the different pieces. The resulting continuous family of
solutions is sketched in Fig. 3.

3 Themapping of the limits i−∞ + i+∞ = 2

We first verify global integrability of a non-negative solution:

Lemma 3.1 Let a(z), b(z), i(z)bea smooth, boundedandnon-negative travelingwave
that solves theODESystem (2.1). Then, as z → ±∞, a(z) vanishes and i(z) converges,
and a, b, b′, i ′ ∈ L1(R). Moreover, i(z) is decreasing and a(z) has a unique global
and local maximum.

Proof Leta(z), b(z), i(z) be a smooth, bounded and non-negative solution ofEq. (2.1).
Since ci ′ = −a(a + i + r) ≤ 0, it holds that i(z) is decreasing and by boundedness
must converge as z → ±∞, so i ′ ∈ L1(R). The two limits must be fixed points
and given by some (a, b, i) = (0, 0, i−∞) and (0, 0, i+∞). Equality is only given if
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a(z) ≡ 0. If not a(z) ≡ 0, then there is at least one local maximum of active particles,
which we denote as (a0, 0, i0).

At this point, a′′ = b′ = a0(a0 + i0 − 1) ≤ 0, so either a0 = 0 and the wave
is constant, or a0 + i0 ≤ 1. In the second case case, assume that there is also a
local minimum of a(z), denoted as (am, 0, im). Since a(z) vanishes as z → ±∞, we
may assume that this be the first local minimum after passing through (a0, 0, i0). As
before, (am, 0, im) is already a fixed point or am + im ≥ 1. Since i(z) is decreasing,
a(z) must have been increasing, a contradiction to the assumption that this is the first
local minimum after the maximum (a0, 0, i0). Thus, there is only one local maximum
of active particles, which is also the global one. Further, this implies a′ = b ∈ L1(R).
By ci ′ = −a(a+ i +r) ≤ 0, we know that a(a+ i +r) is also in L1(R). We integrate
b′ + cb + a = a(a + i) over the finite interval [−M, M], then send the boundaries to
±∞:

∫ M

−M
b′(z) + cb(z) + a(z) dz =

∫ M

−M
a(z) · [a(z) + i(z)

]
dz. (3.1)

We know that the right-hand is integrable since i ′ ∈ L1(R), and that both a(±M) and
b(±M) vanish as M → +∞. This implies

∫
R

a(z) dz = lim
M→+∞

[
b(M) − b(−M) + c · [a(M) − a(−M)

]+
∫ M

−M
a(z) dz

]

=
∫
R

a(z) · [a(z) + i(z)
]
dz. (3.2)

Hence also a ∈ L1(R), since a ≥ 0. Finally, as a sum of integrable terms, also
b′ ∈ L1(R). �


The following Proposition 3.2 will be used several times to interrelate two points
(a1, 0, i1), (a2, 0, i2) on a traveling wave, where bi = 0. By the previous Lemma, the
necessary conditions regarding integrability are always verified for non-negative and
bounded solutions.

Proposition 3.2 Let a(z), b(z), i(z) be a smooth and bounded solution of the ODE
System (2.1) on some interval [z1, z2], where −∞ ≤ z1 ≤ z2 ≤ +∞. Assume
that b(z1) = b(z2) = 0. Further, assume that a, b, b′, i ′ are integrable and define
A (t) := ∫ tz1 a(z) dz. The following three identities hold:

∫ z2

zi
a(z)

[
a(z) + i(z)] dz = A (z2) + c · [a(z2) − a(z1)

]
, (3.3)

i(z1) − i(z2) = 1 + r

c
A (z2), (3.4)∫ z2

zi
a(z)

[
a(z) + i(z)] = [i(z2) + a(z2)

] · A (z2),

+1 + r

2c
A(z2)

2 + a(z1)2 − a(z2)2

2c
. (3.5)
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Proof Any solution of the ODE System (2.1) also fulfills the original Wave Equations
(1.2). We integrate these over [z1, z2], substitute a′ = b and use that b(zi ) = 0. This
directly proves (3.3) and (3.4). Regarding Eq. (3.5), note that by integration by parts:

∫ z2

z1
a(z) · [a(z) + i(z)

]
dz =

∣∣∣z2
z1
A · (a + i)

−
∫ z2

z1
A (z) · [b(z) + i ′(z)

]
dz

= [i(z2) + a(z2)
] · A (z2) +

∫ z2

z1
A (z) · 1

c

[
(1 + r)a(z) + b′(z)

]
dz

= [i(z2) + a(z2)
] · A (z2) + 1 + r

2c

∣∣∣z2
z1
A 2 + 1

c

∫ z2

z1
A (z)b′(z) dz

= [i(z2) + a(z2)
] · A (z2) + 1 + r

2c
A (z2)

2 + a(z1)2 − a(z2)2

2c
.

(3.6)

�


Remark Equations (3.3) and (3.4) encode amass transfer from the active to the inactive
particles and are not specific for the chosen reactions. It is the quadratic Eq. (3.5) that
relies on a logistic saturation mechanism, we do not see a (direct) way to generalize
this result.

Given Proposition, the identity i−∞ + i+∞ = 2 is a mere

Corollary 3.3 (Limits of traveling waves) Let a(z), b(z), i(z) be a non-negative and
bounded traveling wave that solves the ODE System (2.1), and denote its limits as
(a, b, i) = (0, 0, i±∞). Either

∫
R a(z) dz = 0 implies i+∞ = i−∞, or the following

identity holds:

i−∞ + i+∞ = 2. (3.7)

Proof We apply Proposition (3.2). Since a(±∞) = 0, the Eqs. (3.3), (3.4) and (3.5)
can be simplified to

A (+∞) = i+∞ · A (+∞) + 1 + r

2c
A (+∞)2, (3.8)

(1 + r)

c
A (+∞) = i−∞ − i+∞. (3.9)

Either A (+∞) = 0 implies i+∞ = i−∞, or we divide the first equation by A (+∞)

and solve the resulting linear system, which proves the claim. �
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4 Asymptotics around the fixed points

Let us recall that the Jacobian D(0,0,K ) of the ODE System (2.1) at a fixed point
(0, 0, K ) has eigenvalues

λ0 = 0, λ± = − c

2
±
√
c2

4
+ K − 1. (4.1)

The existence of λ0 implies the existence of a center manifold. In the present case, it
locally coincides with the set of fixed points a = b = 0. This implies that there is no
flow along the center manifold, so the asymptotics are fully described by the remaining
two linear terms. The calculations are standard and presented in “Appendix A”, along
with a short review of the underlying theory. We only state the results here. First,
regarding the unstable set S−∞, as defined in (2.8):

Theorem 4.1 (Unstable set) For i−∞ > 1, the point (a, b, i) = (0, 0, i−∞) is an
unstable fixed point ofDynamics (2.1). Locally, there exists a smooth unstablemanifold
of dimension one. Its restriction to {a ≥ 0} is the unique trajectory that emerges from
the fixed point such that a(z), i(z) > 0 as z → −∞. It has the following properties:

• lim
z→−∞ a(z) = 0,

• lim
z→−∞ i(z) = i−∞,

• b(z) > 0, b′(z) > 0, i ′(z) < 0 as z → −∞.

(4.2)

Proof By choice of i−∞ > 1, the eigenvalue λ+ is positive, whereas λ− is negative.
Denote by u, v, w the coordinates in the system of eigenvectors e0, e+, e− of the
Jacobian at the fixed, where the fixed point is shifted to the origin. This transforma-
tion is done explicitly in Lemma A.11. By Theorem A.12, the dynamics in an open
neighborhood around the fixed point are equivalent to

u′ = 0,

v′ = λ+ v,

w′ = λ− w.

(4.3)

Hence, there is a stable and an unstable manifold, each of dimension one. The eigen-
vector e+ describes the asymptotic direction of the unstable manifold, in coordinates
a, b, i it is given by

e+ =
⎛
⎝ −λ−

i−∞ − 1
1
c (r + i−∞) · λ−

λ+

⎞
⎠ . (4.4)

Since λ− < 0 and λ+ > 0, asymptotically along the branch of the unstable manifold
in direction e+, where a > 0 and b > 0, it also holds that b′ = λ+ (i−∞ − 1) > 0 and
that ci ′ = λ− (r + i−∞) < 0. �
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Fig. 4 Phase portrait of (a, b) of the Wave Eq. (2.1) if we impose a fixed value of i(z) = 0, see also Sect. 5.
The choices of c change the type of convergence towards the origin: spiraling for c = 1, one stable manifold
with eigenvalue−c/2, which has algebraic multiplicity 2 and geometric multiplicity 1 for c = 2, two stable
manifolds for c = 3

Next, we prove Lyapunov-stability of the points in S+∞, defined in (2.9). Figure 4
shows how the phase lines converge to (0, 0) in the (a, b)-plane. For technical reasons,
we require that λ+ �= λ−. Later, we deal with this degenerate case via a continuity
argument.

Theorem 4.2 (Stable set) For all c > 0 and i+∞ ∈ [ic, 1), such that i+∞ > c2/4 −
1, the point (a, b, i) = (0, 0, i+∞) is Lyapunov stable under Dynamics (2.1). In a
neighborhood of the fixed point, (a, b) → (0, 0) exponentially fast.

Proof By choices of c and i+∞, both non-zero eigenvalues (4.1) of the Jacobian are
real-valued and negative and it holds that λ+ �= λ−. As before, denote by u, v, w the
coordinates in the system of eigenvectors e0, e+, e− of the Jacobian at the fixed point,
see Lemma A.11. By Theorem A.12, the dynamics of the system in a neighborhood
around the fixed point are equivalent to

u′ = 0,

v′ = λ+ v,

w′ = λ− w.

(4.5)

Take some small enough initial data (εu, εv, εw): in view of Eq. (4.5), εu does not van-
ish, but also does not propagate, whereas v and w converge to zero exponentially fast.
Since a and b are represented in terms of v andw, see (A13), they vanish exponentially
fast. �

Proposition 4.3 Let c > 0 and i+∞ < ic. There is no non-negative and non-constant
traveling wave that converges to (a, b, i) = (0, 0, i+∞) as z → +∞.

Proof As in the previous Theorem, the asymptotic behavior of Eq. (2.1) around the
limiting fixed point (a, b, i) = (0, 0, i+∞) is described by the linear System (4.5).
But now, since i+∞ < ic = max{0, 1 − c2/4}, either i+∞ < 0 or both eigenvalues
λ± have a non-vanishing imaginary part and thus, v and w spiral. Since a and b are
represented in terms of v andw, see (A13), any trajectory that converges to (0, 0, i+∞)

can not stay non-negative in its a-component. �
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5 Attractor of a sub-system

5.1 Construction and result

We begin our search for a non-negative attractor of S+∞ in an easier setting: we fix
i(z) = i = const . and investigate the two-dimensional sub-system in the remaining
coordinates. To separate it from the full system, we write it as ā(z), b̄(z). For this
system, we prove the existence of a suitable attractor. This set will be denoted as
Tc(i), to emphasize that it depends on the chosen value of i , which will be constant
only in this section. The flow of the sub-system and the region Tc(i) are drawn in
Fig. 5.

Definition 5.1 (Two-dimensional sub-system) For c > 0 and i ∈ [ic, 1), denote by
ā(z), b̄(z) the two-dimensional flow defined by

ā′ = b̄,

b̄′ = ā(ā + i − 1) − cb̄,
(5.1)

which results from the Wave System (2.1) by fixing i(z) = i .

There are only two fixed points of (5.1), (ā, b̄) = (0, 0) and (ā, b̄) = (1 − i, 0).
We denote the eigenvalues and eigenvectors of the Jacobian at (0, 0) as

λ±(i) := − c

2
±
√
c2

4
+ i − 1, l±(i) :=

(
λ∓
1 − i

)
. (5.2)

It holds that λ−(i) ≤ λ+(i) ≤ 0. Moreover, for i > ic, it holds that λ−(i) �= λ+(i).
Note thatλ± are identical to the non-zero eigenvalues of the full systemaround thefixed
point (0, 0, i), see (4.1). The eigenvectors l± are the projections of the corresponding
three-dimensional eigenvectors into the (a, b)-plane.

The Jacobian at (1 − i, 0) has eigenvalues and eigenvectors

β±(i) := − c

2
±
√
c2

4
+ 1 − i, r±(i) :=

(−β∓
1 − i

)
, (5.3)

and it holds that β−(i) < 0 < β+(i). These have no direct correspondence to the
three-dimensional system.

We now define the region Tc(i). It is a triangle, spanned by the two fixed points
(0, 0) and (1 − i, 0) and two adjacent eigenvectors:

Definition 5.2 (The triangle Tc(i)) For c > 0 and i ∈ [ic, 1), let Tc(i) be the convex
hull of the three points (0, 0), (1 − i, 0) and C(i). Here, the point C(i) is the unique
intersection of the two half-lines

{(0
0

)
− p · l+(i)

∣∣∣ p ≥ 0
}

and
{(1 − i

0

)
− q · r+(i)

∣∣∣ q ≥ 0
}
, (5.4)
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b̄

ā

i = 0.5, c = 2 i = 0.2, c = 2 i = 0.2, c = 1

Fig. 5 The phase plot of (ā, b̄) following Eq. (5.1), displayed for several values of i and c. The only two fixed
points are (0, 0) and (1−i, 0). For i ≥ ic , the orange triangles Tc(i) are invariant regions of Dynamics (5.1),
see Prop. 5.3. They increase in −i : the point (1− i, 0) moves to the right and the two internal angles γl (i)
and γr (i) increase. In the third case, i < ic implies that the system spirals around (0, 0) while converging

with l+(i) and r+(i) defined in (5.2) and (5.3). We denote the internal angles of Tc(i)
at (0, 0) and (1 − i, 0) as γl(i) and γr (i), respectively.

Visually, it can easily be seen in Fig. 5 that the set Tc(i) is invariant under Dynamics
(5.1): the flow at the boundary of Tc(i) points inwards.

Proposition 5.3 (Invariant region of the reduced system) The set Tc(i) is an invariant
region of Dynamics (5.1). If (ā0, b̄0) ∈ Tc(i), then

ā(z), b̄(z) ∈ Tc(i) ∀z ≥ 0. (5.5)

It holds that ā ≥ 0 and b̄ ≤ 0 within Tc(i). Hence, if (ā0, b̄0) �= (1 − i, 0), then ā(z)
converges to 0 monotonically as z → +∞.

For any non-negative solution of the full Wave System (2.1), it holds that i ′ ≤ 0.
Thus, we are interested in how Tc(i) changes when i decreases:

Proposition 5.4 (Nested invariant regions) For a fixed c > 0, the set Tc(i) is increasing
in −i, i ∈ [ic, 1). Thus, Tc(i) ⊆ Tc(ic) for all i ∈ [ic, 1).

This proposition holds due to an easy geometric argument, again take a look at
Fig. 5: when i decreases, the point (1 − i, 0) moves to the right and the two internal
angles γl(i) and γr (i) increase. The computations for both propositions are performed
in the following Sect. 5.2. The reader might skip those and proceed with Sect. 6, where
we investigate the full system.

5.2 Invariance andmonotonicity of Tc(i)

We analyze the (ā, b̄)-system and the set Tc(i) in detail. We prove that the Flow (5.1)
at the boundary of Tc(i) points inwards, and that the sets Tc(i) are increasing in −i .
We formalize what is sketched Fig. 5, and begin by examining the eigenvector l+(i)
at the fixed point (ā, b̄) = (0, 0):
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Lemma 5.5 Let 1 > i > ic, and let l+(i) = (
λ−(i), 1 − i

)
be defined as in (5.2).

The quotient of the absolute values of the b̄-component and ā-component of l+(i) is
increasing in −i .

Proof The claim is equivalent to

d

di

|λ−(i)|
1 − i

> 0. (5.6)

Recall that α−(i) = −c/2 −√c2/4 + i − 1 < 0. A computation reveals that

d

di

|λ−(i)|
1 − i

= − d

di

λ−(i)

1 − i

=
1−i

2
√

c2/4+i−1
+ c

2 +√c2/4 + i − 1

(1 − i)2

= 1 − i + c
√
c2/4 + i − 1 + 2( c

2

4 + i − 1)

2(1 − i)2
√
c2/4 + i − 1

> 0,

(5.7)

the last inequality holds since ic < i implies i > 1 − c2/4. �


Now, since γl(i) is the angle between the two vectors (1, 0) and−l+(i), the previous
Lemma directly implies

Corollary 5.6 Let c > 0 and ic ≤ i1 < i2 < 1. It holds that γl(i1) > γl(i2), the angle
γl(i) is increasing in −i .

For the invariance of Tc(i), we need

Lemma 5.7 For any p > 0, the Flow (5.1) at the point (ā, b̄) = −p · l+(i) points
inwards Tc(i).

Proof Let Linw := (
1 − i,−λ−(i)

)
be orthogonal to l+(i) and point inwards Tc(i).

The claim of the Lemma is now equivalent to

〈 (ā′
b̄′
)

, Linw

〉
> 0. (5.8)

Let (ā, b̄) = −p · l+(i). First compute the Flow (5.1):

(
ā′
b̄′
)

=
( −p(1 − i)

−pλ−(−pλ− + i − 1) − c
(− p(1 − i)

))

= p

( −(1 − i)
pλ2− + (1 − i)(λ− + c)

)
.

(5.9)
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Its part in direction Linw is given by

〈 (ā′
b̄′
)

, Linw

〉
= −p

[
(1 − i)

(
1 − i + λ−(λ− + c)

)+ pλ3−
]

= −p
[
(1 − i)

(
1 − i + i − 1

)+ pλ3−
]

= −p2λ3− > 0.

(5.10)

�


For the fixed point (ā, b̄) = (1− i, 0), we get similar results concerning its unstable
eigenvector r+(i):

Lemma 5.8 Let 1 > i > ic, and let r+(i) = (− β−(i), 1 − i
)
be defined as in (5.3).

The quotient of the absolute values of the b̄-component and ā-component of r+(i) is
increasing in −i :

d

di

1 − i

|β−(i)| < 0. (5.11)

Proof Recall that β−(i) = −c/2 −√c2/4 + 1 − i . A computation reveals that

d

di

1 − i

|β−(i)| = − d

di

1 − i

β−(i)
= −

−β− + 1−i

2
√

c2/4+1−i

β2−
< 0 (5.12)

�


Now, since γr (i) is the angle between the two vectors (−1, 0) and −r+(i), the
previous Lemma implies

Corollary 5.9 Let c > 0 and ic ≤ i1 < i2 < 1. It holds that γr (i1) > γr (i2), the angle
γl(i) is increasing in −i .

For the invariance of Tc(i), we need

Lemma 5.10 For any p > 0, the Flow (5.1) at the point (ā, b̄) = (1− i, 0)− p · r+(i)
points inwards Tc(i).

Proof Let Rinw := (
i − 1,−β−(i)

)
be orthogonal to r+(i) and point inwards Tc(i).

The claim of the Lemma is now equivalent to

〈 (ā′
b̄′
)

, Rinw

〉
> 0. (5.13)
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Let p > 0. We compute the Flow (5.1) at

(
ā
b̄

)
=
(
1 − 0
0

)
− p · r+(i) =

(
1 − i + pβ−
p(i − 1)

)
:(

ā′
b̄′
)

=
(

p(i − 1)
(1 − i + pβ−)(1 − i + pβ− + i − 1) − cp(i − 1)

)

= p

(
i − 1

β−(1 − i + pβ−) − c(i − 1)

)
.

(5.14)

Its part in direction Rinw is given by

〈 (ā′
b̄′
)

, Rinw

〉
= p

[
(i − 1)2 − β−

[
β−(1 − i) + pβ2− − c(i − 1)

]]
. (5.15)

Since β− < 0, it follows that −p2β3− > 0. Since p > 0, the proof is complete if we
can show that

(1 − i)2 − β−
[
β−(1 − i) + c(1 − i)

] ≥ 0. (5.16)

After dividing by (1 − i) > 0 and rearranging, this is equivalent to

1 − i − cβ− ≥ β2−. (5.17)

This is in fact an equality, since β−(i) = −c/2 +√c2/4 + 1 − i . �

Considering the invariance of Tc(i), we conclude the

Proof of Proposition 5.3 We need to show that the Flow (5.1) at the boundary of Tc(i)
points inwards. The Lemmas 5.7 and 5.10 treat the left and right edge of Tc(i), see
again Fig. 5. For the third edge, we consider points of type (ā, 0), where 0 < ā < 1−i .
The derivative at (ā, 0) is given by

(
0, ā · (ā + i − 1)

)
. Its b̄-component is negative,

hence it points inwards Tc(i). The only points on the boundary of Tc(i)where the flow
does not point strictly inwards are the two fixed points (0, 0) and (1 − i, 0). �


Considering the monotonicity of Tc(i), we conclude the

Proof of Proposition 5.4 Let c > 0.Thepoint (0, 1−i)moves to the right as i decreases.
Further, we have shown that the two internal angles γl(i), γr (i) increase in −i , and so
does Tc(i). �


6 Attractor of the full system

We now analyze solutions of the full Wave System (2.1) under initial condition
(a, b, i) = (a0, 0, i0), such that (a0, 0) ∈ Tc(i0) as defined in the previous Sec-
tion. In Sect. 6.1, we apply the results about the two-dimensional subsystem to the full
system. Theorem 6.1 states that as long as i(z) ≥ ic, the (a, b)-components of the full
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system stay within the triangle Tc(ic). Thus, it suffices to control i(z) ≥ ic, which we
do in two steps.

In Sect. 6.2, we prove via some rough bounds that i(z) ≥ ic for sufficiently small
initial values 0 ≤ a0 	 1. This result is refined in Sect. 6.3: the Lyapunov-stability
of the limiting point at z = +∞ implies that the entire trajectory including its limit is
continuous in initial data. Carefully increasing a0, we increase the known attractor of
the stable set S+∞, resulting in Theorem 6.10. This procedure is sketched in Fig. 6.

Assumption If not explicitly stated otherwise, we will use the following setup over
the entire Sect. 6: For c > 0, let i0 ∈ [ic, 1) and a0 ∈ [0, 1 − i0], which implies that
(a0, 0) ∈ Tc(i0). Let a(z), b(z), i(z)|z≥0 be the solution of the Wave Eq. (2.1) under
initial values (a0, 0, i0).

6.1 Invariant region of the full system

Theorem 6.1 (Invariant region of the full system) Assume that i(z) ≥ ic for all
z ∈ [0,∞). We then can control the two remaining coordinates a(z), b(z) of the wave.
It holds that

a(z), b(z) ∈ Tc(ic) ∀z ∈ [0,∞). (6.1)

Within Tc(ic), a ≥ 0 and b ≤ 0. Notice that while a, i ≥ 0, it holds that ci ′ =
−a(a + i + r) ≤ 0. This directly implies the following

Corollary 6.2 Under the assumption that i(z) ≥ ic for all z ∈ [0,∞), the trajectory
stays non-negative and converges as z → +∞:

a(z) → 0,

b(z) → 0,

i(z) → i+∞ ∈ [ic, 1).
(6.2)

Proof of Theorem 6.1 In the full System (2.1) with coordinates (a, b, i), neither b nor
b′ depend on i ′, but only on a and i . Thus, we can easily compare the full system to the
two-dimensional System (5.1) in coordinates ā, b̄. At a phase-time z, the two vector
fields (a′, b′) and (ā′, b̄′) for fixed value i = i(z) are equal, compare (2.1) and (5.1).

By Proposition 5.4, this implies that (a′, b′) points strictly inwards Tc
(
i(z)
)
. There

are two irrelevant exceptions: for (a, b) = (0, 0), the system has already reached its
limiting state. The point (a, b) = (1− i0, 0) is a fixed point of the reduced, but not of
the full system. In this case, since b = 0, b′ = a(a + i − 1) = 0, b′′ = ai ′ < 0 and
ci ′ < 0, a Taylor-expansion reveals that for small times ε > 0: i(ε) changes much
faster than a(ε) and a(ε) ∈ Tc

(
i(ε)

)
.

Importantly, the set Tc
(
i(z)
)
is not decreasing as a function of z. Hence, at each

phase-time z ≥ 0, the two components a(z), b(z) can not escape Tc
(
i(z)
)
. In fact,

since i ′ ≤ 0 and Tc(i) is increasing in −i , the set Tc
(
i(z)
)
is increasing in z, at most

up to Tc(ic). Thus, a(z), b(z) remain within Tc(ic) for all z ≥ 0. �
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With a similar argument, we can determine the rate of convergence:

Proposition 6.3 Assume that i(z) ≥ ic for all z ∈ [0,∞), such that (a, b, i) →
(0, 0, i+∞) as z → +∞ for some i+∞ ∈ [ic, 1). If i+∞ > c2/4−1, then convergence
is exponentially fast with rate

μ+∞ = − c

2
+
√
c2

4
+ i+∞ − 1 < 0. (6.3)

Further, if i+∞ = c2/4 − 1, which can only happen if i+∞ = ic, then the system
converges sub-exponentially fast. As z → +∞, the distance to the limit is of order
z · e− c

2 z .

Proof In the case i+∞ ∈ (ic, 1), all eigenvalues of the limit are simple, we refer
to Sect. 4. The system converges exponentially fast, as shown in Theorem 4.2. It
remains to determine the rate of convergence. The two candidates are λ± = − c

2 ±√
c2
4 + i+∞ − 1. Corresponding to λ±, the projections of the eigenvectors into the

(a, b)-plane are given by

l± :=
(

λ∓
1 − i+∞

)
. (6.4)

We know that a(z), b(z) ∈ Tc(i+∞) for all z ≥ 0. At (0, 0), the triangle Tc(i+∞)

is bounded by the line −l+, see Definition 5.2 and Fig. 5. Since 0 > λ+ > λ−,
the direction of l− is steeper than that of l+, such that the line {q · l− | q ∈ R} lies
outside Tc(i+∞) for all q �= 0. Thus, the two components a(z), b(z) cannot converge
towards (0, 0) along−l−. But since they converge exponentially fast, the only possible
remaining rate of convergence is λ+.

We do not have a complete description of the asymptotics around the fixed point for
the degenerate case λ+ = λ− = −c/2. However, under the assumption that the system
stays non-negative and converges, the relation (a, b, i)′ = − c

2 ·(a, b, i)+o(|(a, b, i)|2)
holds asymptotically. This will be proven in Theorem 6.10 (which does not rely on the
type of convergence). The eigenvalue−c/2 has algebraic multiplicity 2, but geometric
multiplicity 1. It is well-known that this results in sub-exponential convergence, cf.
chapter 9 in Boyce et al. (2017). �


6.2 A small attractor

In view of the previous paragraph, convergence and non-negativeness follow if we can
show that i(z) ≥ ic for all z ≥ 0. If we choose a0 small enough, some rough bounds
do the trick. We control the total mass of active particles via

Lemma 6.4 Fix c > 0, i0 ∈ (ic, 1) and let a0 ∈ [0, (1− i0)/2]. Under the assumption
that i(s) ≥ ic is true for all s ∈ [0, z], there exists a finite constant L(c, i0) ≥ 0, such
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that the following bound holds for all s ∈ [0, z]:
∫ s

0
a(t) dt ≤ ca0 − b(z)

1 − (i0 + a0)
≤ L · a0. (6.5)

Proof With the help of Theorem 6.1, we can use that a(s), b(s) ∈ Tc(ic) for all
s ∈ [0, z]. We integrate a(s) · [1 − i(s)

] = a2(s) − b′(s) − cb(s) and use that
b(0) = 0:

∫ z

0
a(s) · [1 − i(s)

]
ds = ca0 − ca(z) − b(z) +

∫ z

0
a2(s) ds. (6.6)

By monotonicity: 1 − i0 ≤ 1 − i(s) and 0 ≤ a(s) ≤ a0. It follows that

(1 − i0 − a0)
∫ z

0
a(s) ds ≤ ca0 − ca(z) − b(z)

≤ ca0 − b(z),

⇔
∫ z

0
a(s) ds ≤ ca0 − b(z)

1 − (i0 + a0)
,

(6.7)

where we need a0 + i0 < 1 to avoid a blow-up, which is true by our choice of a0. It
remains to bound −b(z). Take a look at the flow in the (a, b)-plane in Fig. 5. It holds
that a(z), b(z) stay within Tc(ic). Within the triangle Tc(ic), it holds for the left inner
angle γl(ic) that

tan
(
γl(ic)

) ≥ |b|
|a| . (6.8)

Thus, also −b(z) ≤ tan
(
γl(ic)

) · a(z) ≤ L1 · a0. �

Since we can bound the total mass of active particles, we can also bound the change

of i(z):

Proposition 6.5 (Small attractor of S+∞) Fix c > 0 and i0 ∈ (ic, 1). There exists a
constant M(c, i0, r), 0 < M 	 1, such that for all 0 ≤ a0 ≤ M:

i(z) ≥ ic ∀z ≥ 0. (6.9)

Hence, also a(z), b(z) ∈ Tc(ic) for all z ≥ 0. The trajectory is non-negative and
converges to S+∞ as z → +∞.

Proof As long as i(z) ≥ ic, it must be that a(z), b(z) ∈ Tc(ic) by Theorem 6.1.
Assume there exists finite phase-time τ := inf z≥0{i(z) < ic}:
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Fig. 6 Trajectories of a(z), i(z)
of the Wave System (2.1) for
c = 2, r = 0. Initial values are
b(0) = 0, i0 = 0.5, and a0 such
that a0 ∈ [0, a∗(i0) ≈ 0.42].
The upper bound a∗ is given in
Definition 6.8. Trajectories with
such initial data converge and
stay non-negative, since
i(z) ≥ ic

i(τ ) = i0 +
∫ τ

0
i ′(z) dz = i0 − 1

c

∫ τ

0
a(s)

[
a(s) + i(s) + r

]
ds

≥ i0 − 1

c

∫ τ

0
a(s)

[
1 + r

]
ds, (6.10)

where we used a(s) + i(s) ≤ 1. For z ≤ τ and a0 sufficiently small, we can apply
Lemma 6.4. This implies that there is a finite constant L , which does not depend on
a0, such that

i(τ ) ≥ i0 − L

c
(1 + r) · a0. (6.11)

The right-hand side is strictly larger than ic for sufficiently small a0, say a0 ≤ M , and
the bound is independent of the phase-time. Thus, there is no such τ for a0 ≤ M . �


6.3 Extending the attractor

The previous section ended with a condition of type a0 	 1, under which the system
stays non-negative and converges. However, given a0 and i0 and under the assumption
that the system converges, we can explicitly calculate its limit i+∞. Then, for fixed i0,
we continuously deform the trajectory while increasing a0 up to some upper bound
a∗(i0), as sketched in Fig. 6. This results in Theorem 6.10.

We apply Proposition 3.2 to interrelate the limit (0, 0, i+∞) of the trajectory to its
initial data (a0, 0, i0):

Lemma 6.6 If i(z) ≥ ic, such that the system stays non-negative and converges to
(0, 0, i+∞) as z → +∞, then i+∞ can be written as a function of a0 and i0:

i+∞(a0, i0) = 1 −
√

(i0 + a0 − 1)2 + 1 + r

c2
(a20 + 2c2a0). (6.12)

The function i+∞(a0, i0) is decreasing in a0, for a0 ∈ [0, 1 − i0].
Proof We apply Proposition 3.2, and solve the resulting system for i+∞. In the present
case, since a0 �= 0, this results in a quadratic equation with two possible solutions.
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Since i(z) is decreasing, it must be that i+∞ < 1, which uniquely determines (6.12).
A short computations proves that ∂

∂a0
i+∞(a0, i0) ≤ 0. �


We look for values of a0 that ensure i+∞ ≥ ic. Thus, we rearrange (6.12) for a0,
set i+∞ = ic, and choose the only possible positive solution of the resulting quadratic
equation:

Lemma 6.7 Given i0 and under the assumption that i+∞ = ic, the value of a0 is
uniquely determined by

α(i0) := c2

1 + c2 + r

{
− (i0 + r)

+
√

(i0 + r)2 + c2 + 1 + r

c2

(
(1 − ic)2 − (1 − i0)2

)}
.

(6.13)

Equation (6.13) can be restated as i+∞
(
α(i0), i0

) = ic, but keep in mind that still
have to prove convergence. It can easily be seen that α(ic) = 0. Since we require that
a0 ∈ [0, 1 − i0], such that a0 ∈ Tc(i0), this leads to our

Definition 6.8 (Upper bound for a0) For fixed c > 0 and, we define

a∗(i0) := min
{
α(i0), 1 − i0

}
, for i0 ∈ [ic, 1). (6.14)

This will hold as sharp upper bound for a0, such that the trajectory stays non-
negative and converges. Before we state the corresponding theorem, we perform a last
check that we are in the correct setup:

Lemma 6.9 Let i0 ∈ [ic, 1) and a0 ∈ [0, a∗(i0)]. If the system stays non-negative and
converges to (0, 0, i+∞), then

i+∞(a0, i0) ∈ [ic, i0], (6.15)

where i+∞(a0, i0) is given as in Lemma 6.6.

Proof It holds that i+∞(0, i0) = i0. The claim follows since i+∞(a0, i0) is decreasing
in a0 and since a∗(i0) ≤ α(i0), where i+∞

(
α(i0), i0

) = ic. �

After all these preparations, we are now ready to prove that the system converges

and stays non-negative. We state

Theorem 6.10 (Attractor of S+∞) For r ≥ 0, c > 0, let i0 ∈ [ic, 1) and a0 ∈[
0, a∗(i0)

]
. Let a(z), b(z), i(z) be the solution of Eq. (2.1) with initial data (a0, 0, i0).

It holds that a(z), i(z) ≥ 0 and i ′(z), b(z) ≤ 0 for all z ≥ 0. As z → +∞, a(z)
and b(z) converge to 0, and i(z) converges to

i+∞(a0, i0) = 1 −
√

(i0 + a0 − 1)2 + 1 + r

c2
(a20 + 2c2a0) ∈ [ic, 1). (6.16)

The type of convergence depends on i+∞ and is given in Proposition 6.3.
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Proof Notation: We fix i0 ∈ (ic, 1) and change only a0. If i0 = ic, we must choose
a0 = 0. For a compact notation, 	z(x) is the state of the system at phase-time z,
starting in x = (a, b, i). If the limit of a trajectory exists, we denote

	+∞(a0, 0, i0) := lim
z→+∞ 	z(a0, 0, i0) = (0, 0, i+∞). (6.17)

Step 1: starting interval
For a0 positive but small enough, Proposition 6.5 grants that for all z ≥ 0:

i(z) ≥ ic and a(z), b(z) ∈ Tc(ic), (6.18)

where Tc(ic) is a bounded invariant region that contains only points such that a ≥
0, b ≤ 0. Thus, a(z), i(z) → (0, i+∞) monotone. With the help of Lemma 6.6, we
can explicitly calculate i+∞ as stated in Eq. 6.16, and our claim holds on some small
non-empty interval a0 ∈ [0, au).
Step 2: neighborhood of existing trajectories

Pick some a0 < a∗(i0) for which the statement is already proven. By choice of
a0, it holds that i+∞ > ic. Thus, the limit 	+∞(a0, 0, i0) is Lyapunov stable by our
previous analysis of the asymptotics, see Theorem 4.2: for every ε∞ > 0, there exists
a δ∞ > 0, such that

||x − 	+∞(a0, 0, i0)|| < δ∞ ⇒ ||	z(x) − 	+∞(a0, 0, i0)|| < ε∞ (6.19)

for all z ∈ [0,∞). Choose ε∞ ≤ i+∞(a0, i0) − ic and assure that 0 < δ∞ ≤ ε∞.
This grants i(z) ≥ ic after entering the δ∞-neighborhood. Within this attractor, also
a(z) ≥ 0 in view of Theorem 6.1, since i(z) ≥ ic.

Starting in (a0, 0, i0), we follow the trajectory up to some finite time τ , where it
has entered the δ∞-neighborhood:

||	τ (a0, 0, i0) − 	+∞(a0, 0, i0)|| ≤ δ∞
2

. (6.20)

The derivative of the system is locally Lipschitz and all trajectories are within a
bounded domain. Thus, the trajectories 	z(x0) are uniformly continuous in initial
data x0 on any finite time interval [0, T ], with respect to the maximum norm ||.||[0,T ].
This is a classic result and can easily be proven via a Grönwall’s inequality, we refer
to chapter 2 of the textbook of Hsieh and Sibuya (1999). There exists some δ0 > 0,
s.t. for all x ∈ R3 with ||x − (a0, 0, i0)|| < δ0:

||	z(x) − 	z(a0, 0, i0)||[0,τ ] <
δ∞
2

. (6.21)

This implies for all such trajectories 	z :

1) ||	τ (x) − 	+∞(a0, 0, i0)|| < δ∞, and (6.22)

2) i(z) ≥ ic ∀z ∈ [0, τ ]. (6.23)
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In particular, 	τ (x) lies within the δ∞-neighborhood, so ultimately

3) i(z) ≥ ic ∀z ≥ 0. (6.24)

Again, Theorem 6.1 implies a(z), i(z) ∈ Tc(ic) for all z ≥ 0. As before, the system
is integrable and converges as z → +∞, so we can explicitly calculate i+∞(a0, i0).
Thus, our claim holds for all starting points a small open neighborhood of (a0, 0, i0).
Step 3: limits of trajectories

Assume that the claim holds for all a0 ∈ [0, au). For all trajectories starting in
(a0, 0, i0), where a0 ∈ [0, au), it holds that i(z) is monotone and bounded from below
by ic, such that a(z), b(z) stay within Tc(ic). Fix any finite time-horizon [0, T ]. As
mentioned before, the trajectories	z(a0, 0, i0) are uniformly continuous in initial data
on finite time-intervals, and thus form a Cauchy-sequence on ||.||[0,T ] as a0 → au .
Since T can be chosen arbitrarily large and since the limits 	+∞(a0, 0, i0) are also
continuous in a0, our claim holds for the trajectory that starts in au .
Step 4: conclusion

By step 1, the claim holds for a0 in some small interval [0, au). By step 3, it then
also holds for a0 = au . If now au < a∗, the claim holds for a0 ∈ [0, au + ε) by
step 2 for some ε > 0. Iterating these two steps, the claim ultimately holds for all
a0 ∈ [0, a∗(i0)

]
. In particular, we have proven that the trajectories 	z(a0, 0, i0) are

uniformly continuous with respect to initial data on z ∈ [0,+∞]. This continuity
allows us to finish the proof of Proposition 6.3. In the non-critical cases where c2/4+
i+∞−1 > 0, the trajectories converge along a stablemanifoldwith rate of convergence
−c/2 + √c2/4 + i+∞ − 1. As c2/4 + i+∞ − 1 → 0, the critical trajectory must
converge along the limit of these manifolds. �


7 The complete trajectory

We track the non-negative branch of the unstable manifold of S−∞, see (2.8), and
show that it stays positive and enters the attractor of S+∞ from the previous section,
cf. Theorem 6.10.

Assumption We will use the following setup over the entire Sect. 7: Let i−∞ > 1 and
let a(z), b(z), i(z) be the unique solution of the ODE-System (2.1) that emerges from
(0, 0, i−∞) as z → −∞ and where a(z) > 0 asymptotically as z → −∞.

For all i−∞ > 1, existence and uniqueness of these trajectories have been proven
in Sect. 4. Moreover, we know their asymptotic behavior:

Lemma 7.1 The following holds as z → −∞:

a(z) > 0, b(z) > 0, (a + i)′ < 0. (7.1)

Proof The first two inequalities are given by Theorem 4.1, which also yields b′(z) > 0
asymptotically. Noticing that c(a + i)′ = −a(1+ r) − b′ < 0 completes the proof. �
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7.1 Themaximum of active particles

For connecting these trajectories with the attractor of S+∞, we will prove

Proposition 7.2 (The maximum of active particles) There exists a finite phase-time
z0, such that b(z0) = 0 for the first time.

We will prove that the sum a(z) + i(z) decreases below 1. Given this, the term
cb(z)+ b′(z) = a(z) · [a(z)+ i(z)− 1] becomes negative, so b must eventually reach
0.

Lemma 7.3 As long as b(s) > 0 for all s ∈ (−∞, z], it holds that

b(z) + i ′(z) < 0. (7.2)

Proof In view of the asymptotic behavior of the trajectory, described in Lemma 7.1,
assume that there exists afinite time z∗, such that for thefirst timeb(z∗)+i ′(z∗) = 0, but
stillb(z∗) > 0.Thewave-equations 0 = b′+cb+a−a(a+i) and0 = ci ′+a(a+i)+ra
imply that

0 = cb(z∗) + ci ′(z∗) (7.3)

= −a(z∗) · (1 + r) − b′(z∗) (7.4)

= c · b(z∗) − a(z∗) · [a(z∗) + i(z∗) + r
]
. (7.5)

Rearranging the third line yields cb(z∗) = a(z∗) · [a(z∗) + i(z∗) + r
]
. As long as

z < z∗, it holds that b(z) + i ′(z) < 0, hence also

cb(z) < a(z) · [a(z) + i(z) + r
]
. (7.6)

However, equality at z = z∗ implies that

d

dz
cb(z)

∣∣∣
z∗

≥ d

dz
a(z) · [a(z) + i(z) + r

]∣∣∣
z∗

, (7.7)

which we can rewrite, using both (7.4) and (7.5) :

c · b′(z∗) ≥ b(z∗) · [a(z∗) + i(z∗) + r
]+ a(z∗) · [b(z∗) + i ′(z∗)

]
= a(z∗)

c
· [a(z∗) + i(z∗) + r

]2 + 0 ≥ 0.
(7.8)

But a(z∗) > 0, so Eq. (7.4) implies that b′(z∗) = −(1+r)a(z∗) < 0. This contradicts
(7.8). �

Lemma 7.4 As long as b(s) > 0 for all s ∈ (−∞, z], it can not happen that a(z)+i(z)
converges to some finite L > 0.
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Proof By the previous lemma: (a + i)′ < 0 while b > 0. Assume that a(z) + i(z)
converges to a finite value L > 0 from above, which we denote as a(z) + i(z) ↘ L .
This implies that also b+ i ′ ↗ 0. By theWave Equations (1.2), these two expressions
are equivalent to

−a(1 + r) − b′ ↗ 0 and (7.9)

cb − a(a + i + r) ↗ 0. (7.10)

The first convergence indicates that b′ ≤ δ < 0 after some time zδ , since a is strictly
increasing and hence positive. The second statement is equivalent to cb−a ·(L+r) ↗
0. Thus, also b is increasing. But b′(z) < 0 for all z ≥ zδ and while b > 0, a
contradiction. �


We can now show that there exists a finite phase-time z0 such that b(z0) = 0,
finishing the

Proof of Proposition 7.2 By the previous lemma, a(z) + i(z) decreases below every
positive value as long as b(z) > 0. In particular, for some ε > 0: a(τ ) + i(τ ) ≤ 1− ε

after some phase-time τ . Then for all z ≥ τ , since a > 0:

cb(z) + b′(z) = a(z) · [a(z) + i(z) − 1
]

≤ a(z) · (1 − ε − 1) = −a(z)ε < 0.
(7.11)

Either cb(z) < 0 and the system has already passed a first local maximum of a(z),
or we may assume that b′(z) ≤ −a(τ )ε = −δ < 0. If now b′(z) ≤ −δ, then b(z)
reaches zero after a finite time z0, which can not be larger than τ + b(τ )

δ
. �


7.2 Reaching the attractor of S+∞

We now prove that (az0 , 0, iz0) lies in the attractor of the stable set S+∞. Therefore,
we show that az0 ≤ a∗(iz0), then Theorem 6.10 ensures non-negativity and conver-
gence as z → +∞. We again use Proposition 3.2, now to interrelate (0, 0, i−∞) and
(az0 , 0, iz0):

Lemma 7.5 The following holds at phase-time z0:

az0 > 0, az0 + iz0 ≤ 1, (7.12)

az0 = c2

c2 + 1 + r

{
− (iz0 + r)

+
√

(iz0 + r)2 + c2 + 1 + r

c2

(
(i−∞ − 1)2 − (1 − iz0)

2
)}

. (7.13)
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In the case i−∞ ∈ (1, 2 − ic], then additionally

iz0 ∈ (ic, 1), az0 ∈ (0, 1), (7.14)

and the trajectory is non-negative on the interval (−∞, z0].
Proof As z → −∞, all a(z), b(z), b′(z), i ′(z) have exponential and hence integrable
tails, cf. Theorem 4.1. We thus can apply Proposition 3.2 on the interval (−∞, z0],
for finite z0. This results in Eq. (7.13), we omit the intermediate steps. It holds that
az0 > 0 because b(z) > 0 for all z < z0.

In particular, az0 > 0 implies that the second summand under the root in (7.13)must
be strictly positive, which yields (i−∞ −1)2 > (1− iz0)

2. Since b(z0) = 0 for the first
time, itmust hold thatb′(z0) ≤ 0.Given this,weuseb′(z0)+cb(z0) = az0(az0+iz0−1)
to bound 0 ≥ az0(az0 + iz0 − 1). Since az0 > 0, this shows that iz0 ≤ 1 − az0 < 1.

If we assume additionally that i−∞ ∈ (1, 2 − ic], then (i−∞ − 1)2 > (1 − iz0)
2

implies that iz0 > 2− i−∞ ≥ ic. Up to z0, a(z)+ i(z) is decreasing, which was proven
inLemma7.3. Since a(z) is strictly increasing up to z0, i(z)must be strictly decreasing,
but not below i(z0) > 0. Hence, the trajectory stays positive. The inequality az0 +iz0 ≤
1 implies that az0 < 1. �


This allows us to connect the unstable manifold of (0, 0, i−∞) with the attractor of
S+∞:

Proposition 7.6 (Reaching the attractor of S+∞) Let i−∞ ∈ (1, 2 − ic]. The non-
negative branch of the unstable manifold of (0, 0, i−∞) reaches the point (az0 , 0, iz0),
where az0 ∈ (0, 1) and iz0 ∈ (ic, 1). It then holds that

0 < az0 ≤ a∗(iz0), (7.15)

for a∗ like inDefinition6.8. In viewof Theorem6.10, the trajectory that starts/continues
in such a point (az0 , 0, iz0) converges to S+∞ and stays non-negative.

Proof Wehave just shown that iz0 , az0 > 0 and thataz0+iz0 ≤ 1.RecallDefinition 6.8:
a∗(i0) = min{α(i0), 1 − i0}, where α(i0) is given by

α(i0) = c2

1 + c2 + r

{
− (i0 + r)

+
√

(i0 + r)2 + c2 + 1 + r

c2

(
(1 − ic)2 − (1 − i0)2

)}
.

(7.16)

We have already verified that az0 ≤ 1 − iz0 , so proving az0 ≤ α(iz0) suffices for
proving az0 ≤ a∗(iz0). By (7.13), we know that

az0 = c2

c2 + 1 + r

{
− (iz0 + r)

+
√

(iz0 + r)2 + c2 + 1 + r

c2

(
(i−∞ − 1)2 − (1 − iz0)

2
)}

.

(7.17)
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The two expressions (7.16) and (7.17) are very similar. After some elementary steps,
the claim az0 ≤ α(iz0) is equivalent to

(i−∞ − 1)2 ≤ (1 − ic)
2. (7.18)

This is equivalent to i−∞ ≤ 2− ic, since i−∞ > 1 and ic ≤ 1. But that is just how we
have chosen i−∞. �


8 Concluding the proof of themain result

With the results from the previous sections, we complete the

Proof of Theorem 1.1 Consider the ODE System (2.1) in coordinates a, b, i and let
i−∞ ∈ (1, 2 − ic]. The unstable manifold of the fixed point (a, b, i) = (0, 0, i−∞)

has dimension one. Its two branches are the only trajectories that leave the fixed point,
which is stated in Theorem 4.1. There is one branch of the unstable manifold such
that a(z) > 0 as z → −∞, we follow this trajectory in positive direction of z. There
is a finite phase-time z0, such that for the first time b(z0) = 0, see Proposition 7.2.
For all z < z0, it holds that a(z), b(z), i(z) > 0. Denote the state of the system
at z0 as (az0 , 0, iz0). Lemma 7.5 states that iz0 ∈ (ic, 1), Proposition 7.6 states that
az0 ∈ (0, a∗(iz0)], for a∗ as in Definition 6.8. By Theorem 6.10, we then know that
(az0 , 0, iz0) lies in a non-negative attractor of the set S+∞. Thus, a(z), b(z), i(z) →
(0, 0, i+∞) as z → +∞, where i+∞ ∈ [ic, 1), and ultimately a(z), i(z) ≥ 0 for all
z ∈ R.

For any non-negative and bounded solution, the identity i−∞ + i+∞ = 2 holds
by Proposition 3.3. For c > 0 and i−∞ ∈ (1, 2 − ic], the previous paragraph proves
existence and uniqueness of the claimed wave. For i−∞ = 1, the constant solution
can be the only non-negative and bounded one.

We then consider an arbitrary non-constant, bounded and non-negative solution.
By monotonicity of i(z), it must converge as z → ±∞. If we assume that i−∞ ∈
(1, 2 − ic], it is one of the above solutions. If we assume that i−∞ > 2 − ic, then
i+∞ < ic. In this case, the trajectory can not stay non-negative as z → +∞, which is
stated by Proposition 4.3, contradicting the assumption. �


9 Discussion and outlook at stability

9.1 FKPP-waves

We have given a description of all bounded and non-negative traveling waves of the
Reaction–Diffusion System (1.1). For the most related systems, the FKPP-equation
(Kolmogorov et al. 1937; Fisher 1937), the FitzHugh-Nagumo-equation (FitzHugh
1961; Nagumo et al. 1962) and combustion equations (Berestycki et al. 1985), no
such continuum of traveling waves has yet been constructed.

Still, the non-negative traveling waves of System (1.1) are closely related to pulled
FKPP-waves with only a single type of particles. The equation for such a wave w(z)
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reads 0 = cw′ +w′′ + F(w). For the purpose of a simple comparison, we let F(w) =
gw −w2, where g > 0 is the initial growth rate of the particles. In this case, Theorem
1.1 states that the convergence of System (1.1) as z → +∞ is identical to that of w,
if g = 1− i+∞, see e.g. (Uchiyama 1977). In words, the asymptotic growth speed of
traveling waves of System (1.1) coincides with that of simple FKPP-waves in presence
of a constant density i+∞ of inhibiting particles. Moreover, Theorem 1.1 implies that
ic = 0 for all c ≥ 2. Thus, the minimal speed of an invasive front, where i+∞ = 0, is
given by cmin = 2. Again, this coincideswith theminimalwave speed of the associated
FKPP-equation, i.e. in the absence of inactive particles. It is this critical front which
can be interpreted as themost natural one, our simulations indicate that it always arises
under compact initial data. If we assume convergence, a technique of Berestycki et al.
(2018) yields an upper bound for the speed of the traveling front, just by ignoring
the dampening influence of the inactive particles. For compact initial data, the system
always chooses the smallest possible wave speed, as suggested.

The emergence of traveling fronts is known for many reaction–diffusion systems.
We suggest the literature (Britton 2003; Volpert and Petrovskii 2009; Othmer et al.
2009) for more examples with a biological motivation. Rigorous proofs of these phe-
nomena are rare. Often, only the form of the traveling waves is analyzed analytically.
The FKPP-equation is one of the cases, where the convergence of the front of the PDE
towards a traveling wave solution can be proved. The first rigorous proof was done by
Kolmogorov, Petrovsky & Piscunov in 1937 Kolmogorov et al. (1937). Extensions of
this result to more general initial data and a more precise description of the speed of
the front have been provided by Uchiyama (1977) and Bramson (1983). The approach
of Kolmogorov et al. and Uchiyama seems to be restricted to systems with only a
single type of particles, as it relies on a maximum principle and monotonicity of the
front. The approach of Bramson relies on a relationship between the FKPP-equation
and branched Brownian motion, which can not be applied in the present case since the
inactive particles do not diffuse. A singular perturbation of System (1.1), which again
introduces a small diffusion to the inactive particles will be subject to future investi-
gations. Despite the fact that this system would be biologically interesting, since no
tissue or population is entirely static, this would also rule out some difficulties when
analyzing the stability of the traveling waves against perturbations.

9.2 Stability of the traveling waves

We give a brief introduction to the stability of traveling waves against small pertur-
bations, in the spirit of the introduction in Ghazaryan et al. (2013). A good overview,
where the following concepts are presented in greater depth, has been written by
Sandstede (2002).
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Consider a reaction–diffusion system

Yt = D · Yxx + R(Y ), (9.1)

where Y ∈ Rn, x ∈ R, t ≥ 0, D = diag(d1, . . . , dn) with di ≥ 0, and R a smooth
reaction. In the moving frame z = x − ct , the System reads

Yt = D · Yzz + cYz + R(Y ). (9.2)

A traveling wave w(z) with speed c is a constant solution of Eq. (9.2). The wave w is
called non-linearly stable in a space X , if any solution of the PDE (9.2) which starts
in Y0 = w + Ỹ , where Ỹ ∈ X is a sufficiently small perturbation, converges to a shift
of w. This type of stability is often encoded in the spectrum of the operator L, that
is obtained by linearizing the equation for the perturbation Ỹ in (9.2) around to the
constant part w:

Ỹt = D · Ỹzz + cỸz + J R(w) · Ỹ := LỸ , (9.3)

where J R is the Jacobian of the reaction R. Let L : X → X be the operator given
by Ỹ → LỸ . We say that the wave w is spectrally stable in X if the spectrum of
L is contained in the half-plane Re(γ ) < 0, except maybe a simple eigenvalue at 0
(that corresponds to the traveling wave itself, ifw′ ∈ X ). For diffusive systems, where
det(D) > 0, a quite general theory has been developed. If X is appropriately chosen,
spectral stability implies non-linear stability, we refer to the literature (Sandstede 2002;
Ghazaryan et al. 2013). Classical results are e.g. given for subspaces of X = H1, the
L2-Sobolev space.

As explained in the next paragraphs, we are not aware of any rigorous framework
for studying the non-linear stability of System (1.1). Several technical problems arise,
that so far have been treated only separately (Ghazaryan et al. 2013; Kirchgässner
1992).

Most importantly, the traveling waves of System (1.1) can not be stable against
perturbations in the classical sense, since the inactive particles neither react nor diffuse.
Any initial deviation remains for all times, as shown in Fig. 1. However, the actual
front of the system does converge to a traveling wave. For capturing this idea, we
introduce the weighted space X = H1

α with norm || f ||H1
α

= || f · eαz ||H1 for some
α > 0. Non-linear stability in Hα

1 is referred to as convective stability. Convergence of
the PDE in themoving frame (9.2) in H1

α means that the front of the system approaches
the traveling wave, whereas any initial finite and local deviation is convected towards
z = −∞ and vanishes due to theweighting.Afirst rigorous result regarding convective
stability was obtained by Ghazaryan et al. (2013). They could show that in some
cases, spectral stability in H1

α implies convective stability against small perturbations
in H1

α ∩ H1. For their approach, the authors require that the weight α can be chosen
such that all eigenvalues γ of L except zero fulfill Re(γ ) ≤ ν < 0 and such that
the derivative w′ ∈ H1

α of the traveling wave is an eigenfunction that corresponds
to a simple eigenvalue at zero. Unfortunately, this setting is not suited for studying
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pulled FKPP-fronts: the assumption w′ ∈ H1
α implies that the continuous spectrum of

L touches the origin, see e.g. chapter 6 in the work of Sattinger (1976).
Another difficulty ariseswhen studying critical pulled fronts (withminimal possible

speed) whose tail as z → +∞ converges sub-exponentially, as in Theorem 1.1. In this
case, the requirement w′ ∈ H1

α is only fulfilled for rather small values of α, which do
not suffice for shifting the continuous spectrum ofL to the left half-plane. For diffusive
systems, non-linear stability of this more delicate case was first treated rigorously by
Kirchgässner (1992), a recent overview is given in Faye and Holzer (2018). After
introducing a small diffusion to the inactive particles, we could apply this theory to
the critical front.

For the most natural traveling wave solution, the critical one with speed c = 2 and
i+∞ = ic = 0, we performed a numerical analysis that strongly indicates that this
wave is spectrally stable in H1

α , when we choose α = −μ+∞ = c/2. The details are
presented in “Appendix B”. Thus, based on the work of Ghazaryan et al. regarding
convective stability (Ghazaryan et al. 2013) and the work of Kirchgässner regarding
critical fronts (Kirchgässner 1992), we dare to make an educated guess: we expect that
this traveling wave is convectively stable against small perturbations in H1

c/2 ∩ H1.
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Appendix A: Center manifold calculations

A.1 Review of center manifold theory

Definition A.1 (Normal form) Given a dynamical system dx/dt = f (x), x ∈ Rn

around its fixed point 0 ∈ Rn , write x = (y, z) where y ∈ Rk, z ∈ Rl and k + l = n,
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such that dx/dt = f (x) is equivalent to:

dy

dt
= A · y + g(y, z),

dz

dt
= B · z + h(y, z).

(A1)

We require that the eigenvalues of A ∈ Rk×k have zero real parts and those of B ∈ Rl×l

have nonzero real parts. Further, both functions g : Rn → Rk and h : Rn → Rl

are smooth and vanish together with their first-order partial derivatives at the origin.
Then, System (A1) is called the normal form of the system.

Proposition A.2 Let f : Rn → Rn be smooth. Let a dynamical system dx/dt =
f (x), x ∈ Rn have a fixed point x0 ∈ Rn, such that the eigenvectors of the Jaco-
bian D f (x0) span the entire Rn. The system can be written in normal form as in
Definition A.1.

The proof includes a change of coordinates into the system of eigenvectors of the
Jacobian Df (x0). This will be done explicitly in Section A.2. For the underlying
theory and the more general case, we refer to the monograph of Kirchgraber and
Palmer (1990).

Definition A.3 (Center manifold) Consider a dynamical system in normal form (A1).
Let φ : Rk → Rl be a smooth function such that φ(0) = 0 and also its derivative
Dφ(0) = 0. Assume that the set

CM =
{
y ∈ Rk, z ∈ Rl : z = φ(y)

}
(A2)

is invariant under Dynamics (A1). The set CM is called a center manifold of the fixed
point (due to its vanishing derivative at 0).

We will use a local version of the center manifold, which can be shown to exist in
a neighborhood of the fixed point:

Theorem A.4 (Local center manifold, cf. Theorem 4.1. in Kirchgraber and Palmer
(1990)) Consider a smooth dynamical system in normal-form (A1), where dim(y) =
k ≥ 1, such that the Jacobian at the fixed point has k eigenvalues with zero real part.
Let c1 + c2 = dim(z), where the matrix B has c1 eigenvalues with positive real part
and c2 eigenvalues with negative real part. Then locally, there exist a unique center
manifold of dimension k, a unique unstable manifold of dimension c1 and a unique
stable manifold of dimension c2.

The center manifold can be written as
{
(y, z) : z = φ(y)

}
like in (A2). There

exists a homeomorphism defined in an open neighborhood of the origin which takes
solutions of dx/dt = f (x) onto solutions of

dy

dt
= A · y + g

(
y, φ(y)

)
,

dz

dt
= B · z.

(A3)
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Definition A.5 (Error of approximation of the center manifold) Consider a smooth
dynamical system in normal-form (A1). For a smooth function T : Rk → Rl define
the error of approximation of the normal form by

(HT )(y) := DT (y) · [Ay + g
(
y, T (y)

)]− B · T (y) − h
(
y, T (y)

)
. (A4)

Theorem A.6 (Approximating the center manifold, cf. Theorem 3 in Carr (1982))
Consider a smooth dynamical system in normal form (A1) with local center manifold
{(y, z) : z = φ(y)} as in (A2). Let T : Rk → Rl be smooth with T (0) = 0 and
DT (0) = 0. Suppose that as y → 0, for some q > 1:

(HT )(y) = O(|y|q). (A5)

Then, as y → 0, also

|T (y) − φ(y)| = O(|y|q). (A6)

A.2 Calculating the normal form and the center manifold

We analyze the flow of the ODE System (2.1) around its fixed points by applying the
theory from the previous section. We therefore write the system into normal form,
see Definition A.1. For a fixed point (a, b, i) = (0, 0, K ), we begin with the affine
transformation

j = i − K , (A7)

and then decompose the resulting system into a linear part M and a non-linear part G.
To be concise with the notation from the previous section, which is adopted from the
existing literature, we use a vectorial notation in coordinates ( j, a, b), such that the
center manifold can be written as

{
( j, a, b) : (a, b) = φ( j)

}
.

Definition A.7 Given c > 0, K ∈ R, introduce the matrix M as

M :=
⎛
⎝0 − K+r

c 0
0 0 1
0 K − 1 −c

⎞
⎠ . (A8)

Further, define the non-linear functions g( j, a) := a2 + aj and G : R3 → R3:

G

⎛
⎝ j
a
b

⎞
⎠ := g( j, a) ·

⎛
⎝− 1

c
0
1

⎞
⎠ . (A9)

Lemma A.8 (Linear and non-linear part) For c > 0, K ∈ R, the ODE System (2.1)
can be decomposed in its linear and non-linear part. In coordinates ( j, a, b), where
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j = i − K, and using Definition A.7, this reads as

⎛
⎝ j ′
a′
b′

⎞
⎠ = M ·

⎛
⎝ j
a
b

⎞
⎠+ G

⎛
⎝ j
a
b

⎞
⎠ . (A10)

Definition A.9 For given c > 0, K ∈ R, we define the discriminant


 :=
√
c2

4
+ K − 1. (A11)

The eigenvalues and eigenvectors of M are then given by (cf. (2.5))

λ0 = 0, λ± = − c

2
± 
, (A12)

e0 =
⎛
⎝10
0

⎞
⎠ , e± =

⎛
⎝ K+r

c · λ∓
λ±−λ∓

K − 1

⎞
⎠ . (A13)

Technical difficulties arise when the eigenvectors no longer span the entireR3. We
require K �= 1 in view of (A13), which also eliminates the case λ+ = 0. For similar
reasons, we also exclude the case that λ+ = λ−, so we require that 
 �= 0. This is
given if K �= 1 − c2/4.

Lemma A.10 Let c > 0 and K /∈ {1, 1 − c2/4}. The matrix M can be written in
diagonal form, such that M = EDE−1. The matrices D, E, E−1 are given by:

D = diag(λ0, λ+, λ−), (A14)

E =
⎛
⎝e0 e+ e−

⎞
⎠ =

⎛
⎝1 K+r

c · λ−
λ+

K+r
c · λ+

λ−
0 −λ− −λ+
0 K − 1 K − 1

⎞
⎠ , (A15)

E−1 =
⎛
⎜⎝
1 − K+r

(1−K )
− K+r

c(1−K )

0 1
2
 − λ+

2
(1−K )

0 − 1
2


λ−
2
(1−K )

⎞
⎟⎠ . (A16)

Lemma A.11 (Dynamics in normal form) Let c > 0 and K /∈ {1, 1−c2/4}. The eigen-
vectors e0, e+, e− of M form a basis of R3. We introduce the coordinates (u, v, w),
such that any x ∈ R3 can be written as x = u · e0 + v · e+ + w · e−. The System (2.1)
in coordinates (u, v, w) follows dynamics

⎛
⎝u′

v′
w′

⎞
⎠ =

⎛
⎝ 0

λ+ v

λ− w

⎞
⎠+ P(u, v, w) ·

⎛
⎜⎝

− 1
c (1 + K+r

1−K )

− λ+
2
(1−K )

λ−
2
(1−K )

⎞
⎟⎠ , (A17)
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where P is a polynomial such that P(u, 0, 0) = 0:

P(u, v, w) := −
(
λ− v + λ+ w

)
·
(

−λ− v − λ+ w + u + K + r

c

[
λ−
λ+

v + λ+
λ−

w

])
. (A18)

Proof We change coordinates from u, v, w to j, a, b and back:

⎛
⎝u′

v′
w′

⎞
⎠ =

⎛
⎝ 0

λ+ v

λ− w

⎞
⎠+ E−1 · G

⎛
⎝E ·

⎛
⎝u

v

w

⎞
⎠
⎞
⎠ . (A19)

Now recall the functions G and g, see (A9). Explicitely calculating the non-linear part
E−1GE results in

E−1 · G
⎛
⎝E ·

⎛
⎝u

v

w

⎞
⎠
⎞
⎠ = E−1 ·

⎛
⎝− 1

c
0
1

⎞
⎠ · g

⎛
⎝E ·

⎛
⎝u

v

w

⎞
⎠
⎞
⎠

=
⎛
⎜⎝

− 1
c (1 + K+r

1−K )

− λ+
2
(1−K )

λ−
2
(1−K )

⎞
⎟⎠ · g

⎛
⎝u + K+r

c (
λ−
λ+ v + λ+

λ− w)

−λ− v − λ+ w

b
(
u, v, w

)
⎞
⎠

= P(u, v, w) ·

⎛
⎜⎜⎝

− 1
c

(
1 + K+r

1−K

)
− λ+

2
(1−K )
λ−

2
(1−K )

⎞
⎟⎟⎠ . (A20)

Luckily, for evaluating g( j, a), we do not have to calculate the coordinate b(u, v, w).
�


Nowwe have all ingredients for computing the center manifold.We use the approx-
imation argument from Theorem A.6.

Theorem A.12 (Asymptotic behavior) Let c > 0 and K /∈ {1, 1 − c2/4}, and let
(a, b, i) = (0, 0, K ) be a fixed point of the System (2.1). Locally around (0, 0, K ), the
center manifold of the fixed point coincides with the set

{a = b = 0}. (A21)

In a non-empty open neighborhood around (0, 0, K ), the flow of the System (2.1) is
equivalent to

⎛
⎝u′

v′
w′

⎞
⎠ =

⎛
⎝ 0

λ+ v

λ− w

⎞
⎠ , (A22)
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where u, v, w are the coordinates in the system of eigenvectors e0, e+, e− of the matrix
M, see (A13).

Proof In the normal form from Lemma A.11, the center manifold can be calculated as
a function φ(u) : R → R2. As u → 0, φ(u) ∈ O(u2), and φ(u) can be approximated
to any degree by some polynomialwithout linear and constant parts. For some arbitrary
approximation T : R → R2 with components Tv, Tw, we can estimate the error of
the approximation (HT )(u) by Theorem A.6. Inserting the normal form from Lemma
A.11 results in

(HT )(u) = − DT (u) · P(u, T (u)
) · 1

c
(1 + K − r

1 − K
) −
(

λ+ · Tv(u)

λ− · Tw(u)

)

− P
(
u, T (u)

) ·
(

− λ+
2
(1−K )

λ−
2
(1−K )

)
.

(A23)

For the center manifold, (Hφ)(u) = 0. FromEq. (A23), we can extract the coefficients
of the Taylor Expansion of φ(u) around the fixed point iteratively, by choosing better
and better approximating polynomials Tn . For the start, take some polynomial T2(u) :
R → R2 of order 2. Let α, β ∈ R and define

T2(u) := (αu2, βu2). (A24)

Note that P
(
u, T2(u)

) = O(u3), for P as defined in (A18). Thus

(HT2)(u) = O(u3) −
(

λ+ αu2

λ− βu2

)
. (A25)

We see that for any approximation of type T2(u) = (αu2, βu2), the leading error term
is of order O(u3) if and only if T2(u) ≡ (0, 0). We conclude that the second order
approximation of φ is given by T2(u) ≡ (0, 0). By an easy induction, it follows that
Tn(u) = (0, 0) for all n ≥ 2, and so the local centermanifold is given byφ(u) = (0, 0).
In the original system, this corresponds to {a = b = 0}, which are the fixed points of
the ODE (2.1). We can now calculate the asymptotic flow in the normal form, given by
(A3). This results in the claimed asymptotics (A22), when we use that the non-linear
part vanishes: P

(
u, φ(u)

) = P(u, 0, 0) = 0. �


Appendix B: Numerical evaluation of the spectrum ofL
As announced in our discussion in Sect. 9, we analyze the spectral stabilty of the
critical traveling wave. The theoretical background is presented in Sandstede (2002);
Ghazaryan et al. (2013), the details about the computational approach are presented
by Barker et al. (2018).

Here and from now on, c = 2 and we denote as a(z), i(z) the critical traveling wave
with speed c = 2 and i+∞ = 0. We denote the exponent of the weight-function as
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α > 0 and analyze the spectral stability of the critical traveling wave in the weighted
L2-Sobolev space H1

α , with norm || f ||H1
α

= || f · eαz ||H1 .
We linearize the PDE around a(z), i(z) and analyze the non-negative spectrum

of the resulting linear operator L, as defined in (9.3). For System (1.1), this operator
L : H2

α (R)×H1
α (R) → H2

α (R)×H1
α (R) acts on a pair of functions u ∈ H2

α , v ∈ H1
α ,

which correspond to perturbations of a and i , respectively:

u �→ u′′ + cu′ + u(1 − (2a + i)) − va,

v �→ cv′ + u(2a + i + r) + va.
(B1)

The operator L is equivalent to a first-order operator L̃ : H1
α (R3) → H1

α (R3), when
we introduce an auxiliary variable for u′. We will omit the tilde.

As will see in a moment, we only need to consider the point-spectrum of L. Thus,
for γ ∈ C with Re(γ ) ≥ 0, we look for a function U ∈ H1

α that solves LU = γ · U .
Now, γ ∈ C lies in the point spectrum of L if and only if there exists a function
U : R → C3,U ∈ H1

α , which solves

d

dz
U = M(z, γ ) ·U , M(z, γ ) :=

⎛
⎝ 0 1 0

γ + 2a(z) + i(z) − 1 −c a(z)
− 2a(z)+i(z)+r

c 0 γ−a(z)
c

⎞
⎠ . (B2)

It can easily be seen that the matrix M(+∞, γ ) has eigenvalues

β1 = γ

c
, β2 = − c

2
+ √

γ , β3 = − c

2
− √

γ , (B3)

whereas the matrix M(−∞, γ ) has eigenvalues

β1 = γ

c
, β2 = − c

2
+√2 + γ , β3 = − c

2
−√2 + γ . (B4)

If U ∈ H1
α , then W (z) := U (z) · eαz is bounded and vanishes. The function W (z)

fulfills

W ′(z) = (M(z, γ ) + α · 1) · W (z). (B5)

Remark that the matrix M + α1 has the same eigenvectors as M , and that its eigen-
values are shifted by α when compared to M . If M(±∞) + α1 has no eigenvalues
with zero real-part, the theory of exponential dichotomies implies that any bounded
solution W (z) must vanish exponentially fast as z → ±∞, and that it asymptotically
approaches the unstable (resp. stable) manifold of the constant matrix M(−∞, γ ) as
z → −∞ (resp. M(+∞, γ ) as z → +∞) (Sandstede 2002). Therefore, a bounded
solution exists if and only if the trajectories that emerge from these manifolds inter-
sect. This allows us to compute the Evans-function: it is a determinant that evaluates
to zero if and only if the solutions that decay at −∞ and those that decay at +∞ are
somehow linearly dependent.
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Fig. 7 Numerical evaluation of the Evans-function (B6) Ev(γ ) for r = 0 and γ on the boundary of the
Domain S, defined in (B7). The Evans-function for r = 1 is very similar. The origin is marked with a small
red cross. The graph does not enclose the origin and it can visually be seen that its winding number is equal
to zero. We conclude that the Region S contains no zeros of Ev(γ )

We investigate the case α = c
2 , which is equal to the rate of convergence of the

wave as z → +∞, up to a sub-exponential term, see Theorem 1.1. For α = c
2 , then

within the region {Re(γ ) ≥ 0, γ �= 0} the following holds: the dimension of the
unstable space of M(−∞, γ ) + c

2 · 1 is given by k− = 2, and the dimension of the
stable space of M(+∞, γ ) + c

2 · 1 is given by k+ = 1. This can easily be deduced
from the corresponding Eigenvalues (B3), (B4), which do not cross the imaginary
axis. The values k− and k+ add up to the dimension of the ODE (B2). We say that
{Re(γ ) ≥ 0, γ �= 0} is contained in the region of consistent splitting of the operator
L. This implies that the non-negative part of the spectrum ofL is contained in the point
spectrum of the operator, which is a standard result (Sandstede 2002; Sattinger 1976).
Within the region of consistent splitting, we can define the Evans-function E(γ ).

Given γ withRe(γ ) ≥ 0, γ �= 0, we let X(z) be the unique (up to a shift) solution
of Eq. (B5) that vanishes at z = +∞, and let Y1(z),Y2(z) span the two-dimensional
space of solutions of Eq. (B5) that vanish at z = −∞. The Evans-function is defined
as

E(γ ) := det
(
Y1(z)

∣∣Y2(z)∣∣X(z)
)∣∣∣
z=0

. (B6)

The Evans-function is not unique, but it holds that E(γ ) = 0 if and only if γ lies in
the point spectrum of L. Moreover, E(γ ) is analytic if X ,Y1,Y2 are chosen such that
they are analytic in γ (Sandstede 2002). Thus it suffices to calculate E(γ ) along the
boundary of a domain: the winding number along this contour then corresponds to the
number of zeros inside the domain.

We use this to verify that there are no zeros of E(γ ) within the set
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S :=
{
γ ∈ C

∣∣∣Re(γ ) ≥ 0, 10−3 ≤ |γ | ≤ 1000
}
, (B7)

where we keep a small distance from the origin to prevent that the eigenvalues of the
matrices M(±∞, γ ) + c

2 · 1 touch the imaginary axis, and hope that there are no
unexpectedly large eigenvalues. We want to remark that for systems with a degen-
erate diffusion, no general a priori upper bound for the size of the eigenvalues with
non-negative real-part has been found yet, which would allow for a numerical proof
of spectral stability. It may be possible to generalize the approach in Lattanzio and
Zhelyazov (2021). Simple energy estimates exist for traveling waves of diffusive sys-
tems, see e.g. chapter 6 in Ozbag and Schecter (2018).

The various numerical challenges that arise when computing the Evans-function,
as well as their solutions, are described in detail by Barker et al. (2018), who also
suggest using their library STABLAB Barker et al. (2015). We gratefully followed
this suggestion, and computed the left-adjoint Evans-function, a slight modification
which is numerically advantageous in the present setting (Barker et al. 2018). The
result is presented in Fig. 7 and yields a strong evidence that the critical wave is
spectrally stable in H1

c/2.

Appendix C: Rescaling the general system

Let rS, rA, D > 0 and rI ≥ 0, and consider the reaction–diffusion system

At = D · Axx + rA A − rS A(A + I ),

It = rI A + rS A(A + I ),
(C1)

which is the general form of System (1.1). There exists a linear one-to-one correspon-
dence to the normalized form. Therefore, we rescale time and space, s := rA · t, y :=√
D/rA · x , and the densities of the particles, Ā := A · rS/rA, Ī := I · rS/rA. The

rescaled dynamics of System (C1) follow

Ās = Āyy + Ā − Ā( Ā + Ī ),

Īs = rI
rA

Ī + Ā( Ā + Ī ),
(C2)

which is equivalent to System (1.1) with r = rI
rA
. In view of this, we can formulate a

parameter-dependent version of Theorem 1.1:

Theorem C.1 Let rS, rA, D > 0 and rI ≥ 0, and consider the System (C1) and a
wave-speed c > 0. Set

ic := max
{
0,

1

rS

(
rA − c2

4D

)}
. (C3)

For each pair i−∞, i+∞ ∈ R+ such that

i+∞ ∈ [ic, rA
rS

), i−∞ = 2 · rA
rS

− i+∞, (C4)
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there exists a unique bounded and positive traveling wave a, i with speed c such that

lim
z→±∞a(z) = 0, lim

z→±∞ i(z) = i±∞. (C5)

If c2
4D + rS · i+∞ − rA = 0, convergence as z → +∞ is sub-exponentially fast and of

order z · e− c
2D z. If c2

4D + rS · i+∞ − rA > 0, convergence as z → +∞ is exponentially
fast. Convergence as z → −∞ is exponentially fast in all cases. The corresponding
rates are

μ±∞ = − c

2D
+
√

c2

4D2 + rS · i±∞ − rA
D

. (C6)

In particular, for any invading front, where i(z) → 0 as z → +∞, the remaining
density of particles at the back of the wave is given by i−∞ = 2 · rA

rS
.
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