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Protein Kinase A (PKA) is an essential kinase that is conserved across eukaryotes and
plays fundamental roles in a wide range of organismal processes, including growth control,
learning and memory, cardiovascular health, and development. PKA mediates these
responses through the direct phosphorylation of hundreds of proteins–however, which
proteins are phosphorylated can vary widely across cell types and environmental cues,
even within the same organism. A major question is how cells enact specificity and
precision in PKA activity to mount the proper response, especially during environmental
changes in which only a subset of PKA-controlled processes must respond. Research
over the years has uncovered multiple strategies that cells use to modulate PKA activity
and specificity. This review highlights recent advances in our understanding of PKA
signaling control including subcellular targeting, phase separation, feedback control,
and standing waves of allosteric regulation. We discuss how the complex inputs and
outputs to the PKA network simultaneously pose challenges and solutions in signaling
integration and insulation. PKA serves as a model for how the same regulatory factors can
serve broad pleiotropic functions but maintain specificity in localized control.
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INTRODUCTION

Protein kinase A (PKA) is among the best studied eukaryotic kinases, owing in part to its essential
function in many cellular processes. The kinase can phosphorylate hundreds of proteins, including
enzymes linked to metabolism, cellular machinery involved in transcription and translation,
structural proteins in the cytoskeleton, and other kinases and regulators that amplify its effects
(Budovskaya et al., 2005; Ptacek et al., 2005; Gnad et al., 2009; Hamaguchi et al., 2015; Sugiyama et al.,
2019; Niinae et al., 2021). Which proteins are phosphorylated PKA targets varies according to
context (Filteau et al., 2015; MacGilvray et al., 2018; Myers et al., 2019; Walker et al., 2019;
MacGilvray et al., 2020) so that the collective action of those phosphorylated proteins can mediate
higher-order physiological responses. Indeed, PKA is involved in many processes, from growth and
development, aging and stress response, cardiovascular health, learning, and more (Figure 1). This
breadth of PKA involvement is underscored by the myriad diseases associated with PKA defects
(reviewed in Ramms et al., 2021). These include developmental diseases such as neural tube defects
(Huang et al., 2002), heart failure and cardiac diseases (reviewed in Liu et al., 2021), and multiple
types of cancer (reviewed in Caretta and Mucignat-Caretta, 2011; Hongying Zhang et al., 2020).
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Amajor question is how the PKA kinase can be involved in so
many processes yet maintain specificity in coordinating the
correct response for the conditions at hand. Part of the
solution emerges from the complexities of the broader PKA
signaling network. As summarized below, the network
includes multiple upstream activation branches, numerous
control points modulating allosteric regulation, and the action
of combinatorial network interactions that result in modularity.
In addition to the complex network of regulatory players, cell also
utilize dynamic regulation to control where, when, and how PKA
activity is enacted within the cell.

Here we focus on models of PKA signaling insulation and
specificity during cellular responses, using examples from
budding yeast Saccharomyces cerevisiae and mammalian
systems. Yeast cells maintain a simplified PKA network
with fewer players than mammalian cells, but it remains
one of the best characterized systems for understanding
signaling control. Comparing and contrasting yeast and
mammalian systems underscores several cases in which
signaling principles are conserved, even when the regulatory
players have evolved. Below, we present an overview of the
PKA regulatory network in yeast and mammals before
discussing mechanisms by which cells spatially and
temporally regulate PKA signaling, including a focus on
newly emerging mechanisms of PKA control.

KEY PLAYERS IN THE PKA PATHWAY

The PKA kinase fits into a broader network with many
different levels of control, including multiple input branches
and extensive regulatory checkpoints (Figure 2; Table 1).
There have been many nice reviews documenting specific
regulators in this network (Sassone-Corsi, 2012; Taylor
et al., 2013; Conrad et al., 2014). Here we focus on the
main points of regulatory control and how breadth and
specificity emerge.

PKA Holoenzyme
PKA is a tetramer of two catalytic (C) subunits and two regulatory
(R) subunits. S. cerevisiae encodes three paralogous catalytic
subunits, Tpk1, Tpk2, and Tpk3, with a single regulatory
subunit, Bcy1 (Matsumoto et al., 1982; Toda et al., 1987),
while mammalian cells express three main C isoforms that can
complex with dimers of the 4 R isoforms (RIα, RIβ, RIIα, and
RIIβ). Holoenzyme composition, and also function as discussed
in more detail below, can vary; thus mammalian PKA
holoenzyme is often described as either Type I or Type II,
depending on the regulatory subunits in the complex (RI or
RII, respectively) (Scott et al., 1990; Tasken et al., 1993).

While PKAC subunits encompass the catalytic kinase domain,
the R subunits serve as a major point of PKA control. R subunits
bind the allosteric second messenger cAMP, which induces
conformational changes that alter R-C interactions. One long-
stranding model is that this conformation change causes R
subunit release, allowing C subunits to phosphorylate
substrates. Recent evidence in mammalian cells suggests that
disassociation of R subunits may be short-lived (Mo et al., 2017;
Walker-Gray et al., 2017), and one study proposed that R and C
subunits may not even fully release at physiological cAMP levels
(Smith et al., 2017). In addition to cAMP-based regulation, R
subunits can also be phosphorylated to affect PKA (Manni et al.,
2008; Budhwar et al., 2010; Haushalter et al., 2018; Isensee et al.,
2018; Søberg and Skålhegg, 2018). For example, in
HEK293T cells, RIα phosphorylation alters RIα-C interactions,
leading to PKA activation even in the absence of cAMP
(Haushalter et al., 2018), while RII phosphorylation in sensory
neurons is predicted to disfavor RII-C reassociation for prolonged
PKA activation (Ping Zhang et al., 2015; Isensee et al., 2018).

FIGURE 1 | PKA signaling influences many processes. A summary of
processes influenced by PKA signaling, through direct phosphorylation of
participating proteins.

FIGURE 2 | An overview of the PKA regulatory network. PKA catalytic (C)
and regulatory (R) subunits can be regulated via cAMP abundance, which is
controlled by adenylate cyclase (AC) and cAMP-dependent
phosphodiesterases (PDEs). Inset, an example PKA signalosome.
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Together, differences in holoenzyme composition and post-
translational modification can influence PKA activity and
provide a substrate for differential control, as discussed more
in the subsequent section.

cAMP Abundance
Since cAMP is a key regulator of R-C interactions, cells sensitively
control its abundance. Multiple upstream regulatory branches
converge on adenylate cyclase (AC), which catalyzes the
conversion of adenosine triphosphate (ATP) to cAMP and
pyrophosphate. Yeast harbors a single AC (Matsumoto et al.,
1982), while ten isoforms (AC1-10) have been identified in
mammalian cells (Table 1). The value of this redundancy is
that it allows for differential control, since the different ACs are
expressed and localized distinctly across tissue types and can be
regulated by disparate upstream signaling pathways (reviewed in
Defer et al., 2000; Hanoune et al., 2001; Sadana and Dessauer,
2009; Steegborn, 2014). Along these lines, it was originally
thought that AC was membrane associated, but it is now clear
that soluble AC can localize to different cellular compartments
and respond to intracellular cues (Steegborn, 2014).

In addition to synthesis, cAMP is also controlled through
regulated degradation via cAMP-dependent phosphodiesterases
(PDEs). Once again, complexity varies from yeast with two PDEs
(Uno, et al., 1983; Sass et al., 1986) to mammals with eight
different cAMP PDE families (comprising sixteen genes and
many different splice variants) (Table 1, reviewed in Azevedo
et al., 2014). The diversity in PDE enzymes presents another
opportunity for modular control of the PKA network, since PDEs
are subject to distinct regulation, intracellular localization, and
cAMP affinity (Bender and Beavo, 2006; Hu et al., 2010; Francis
et al., 2011; Keravis and Lugnier, 2012; Azevedo et al., 2014). For
example, mammalian PDE2 plays a major role in cardiac
signaling (Sadek et al., 2020), while PDE10 is implicated in
PKA-dependent learning and memory (Rodefer et al., 2005;
Giralt et al., 2013; Reneerkens et al., 2013). Like ACs, PDE
activity is regulated, notably via phosphorylation by several

kinases, including PKA, PKB, PKC, mitogen-activated protein
kinases (MAPKs), and Ca2+/calmodulin-dependent kinase
(Bender and Beavo, 2006; Omori and Kotera, 2007; Keravis
and Lugnier, 2012; Azevedo et al., 2014). The large number of
mammalian ACs and PDEs provide an opportunity for highly
specialized control of cAMP in terms of tissue, environmental
response, and upstream control (discussed more below).

Upstream Regulatory Inputs
Holoenzyme and regulatory points described above serve as hubs
for signaling input and integration. Numerous upstream
regulatory pathways feed into these hubs to control PKA
activity in response to the appropriate cues. Among the best
studied are RAS-GTPase and G-protein coupled receptors
(GPCRs). In yeast, Ras is one of the primary PKA regulatory
inputs regulating growth control, consistent with the classical
implication of RAS in human cancers. Ras proteins are stimulated
by GTP hydrolysis to activate downstream targets including AC
and, therefore, PKA signaling (reviewed in Young et al., 2009;
Tamanoi, 2011; Simanshu et al., 2017; Cazzanelli et al., 2018).
RAS is itself regulated by GTPase-activating proteins (GAPs) and
guanine nucleotide exchange factors (GEFs) as well as many other
pathways that modulate activity of those effectors. GPCRs are a
large group of transmembrane proteins that receive extracellular
signals and facilitate downstream cellular responses (reviewed in
Versele et al., 2001; Rosenbaum et al., 2009; Hilger et al., 2018).
PKA-activating GPCRs bind distinct ligands, including glucose or
other sugars in budding yeast (Colombo et al., 1998; Kraakman
et al., 1999) and extending to specific sugars, hormones (like
glucagon), and neurotransmitters (such as dopamine) in
mammals (Dandan Zhang et al., 2015; Venkatakrishnan et al.,
2016; Wu et al., 2017).

One advantage of the many signaling inputs into the PKA
network is that PKA can be activated in the context of other
cellular responses. But evidence from the literature shows that
different modes of PKA activation can produce disparate
downstream effects that can be decoupled. Work from our lab

TABLE 1 | PKA subunits andmajor PKA regulatory proteins. Known PKA players in budding yeast S. cerevisiae andmammalian systems. See text for references. + Cyr1 can
localize to multiple membranes including in the mitochondria, ER, and plasma membrane (Belotti et al., 2012). * Yeast cells lack proteins orthologs to AKAPs but have
other proteins that may serve similar roles, see text for details.

Regulator Yeast Mammals

PKA C subunits Tpk1, Tpk2, Tpk3 Cα (splice variants Cα1, Cα2 and Cα3)
Cβ (splice variants Cβ1, Cβ2, Cβ3, Cβ4, Cβ3ab Cβ3b, Cβ3abc, Cβ4ab, Cβ4b, and Cβ4abc)
Cγ

PKA R subunits Bcy1 RIα
RIIα
RIβ
RIIβ

ACs Cyr1+ AC1-9 (plasma membrane anchored)
AC10 (soluble AC)

cAMP PDE Isoforms Pde1, Pde2 PDE4, PDE7, PDE8 (cAMP specific)
PDE1, PDE2, PDE3, PDE10, PDE11 (cAMP and cGMP specific)

AKAPs None* >50 members (additional splice variants)
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showed that up-regulation of PKA is important for anaerobic
xylose fermentation in an engineered yeast strain; however, the
effects were different depending on how PKA was upregulated.
Activating PKA by deletion of the RAS inhibitor IRA2 enabled
rapid fermentation and growth on xylose, whereas deletion of R
subunit BCY1 led to rapid fermentation but arrested growth. Both
processes are dependent on PKA, since inhibiting analog-
sensitive PKA blocks both processes (Myers et al., 2019).
Thus, activating PKA in different ways can lead to different
network outputs. It remains unclear if these differences are
strictly through PKA activity, or if the different network
branches help to coordinate PKA activation with other cellular
responses. Nonetheless, the two regulatory branches participate
in distinct cellular responses that both require PKA.

Feedback in PKA Signaling
The importance of proper PKA signaling is also underscored by
extensive feedback regulation in the PKA network that can
precisely tune PKA activity. PKA can phosphorylate subunits
of the PKA tetramer, thereby autoregulating activity (Moore et al.,
2002; Manni et al., 2008; Solari et al., 2014; Isensee et al., 2018;
Søberg and Skålhegg, 2018). PKA also phosphorylates its
upstream regulators in mammals, including ACs, PDEs, RAS,
GTPases, and GPCRs (reviewed in Vandamme et al., 2012). In
yeast responding to salt stress, phosphoproteomic analysis
implicated extensive feedback on PKA-dependent sites of
PKA-affecting regulators (MacGilvray et al., 2018). Although
the function of each phosphorylation remains to be worked
out, feedback in the PKA network is thought to tune the levels
and dynamics of signaling through the network (see more below).

In addition to rapid feedback via post-translational
mechanisms, slower feedback occurs at the level of gene
expression. The induction of genes encoding both PKA
activators and repressors is well established in yeast
responding to stress: although PKA activity suppresses the
stress response, stressed cells induce expression of both
positive and negative PKA regulators, including PKA C
subunits, R subunit BCY1, and phosphodiesterase PDE2
(Gasch et al., 2000; Segal et al., 2003; Pautasso and Rossi,
2014). The thought is that cells are preparing for eventual re-
activation of PKA signaling once cells acclimate. Transcriptional
feedback also occurs in mammals: PKA activation of the hallmark
transcription factor CREB induces transcription of PDE4, whose
accumulation ultimately degrades cAMP to suppress PKA
signaling (Swinnen et al., 1989; Vicini and Conti, 1997; D’Sa
et al., 2002).

SPECIFICITY AND HETEROGENEITY IN
PKA FUNCTION

The many levels at which PKA activity can be controlled
highlights the importance of precise regulation. It also explains
how PKA can respond to many different upstream signals and
signaling inputs, via the many different pathways and regulatory
points that converge on PKA activity. But how do cells mediate
disparate outputs of PKA signaling? Long-standing models and

new insights from recent studies highlight mechanisms through
which cells gain specificity for such a broadly important signaling
pathway. Below we summarize several mechanisms that cells use
to control the pleiotropic roles of PKA.

Variation in PKA Holoenzyme Composition
and Function
As highlighted above, PKA holoenzyme can vary in composition,
thanks to multiple genes encoding PKA C and R subunits, along
with alternative splicing in mammals. Several of these isoforms
and splice variants are expressed at different abundances in
different mammalian cell types, producing tissue-specific
holoenzymes. Since these holoenzymes have distinct
biophysical properties, compositional differences produce
unique signaling effects. For example, in mouse brains, RIβ is
more abundant in dendrites, while RIIβ is enriched in axons
(Ilouz et al., 2017). Since cAMP-RI has a lower affinity for C
subunits than cAMP-bound RII, the difference in holoenzyme
composition could alter activation thresholds (Dostmann et al.,
1990; Cummings et al., 1996). But this compositional difference
also influences PKA substrate specificity: within dendrites,
knockdown of RIβ, but not RIIβ, alters PKA-dependent CREB
phosphorylation (Ilouz et al., 2017). Holoenzyme differences can
mediate these effects through altered protein-protein
interactions, subcellular localization, and post-translational
regulation from distinct regulatory inputs (Haushalter et al.,
2018; Isensee et al., 2018), as discussed in more detail below.
Thus, compositional differences in PKA holoenzyme impart
specificity in both the reception of upstream cellular cues and
the spatial and regional output of PKA-dependent
phosphorylation.

Regulated PKA Localization Changes
One of the simplest ways to alter which targets are
phosphorylated by PKA is to change the localization of the
PKA tetramer, thereby promoting or restricting access to
specific substrates. PKA holoenzyme can be stably localized to
the cytosol, nucleus, organelles such as mitochondria and other
subcellular compartments, but localization can also change in
response to cellular and environmental signals. At least part of
this response is dictated by R subunits. In budding yeast,
subcellular localization of Bcy1 is controlled by its N-terminal
nuclear localization signal and phosphorylation status, wherein
phosphorylated Bcy1 is directed to the cytosol and
unphosphorylated Bcy1 moves to the nucleus (Griffioen et al.,
2001; Griffioen et al., 2003). The resulting relocalization of PKA is
indeed dependent on Bcy1, since BCY1 deletion ablates PKA
nuclear translocation in response to low carbon levels (Griffioen
et al., 2000). As with Bcy1, the N-terminus of mammalian R
subunits can direct regional localization, in conjunction with
other interacting proteins that again vary by R-subunit class
(Taylor et al., 2012). For example, Protein Kinase Inhibitors
(PKIs) that contain their own nuclear export signals can
competitively bind C subunits and thus contribute to PKA
translocation (Ashby and Walsh, 1972; Gamm and Uhler,
1995; Wen et al., 1995; Herberg et al., 1999). Overall,
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localization changes can affect PKA activity in two ways: by
altering access to the upstream inputs feeding into PKA
complexes, and by changing which protein targets PKA
encounters by nature of PKA compartmentalization.

Spatial Tethering and Scaffolding
A more specific case of regulated PKA localization is through
tethering or anchoring, where PKA is bound to specific sites in the
cell. This is perhaps best understood in mammalian systems,
where PKA can be tethered to a variety of locations, including
mitochondria, vesicles, lipid membranes, cytoskeleton, and
centrosomes. One mechanism of tethering is via direct
modification of the PKA holoenzyme. In neuronal cells,
myristolization of the holoenzyme tethers it to the plasma
membrane to promote interaction with membrane-localized
targets (Bastidas et al., 2012; Tillo et al., 2017; Xiong et al., 2021).

PKA tethering can also be specified by protein interactions.
Best known are A-kinase anchoring proteins (AKAPs) in
mammals that participate in tethering via multi-protein
interactions. AKAPs are defined by three domains: a PKA-
anchoring domain, a unique cellular localization signal, and
domains that organize other proteins to assemble (reviewed in
Pidoux and Taskén, 2010; Søberg and Skålhegg, 2018). For
example, in HEK293 cells, mitochondrially-localized AKAP
Rab32 binds RII-containing holoenzyme to direct PKA-
dependent regulation of mitochondrial fission (Alto et al.,
2002). Another mitochondrial AKAP, AKAP1, tethers Type II
PKA to mitochondria in oocytes, where PKA regulates meiotic
arrest and progression through polar body extrusions during
oocyte maturation (Newhall et al., 2006). Interestingly, budding
yeast lack orthologs of AKAP proteins but express other PKA
interactors that may serve the same function. Zds1 and Zds2 are
two proteins proposed to function like AKAPs in yeast by
directing PKA localization; R subunit Bcy1 has also been
proposed to serve this function (Griffioen et al., 2001;
Griffioen et al., 2003; Galello et al., 2014).

In addition to simply localizing PKA to specific sites, AKAPs
can also scaffold PKA targets to further direct activity. An
example is the cardiac-muscle-specific mAKAP that brings
together PKA via RIIα along with ryanodine receptor (RyR2),
a PKA substrate that mediates calcium efflux and is critical for
proper cardiac muscle excitation and contraction (Marx et al.,
2000; Kapiloff et al., 2001). Mutant mAKAP unable to bind PKA
leads to defective receptor phosphorylation and altered calcium
release compared to functional mAKAP (Ruehr et al., 2003).
Scaffolding of kinases and their substrates is a common
mechanism of directing signaling toward specific sets of
targets. In the case of PKA, compositional differences in
holoenzyme can lead to a great diversity of scaffolding
localizations, based on the distinct protein interactions
possible with different holoenzyme subunits.

cAMP Microenvironments
Beyond bridging PKA with specific targets, AKAPs also bring
together PKA regulators including ACs, PDEs, phosphatases, and
other kinases to produce highly localized microenvironments
known as signalosomes (reviewed in Wong and Scott, 2004;

Houslay, 2010; Torres-Quesada et al., 2017). Depending on
how regulatory enzymes are coordinated within those
microenvironments, they can produce localized regions of
high, or low, cAMP abundance that produce second
messenger gradients and microcompartments within cells
(Bacskai et al., 1993; Zaccolo and Pozzan, 2002; Nikolaev
et al., 2006; Lim et al., 2008; Terrin et al., 2012; Maiellaro
et al., 2016; Gorshkov et al., 2017).

Microenvironments can also serve as hubs for signaling
crosstalk. Cardiac muscle-localized mAKAP described above is
a nice example of these principles. In addition to bridging PKA to
RyR2, mAKAP colocalizes PKA with PDE4D3, phosphatases
PPA2A, MAP kinase ERK5 and its upstream activator MEK5,
and calcium-responsive calcineurin (Marx et al., 2000; Dodge
et al., 2001; Dodge-Kafka et al., 2005; Pare et al., 2005; Dodge-
Kafka and Kapiloff, 2006; Rababa’h et al., 2014). The resulting
signalosome enables crosstalk between the cAMP-regulated PKA,
ERK5, and calcineurin pathways to regulate cardiac functions (see
more below). Failure to integrate these pathways leads to cardiac
disease and dysfunction (Pare et al., 2005; Dodge-Kafka and
Kapiloff, 2006). Signalosomes can also mediate cross-talk across
cellular compartments. For example, Deng et al. (2021)
demonstrated that PKA can be localized to autophagosomes
via interactions between AKAP11 and RIα; upon glucose
starvation, AKAP11-mediated autophagic degradation of RIα
activates PKA that in turn regulates mitochondrial functions
and health (Deng et al., 2021). The great diversity of
mammalian AKAP complexes, which differ in their
localization, anchoring sites, and protein interactions, can
produce a wide range of unique signalosomes, producing
highly regulated and specific PKA signaling (Wong and Scott,
2004; Torres-Quesada et al., 2017; Omar and Scott, 2020).

Mechanistic details of how signalosomes function continues to
emerge. This area of research has been significantly advanced
using optogenetics and fluorescent biosensors. Fluorescence
resonance energy transfer (FRET)-based reporters have
enabled the quantification of localized cAMP abundance and
PKA activity (Zaccolo et al., 2000; Zaccolo and Pozzan, 2002;
Nikolaev et al., 2004; Börner et al., 2011; Sample et al., 2012; Chen
et al., 2014; Li et al., 2015; Sprenger et al., 2015; Surdo et al., 2017;
Shu, 2020; Zhang et al., 2021). FRET occurs when two distinct
fluorescence proteins fused to opposite termini of a reporter
protein come together upon conformational change, e.g., upon
cAMP binding or PKA phosphorylation. When fused to specific
AKAPs or other proteins, these reporters can inform on the
responsiveness of specific PKA signalosomes (Surdo et al., 2017).
Other fluorescence-based reporters have also been used,
including a recent GFP reporter engineered to phase-separate
into distinct foci upon PKA activation (Zhang et al., 2018;
Roebroek et al., 2021; Zhang et al., 2021). These tools have
been used recently to uncover a wealth of information, from
models of cAMP binding and diffusion to oscillatory dynamics of
PKA stimulation upon GPCR activation (Zhang et al., 2018; Bock
et al., 2020). Several studies have combined sensors with
optogenetic approaches to locally modulate the activity of
PKA or other signaling proteins and then study the effects
(Ryu et al., 2010; Stierl et al., 2011; Sample et al., 2012;
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Raffelberg et al., 2013; Klausen et al., 2019), including direct
activation of PKA at the plasma membrane, mitochondrion, or
endosomes (O’Banion et al., 2018; Tsvetanova et al., 2021). One
elegant recent example by Truong et al. (2021) used an
optogenetics system to activate PKA in different cellular
regions to show that PKA localized to cilia, but not the
cytosol, inhibits hedgehog signaling in both zebrafish somites
and a mouse cell line (Truong et al., 2021). Underscoring
mechanisms highlighted in this review, PKA is tethered in
cilia via its interactions with upstream regulator GPCR
Gpr161; feedback interactions between PKA and Gpr161
produce fine-tuned control of hedgehog signaling, enabling
proper development (Bachman et al., 2016; Tschaikner et al.,
2020; Tschaikner et al., 2021).

Phase Separation
An under-explored mechanism of PKA control just beginning to
emerge is phase separation. Under the appropriate conditions,
some proteins can form biomolecular condensates, also known as
membraneless organelles. Kinases can phase separate into these
condensates in a way that affects their activity. For example, in
yeast experiencing nutrient starvation or heat shock, PKA
subunits can be sequestered in phase-separated granules
including P-bodies (PB) and stress granules (SG) (Tudisca
et al., 2010). These granules comprise RNA-modulating
enzymes including decay factors or translational regulators, for
PB and SG, respectively, and mRNAs that tend to be
translationally repressed (reviewed in Luo et al., 2018;
Escalante and Gasch, 2021). There is some evidence that PKA
is involved in the formation of PB and SG during stress
(Ramachandran et al., 2011), and it is possible that active PKA
is localized there, as seen for other kinases (Emperador-Melero
et al., 2021). Supporting these ideas, yeast PKA C subunits Tpk2
and Tpk3 localize to granules after heat shock, and this
localization requires Tpk2 (but not Tpk3) catalytic activity
(Barraza et al., 2017). An alternative hypothesis for phase
separation is that it protects the kinase from degradation
(Ramachandran et al., 2011; Shah et al., 2013). Evidence in
yeast shows that stress-induced granules are preferentially
delivered to new daughter cells, perhaps providing a
mechanism of inheritance of stored material (Garmendia-
Torres et al., 2014).

While less well studied, PKA can phase separate in
mammalian cells as well. A recent study by Jason Z. Zhang
et al. (2020) used a series of PKA and cAMP biosensors to
show that RIα subunits in HEK293T cells can phase separate
upon cAMP binding, elevating PKA-C activity within granules.
The authors showed that RIα phase separation is the driving
mechanism for cAMP nanodomains in these cells. Loss of RIα
biomolecular condensates results in loss of cAMP
compartmentalization, and strikingly this loss appears to
underlie increased cell proliferation and adhesion changes
(Jason Z. Zhang et al., 2020). As phase separation is a
mechanism for concentrating or sequestering biomolecules, a
broader role in PKA signaling will likely continue to emerge. It
will be especially interesting to see if the effect of PKA phase
separation is conserved from yeast to mammals, or if phase

separation emerges to be yet-another principle for differential
control of PKA localization and activity across cell types and
environmental responses.

Regulation by Localized Feedback and
Feedforward Signaling
Feedback and feedforward signaling play important roles in
signaling dynamics, sensitization, and buffering (Chen and
Elowitz, 2021; Jiang and Hao, 2021). In the case of the PKA
network, feedback exists at nearly every step of the network and
can be distinct within microenvironments. While the effect of this
feedback phosphorylation is not always known, in some cases
there are clear signaling consequences. mAKAP discussed above
provides a compelling example: PKA phosphorylation activates
PDE4D3, which would in effect suppress PKA by degrading local
cAMP, whereas Erk5 suppresses PDE4D3 in a cAMP-dependent
manner. This complex signaling loop produces localized pulses of
cAMP that are important for cardiomyocyte physiology (Dodge
et al., 2001; Dodge-Kafka et al., 2005).

Interestingly, specific patterns of feedback signaling can in
other cases produce propagating waves of second messenger. One
example is seen in the formation of propagating waves of cAMP
as measured in the slime mold Dictyostelium discoideum (Monk
and Othmer, 1990; Wessels et al., 1996; Hashimura et al., 2019;
Singer et al., 2019). Starvation induces changes in gene expression
that trigger the production of proteins that sense, synthesize, and
degrade cAMP. Differences in catalytic rates cause waves of
cAMP that propagate across cells and serve as
chemoattractants that trigger cells to aggregate into a
multicellular slug (Hashimura et al., 2019; Singer et al., 2019).
There is also evidence that PKA influences Ca2+ waves in
developing retinal neurons, and these waves in turn feedback
to regulate PKA signaling (Dunn et al., 2006; Drumm et al., 2014).
While the basis of establishing propagating waves is not entirely
understood for PKA signaling, the mechanisms may be similar to
other systems. For example, propagating waves of GTP seen
during cell division and migration are established by differential
rates of feed-forward and feed-back signaling to enzymes that
module GTP levels (Bement et al., 2015; Bolado-Carrancio et al.,
2020).

CONCLUSION AND PERSPECTIVE

The intricate mechanisms that specify PKA activity–including
differences in holoenzyme composition, subcellular localization,
signalosome organization, cAMP microenvironments, and
feedback regulation–provide a model for how PKA can
participate in such a breadth of cellular processes and
responses yet provoke distinct and precise downstream
outputs. Ultimately, much of PKA activity is controlled in a
highly localized manner. Thus, thinking of the pathway as
generally “on” or “off” in cells is likely inappropriate. In
budding yeast PKA suppresses the environmental stress
response, leading to the general model that PKA must be
globally inhibited during stress to mount defense systems
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(Gasch, 2003). Indeed, Pincus et al. (2014) showed that globally
inhibiting an analog-sensitive PKA, coupled with artificial
induction of transcription factor Hac1, closely mimics the
transcriptome response activated by the reducing agent DTT.
However, although the transcriptional response is recapitulated,
growth control is not: PKA inhibition arrests growth, yet cells
exposed to DTT continue to divide and grow during an active
response (MacGilvray et al., 2020). This suggests that PKA may
not be globally inhibited during the DTT response. Consistent
with this notion, many known PKA targets and phosphosites
remain phosphorylated and even increase during DTT treatment
[which is distinct from salt stress, in which phosphorylation of
most of these sites dramatically decreases (MacGilvray et al.,
2018)]. Together, these observations argue against global
inhibition of PKA signaling, even in a simple single-celled
system, and instead raise the possibility of localized responses
that permit activation of the stress response concurrent with
continued growth.

Another important feature giving breadth to PKA responses
may be how the kinase recognizes its targets. Whereas many other
kinases recognize docking sequences shared among their target
proteins (Reményi et al., 2006), PKA’s choice of targets seems to
be largely dictated by proteins that interact with the holoenzyme.
Thus while PKA does show specificity for basophilic phospho-
motifs (Taylor et al., 2004), much of the specificity for its targets
comes via its interaction partners. R proteins, AKAPs, and other
proteins discussed in this review bridge PKA catalytic subunits
with targets, through direct interaction with those protein targets
or simply by localizing PKA in their proximity. This modularity
enables vast opportunities to specify and even evolve protein
targets.

The modularity of PKA signaling presents opportunities and
weakness for the cell. On the one hand, the complexity in network

organization enables PKA to respond to many different upstream
signals and environmental inputs while producing unique cellular
outputs. It also imparts systems-level properties, including
buffering or sensitizing cells to input signals, producing
oscillatory or pulsatile dynamics via feedback loops, and
enabling bistability (Chen and Elowitz, 2021). On the other
hand, the large number of players in the network increases the
mutational targets for disease, potentially providing many routes
to unbridled PKA activity. Indeed, mutations in PKA and other
regulators in the PKA network are associated with myriad
diseases (Huang et al., 2002; Caretta and Mucignat-Caretta,
2011; Hongying Zhang et al., 2020; Liu et al., 2021; Ramms
et al., 2021). Continued dissection of the complete PKA signaling
network and the systems-level features of different signaling
modalities will continue to shed light on this important
cellular system.
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