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Quantum Walks in Periodic and 
Quasiperiodic Fibonacci Fibers
Dan T. Nguyen   ✉, Thien An Nguyen, Rostislav Khrapko, Daniel A. Nolan & Nicholas F. Borrelli

Quantum walk is a key operation in quantum computing, simulation, communication and information. 
Here, we report for the first time the demonstration of quantum walks and localized quantum walks 
in a new type of optical fibers having a ring of cores constructed with both periodic and quasiperiodic 
Fibonacci sequences, respectively. Good agreement between theoretical and experimental results 
has been achieved. The new multicore ring fibers provide a new platform for experiments of quantum 
effects in low-loss optical fibers which is critical for scalability of real applications with large-size 
problems. Furthermore, our new quasiperiodic Fibonacci multicore ring fibers provide a new class 
of quasiperiodic photonics lattices possessing both on- and off-diagonal deterministic disorders for 
realizing localized quantum walks deterministically. The proposed Fibonacci fibers are simple and 
straightforward to fabricate and have a rich set of properties that are of potential use for quantum 
applications. Our simulation and experimental results show that, in contrast with randomly disordered 
structures, localized quantum walks in new proposed quasiperiodic photonics lattices are highly 
controllable due to the deterministic disordered nature of quasiperiodic systems.

For the last decade there has been significant of efforts in the investigation of quantum walks (QWs) in photon-
ics lattices or arrays of waveguides1–5. From fundamental research in the 2000s, QWs have become one of the 
key operations in a number of quantum protocols in quantum communication and information as well as in 
quantum computing and simulation. Quantum walks have been modeled for exponential speedup in quantum 
algorithms6,7, to implement universal quantum gates for quantum computers8,9 and quantum simulations10,11. 
Successful implementation of these protocols will have an important impact on the research and development of 
quantum technologies. The first scalable quantum simulations of molecular energies have been demonstrated a 
few years ago12–14 indicating that quantum revolution 2.0 may be viable and not very far away. Photons, the quanta 
of electromagnetic field are considered as excellent “walkers” as their generation and manipulation are highly 
controllable. Furthermore, photonics technology is very mature, and many photonics systems can be operated 
ideally in room-temperature conditions. That is a huge advantage of photonics as compared to other technologies 
used in quantum applications such as ion-trapped, superconducting operating at extremely low temperatures, 
often at tens of millikelvin (mK). In light of that direction, quantum simulations with light15 and photonics quan-
tum gates16 have been proposed and developed recently. Quantum walks of photons can be realized in the form 
of discrete-time QWs using beam splitters17,18 or continuous-time QWs using evanescently coupled waveguides 
arrays or photonics lattices1–5.

Over the last ten years, localized quantum walks (LQWs) of photons has attracted a lot of attention and effort 
of investigation. Originally, the phenomenon of localization of quantum particles, the electrons in the presence 
of a disordered medium was theoretically predicted by Anderson in his paper published in 195819. The phenom-
enon, later known as Anderson localization, is a result of destructive interreference of all scattering paths of a 
wave or a quantum particle propagating in a disordered medium. The effect of a randomly disordered medium 
to the wave/quantum particle evolution can be simulated by spatially and/or temporally randomizing operations 
of the system dynamics. By doing that, Anderson localization can be realized20–25. Since the first demonstrations 
of LQWs of photons in photonics lattices20,21, the phenomenon of LQWs has attracted great interests and efforts 
of research not only for fundamental understanding but also for applications. For example, there have been pro-
posals of employing LQWs for secure transmission of quantum information23 and secure quantum memory24.

Recent discoveries in the field of localization of light are not only important to understand better Anderson 
localization, but can also be explored for important applications25–29. Meanwhile, it is well established that not 
only randomly breaking periodicity but deterministic deviations from the periodicity can also result in higher 
complexity leading to new and surprising effects. The very well-known examples of such deviated structures are 
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photonic quasi-crystals, a class of structures made from basics elements that are arranged in patterns but lack 
translational or rotational symmetries. From that definition, a quasiperiodic structure can be considered as in 
between the randomly disorder systems and the periodic ones. Localization of light has been discovered as earlier 
as in 1980s in several photonic quasi-crystals30,31. In the following decades, the effect has been realized in other 
quasiperiodic structures such as quasi-crystalline Fibonacci dielectric multilayers (FDML)32,33, in semiconductor 
multiple quantum-wells34, two-dimensional (2D), and three-dimensional (3D) quasi-crystal structures35,36.

At this point, we want to stress that due to the randomness nature of Anderson localization, quantifying the 
localization effect would require great efforts. Usually, it requires a large number of realizations on many struc-
tures that have the same degree of disorder. The final results are averaging over a large number of realizations. For 
the same reasons, LQWs in photonics lattices have been conventionally realized on many arrays composed with 
evanescently coupled waveguides whose positions are randomly disordered. As a result, quantification of LQWs 
in disordered arrays of waveguides requires many such structures which is difficult in practice. More complicat-
edly, the randomness of those structures must be controlled within a defined range of the disorder so that the 
disorder-induced localization can be quantified20–22. From the description, experimental realizations of LQWs 
require great efforts and resources20–22. Meanwhile, it is well established that localization of light can be realized 
in quasi-crystals or quasiperiodic photonics structures30–33. In such cases, deviations from periodicity provide 
deterministic disorders lead to localizations in the quasiperiodic systems. Because of the nature of deterministic 
disorder in quasiperiodic structures, localization can be realized deterministically without averaging over many 
realizations. In that spirit, we have recently proposed theoretically new quasiperiodic arrays of waveguides that 
are constructed with quasiperiodic Fibonacci and other sequences37,38. These arrays of waveguides represent a 
new class of quasiperiodic photonics lattices (QPLs) possessing both on- and off-diagonal deterministic disorders 
that can be used for deterministically realizing LQWs37,38. Furthermore, the simple construction rules in the new 
proposed QPL make it easy to create symmetrically distributed QPLs. It is worth mentioning that, LQWs with 
symmetrical distributions are required for quantum memory applications24.

So far, QWs of photons have been investigated in a number of integrated photonics lattices, such as silicon 
oxynitride waveguides1, e-beam lithography fabricated waveguide lattices on an AlGaAs substrate2,3, laser-writing 
silica glass waveguides4 and borosilicate glass waveguides5. Note that, in these photonics lattices the waveguides 
in the ‘walking region’ are close enough to ensure evanescent couplings among them. It is well-known that, cou-
plings between silicon-based waveguides (mode field diameter MFD ~ 1 micron) with single-mode (SM) optical 
fiber (typically MFD ~ 10 micron) are usually of very high loss (more than 20 dB) and require significant efforts. 
Moreover, intrinsic background losses in silicon waveguides (0.1 dB/cm to ~1 dB/cm) are few orders of magni-
tudes higher than that of optical fibers (~0.2 dB/km) for telecom signals. High insertion loss including intrinsic 
and coupling losses could be a very negative factor for scaling up numbers of waveguides in silicon-photonics 
lattices for realizing QWs. Meanwhile, laser-writing technique can write large number of waveguides on glass, 
for example a lattice of 49 × 49 = 2401 waveguides5. However, laser-written glass waveguides usually have small 
index contrasts, resulting in weak confinement and sensitivity to the imperfections and perturbations as clearly 
indicated in recent experiments in which QWs characteristics were completely distorted in just about 1 cm of 
propagation5. The optical fiber-based QWs systems such as multicore fibers would significantly reduce or even 
eliminate these problems. The multicore fibers with extremely low insertion loss would be critical for scalable 
platforms for QWs, and quantum photonics computing and simulations to solve large-size problems which are 
intractable on classical computing.

In this paper, we have demonstrated for the first time QWs and LQWs in a new type of optical fibers having 
cores constructed with periodic and quasiperiodic Fibonacci sequence, respectively. Good agreement between 
theoretical and experimental results has been achieved. The new multicore-ring fibers (MCRF) provide a new 
scalable platform for experiments of QWs and other quantum effects that require large numbers of waveguides. 
More importantly, our new Fibonacci MCRF (FMCRF) provide a new class of photonics lattices possessing both 
on- and off-diagonal deterministic disorder for realizing LQWs deterministically. The proposed FMCRFs are sim-
ple and straightforward to make and have a rich set of properties that are of potential use for quantum appli-
cations. Furthermore, our simulation and experiment results show that, in contrast with randomly disordered 
structures, LQWs in quasi-periodic ones are highly controllable due to the deterministic disordered nature of 
quasi-periodic systems. At this point we want to stress that our results, both modeling and experiment in this 
work are restricted to the problem of single-photon QWs in MCRFs. The phenomena, although we do not explore 
purely quantum or non-classical nature of photons, have played meaningful roles for understanding and devel-
oping protocols of quantum applications. More details of this point will be elaborated later in the Discussion and 
the Method sections of this paper.

New Periodic and Quasiperiodic Multicore Ring Fibres
In this section, we will present in details the concept of new multicore ring fibers as platform for realizing QWs 
and LQWs. In general, our new type of fibers - the multicore ring fibers (MCRF) are designed and fabricated with 
a configuration of a ring of cores and is compact in comparison with planar arrays of waveguides used to realize 
QWs on a line1–4. Figure 1 shows the diagram of MCRF and the image of the fabricated fiber of 39 cores and the 
image of fiber that is illuminated and overfilled with light of wavelength 1.55 μm. All the cores of the fiber have 
diameter a = 4.5 μm, R1 = 120 μm, and R2 = 160 μm.

The fiber shown in Fig. 1 is designed and fabricated with all cores of identical SM waveguides that are regularly 
periodic in a circular ring. The image of the overfilled fiber shows there is variation of the cores, and our character-
izations show core diameter variation of about +/−2%. This periodic multicore ring fiber is called multicore-ring 
fiber (MCRF) for short. In our experiments of single-photon QWs, we will launch signal into the center core of 
the core ring, and the QWs process will take place from the center to the end cores of the two symmetrical arms. 
Notice that, the two end-cores of the two arms should not be too close to avoid coupling between these two 
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cores that would distort distribution of the QWs on a line, which do not have such coupling in a planar array of 
waveguides1–4.

For the quasi-periodic multi-core ring fibers, the ring of cores is constructed with a Fibonacci sequence with 
two different SM waveguides A and B (the fiber is called Fibonacci MCRF or FMCRF). For example, waveguide A 
and B is characterized by VA = πaANAA/λ, and VB = πaBNAB/λ, respectively, where aA(B) stands for core diameter 
and NAA(B) is the numerical aperture of waveguide A(B). Note that, the numerical aperture NA can be determined 
by the index difference between core and clad Δn = ncore − nclad, and we will use Δn to characterize waveguides 
in our calculations. In general, the construction rule for the cores of a fiber with Fibonacci j-th order are the same 
as in the Fibonacci arrays of waveguides or photonic lattices37,38. The difference between the two structures is the 
ring of cores in FMCRF instead of linear arrays of cores in Fibonacci array of waveguides. The construction rule 
for the cores of Fibonacci jth order is defined as

= … …− −F S S S S S S S , (1)j j j j j1 2 1 2 1

where S1, S2 … Sj are Fibonacci elements defined as

= = = .− −S S S with S A S B, , (2)j j j2 1 1 2

Here, A and B are two different SM waveguides as described above (see more details of the Fibonacci quasipe-
riodic photonic lattice in our previous works37,38).

As examples, Fig. 2 shows diagrams of structures of core rings of 4th, 5th and 6th order of FMCRFs. Notice 
that, these three core rings have the same ring radius for convenient discussion but not necessary. The red arrows 
indicate the input core, which is the center of the ring composed of two symmetrical arms. S1, S2 … Sj are the 
Fibonacci elements of jth order defined in Eq. (2) above and are indicated by color circles. From the definition 
in Eq. (1), it is easy to calculate the number of cores for the 4th, 5th and 6th order FMCRFs are 13, 23 and 39, 
respectively. It is clear from Fig. 2 that the core rings constructed with Fibonacci sequences of two different SM 
waveguides A and B are on-diagonal quasiperiodic due to the Fibonacci distributions of propagation constants βA 
and βB (see some description of on- and off-diagonal disordered arrays of waveguides in [21]). Notice that, the 
coupling coefficients between the nearest waveguides are the functions of the overlapping between the modes and 
the propagation constants of these waveguides39. Consequently, the coupling coefficients in our new FMCRFs also 
have quasiperiodic – or deterministically disordered distribution. Therefore, our FMCRFs provide platforms hav-
ing both on- and off-diagonal deterministic disorders for realizing LQWs deterministically (e.g., both propagation 
constants and coupling coefficients are quasiperiodic).

Quantum Walks in Periodic and Quasiperiodic Multicore Ring Fibers
In this section, first we will present the simulation of QWs and LQWs in MCRF and FMCRF, respectively. As 
mentioned in the Introduction, in this work we restricted ourselves to the problem of single-photon QWs. In 
general, simulations of single photon QWs in irregular arrays of waveguides are extremely difficult and numeri-
cal solutions are necessary. Especially if the propagation loss is included, solving numerically the Linblad equa-
tion would require large resources including computing time and memory40,41. However, we can make use of 
the very important fact that single photons QWs evolution are not different with propagation of coherent light; 
the distribution of light intensity represents the probability of photon detected at any position1–3,20,42. In fact, 
several important experiments of single photons QWs have been performed with coherent laser sources1,3,20. 
Theoretically, the description of a coherent light propagation in photonic lattices is completely analogous to the 
quantum description of the evolution of single photons QWs on the lattices2,3,20,42. As expected, experimental 
demonstrations of single photons QWs in photonic lattices are in very good agreement with the theoretical results 
in regular lattices2,3. Therefore, we can take advantages of the beam propagation method (BPM), one of the most 
effective simulation methods of light propagation to simulate the problem of single photons QWs in photonic lat-
tices. We have developed our own Matlab program to simulate single photons QWs in periodic and quasiperiodic 
arrays of waveguides37,38, and MCRFs in this works. Note that BPM has been originally developed for decades43,44 
and commercial software is also available. Our BPM programs have been successfully applied to simulate and 

Figure 1.  Diagram of MCRF with 39 identical SM cores (a), image of the fabricated fiber (b), and the image of 
the fiber that is overfilled with light of wavelength 1.550 μm.
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design multimode cladding-pumped Er-doped fiber amplifiers45, Yb-doped multicore fiber lasers for the coherent 
Ising machine46,47, and also for single-photon quantum QWs in regular and irregular arrays of waveguides37,38. 
Details of the BPM method are presented generally in Refs. 43,44, its applications for simulating QWs in photonic 
lattices37,38 and the simulation results of QWs in MCRF and FMCRF are presented as follows.

The simulations in Fig. 3 show the probability distribution of QWs in periodic MCRF with photons spread 
across the lattice by coupling from one waveguide to its neighbors in a pattern characterized by two strong “bal-
listic” lobes as in a typically normal QWs on a line. Meanwhile, the results for FMCRFs are structurally differ-
ent: LQWs are clearly shown in quasiperiodic Fibonacci multicore fibers FMCRFs. Furthermore, symmetrical 
distributions of LQWs in FMCRFs can be achieved due to the symmetry of the quasi-periodic ring of cores in 
FMCRFs.

In order to demonstrate QWs and LQWs in periodic and quasiperiodic Fibonacci MCRFs (or FMCRFs), 
we have designed and fabricated this new type of fiber with ring of cores, both periodic and quasiperiodic ring 
of cores. Design and images of MCRF and FMCRF are shown in Fig. 4(a–d), respectively. We have performed 
experiments to realize single photon QWs in those fibers. Photon distribution of QWs in the MCRF and FMCRF 
are presented later in this section.

Figure 2.  Diagram of ring of cores: 4th order FCRF4 with 13 cores (a), 5th order FCRF5 with 23 cores (b), and 
6th order FCRF6 fiber with 39 cores (c). Red arrow indicates input core.

Figure 3.  Probability distribution of photons in quantum walks: (a) regular MCRF with 13 cores, (b) regular 
MCRF with 23 cores and (c) regular MCRF with 39 cores, (d) FMCRF4 with 13 cores, (e) FMCRF5 with 23 
cores and (f) FMCRF6 with 39 cores. Signal wavelength λ = 1.550 μm.
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The two fabricated fibers, one is a periodic core ring - MCRF with 39 identical SM waveguides having core 
diameter a = 4.5 μm, index difference Δn = ncore − nclad = 0.0035; core-ring radius R1 = 120 μm, and clad diam-
eter R2 = 160 μm. The quasi-periodic FMCRF is 6th Fibonacci order that has R1 and R2 are the same as in MCRF, 
but its 39 cores are composed of two different SM waveguides A and B with the same core-diameter a = 4.5 μm, 
and different index differences ΔnA = 0.0045 and ΔnB = 0.0035. Note that, A- and B-waveguides are depicted by 
blue and yellow solid circles in Fig. 2 above. Our characterizations show the variation of core diameters in FMCRF 
is about +/−3% which is larger than +/−2% in MCRF which can be attributed to the different materials used in 
cores A and B-waveguides of FMCRF.

The MCRF and FMCRF both with 39 single mode cores were characterized using a cross-polarization micros-
copy. The microscopy system is a Nikon, high magnification optical microscope with error of ±0.05 μm. The aver-
age core diameter measured is ~4.45 μm and ~4.60μm for MCRF and FMCRF, respectively. The average distance 
from center-to-center of neighboring cores is ~16.89 μm and ~16.80 μm for MCRF and FMCRF, respectively. The 
index observed from crossed-polarization indicate that the CRF have identical refractive index for all of cores, 
whereas the FCRF have different core refractive indices grouped as described in previous sections. The core ring 
radius is approximately ~120 μm and fiber radius is approximately ~158 μm.

Demonstration of quantum walks in MCRF and FMCRF were conducted with a stripped fiber, at approx-
imately 4-cm. The fiber is placed on a v-groove in an imaging system shown in Fig. 5. A tunable source from 

Figure 4.  (a) Schematic of multicore fibers MCRF of 39 cores that are regular-spacing in a ring of radius R1. All 
cores have same index difference Δn and core size a and are single mode, (b) Image of cross section of MCRF 
fabricated with 39 cores. (c) Schematic of Fibonacci multicore ring fiber FMCRF of 39 cores that are regular-
spacing in a ring of radius R. There are two different SM waveguides A (blue) and B (orange) having same core 
diameter a but difference ΔnA = ncoreA − nclad and ΔnB = ncoreB − nclad. The circles around groups of cores are 
for different Fibonacci elements defined in Eq. (2). (d) Image of cross section of FMCRF fabricated with 39 
cores. All parameters of the two fabricated fibers are detailed in the main text.

Figure 5.  Experimental set up. A coherent 1550 nm laser output is coupled into a single mode fiber (SMF) 
attached onto an XYZ stage. Light from SMF is then butt-coupled to the MCRF at the central core indicated by 
the black inset with red circle. The output from MCRF is imaged onto a CCD camera, green inset. The SMF fiber 
is chosen such that the MFD matches that of the MCRF.
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1510–1590 nm laser illuminates the MCRF/FMCRF. The steps taken to identify the central core and the measured 
quantum walk distribution is as follows: First, we Illuminate subsections of the fiber of interest (FOI) such that 
cores are illuminated. As an example, the image of the illuminated MCRF is shown in Fig. 1c. Next, we combine 
illumination images to identify the position of each cores using the Matlab/Labview algorithms to determine the 
diameter and position of each core of the FOI. From that characterization the position of the central core is deter-
mined for the input signals in the quantum walks experiments. Once we know the position of the input core, we 
launch a coherent beam of light into it by butt-coupling with a SM fiber that is mode-matched to the input core 
of MCRF and FMCRF. The image of output facet is captured and output signal from all cores are measured. We 
repeat those steps for wavelength sweep from 1530–1559 nm to account for fiber length variations. Matlab codes 
are written to calculate the total intensity for each core.

We show in Fig. 6 both simulation and experimental results of single photons QWs in MCRF and FMCRF. 
Figure 6a,c are the simulations and Figs. 6b,d are experiment results of photon distribution of QWs in MCRF and 
FMCRF, respectively.

The results in Fig. 6(a,b) show probability distributions of single photons QWs in periodic MCRF spread 
across the lattice by coupling from one waveguide to its neighbors in a pattern characterized by two strong “bal-
listic” lobes. Note that the results are measured at ~4.1 cm of fiber length, and typical characteristics of QWs on a 
line are clearly shown. The experimental data is in very good agreement with simulation results, both qualitative 
and quantitative. It is worth to mention here that experiments of QWs in [2, 3] with lattice of identical waveguides 
fabricated on an AlGaAs substrate waveguide is about in 8 mm long, in laser-writing photonic lattices5 is less than 
1 cm. The QWs behavior can only be preserved at around 9.81 mm of the laser-written waveguides lattice, and it 
is completely distorted if walking longer distances. Our experimental results show QWs characteristics are clearly 
preserved in ~ 4 cm length of MCRF indicate that both losses and imperfection in our MCRF are very good for 
QWs experiments.

In Fig. 6(c,d) we show the results of QWs in FMCRF at ~4.15 cm. As stated earlier, this quasiperiodic fiber – 
the FMCRF is composed of two different waveguides of different materials. As a result, the FMCRF has variation 
of core diameters +/−3% which is larger than in MCRF. Even with that, the strong localization in the center 
core as predicted in the simulation is clearly preserved in Fig. 6d. However, the imperfection of the core sizes 
and core-to-core distances is the reason for slight distortion of QWs behavior resulting in an unsymmetrical 
distribution of photons observed in the experiment. Meanwhile, modeling results in the ideal conditions predict 

Figure 6.  (a) Calculated probability photon distribution of quantum walks in the MCRF, and (b) experimental 
data of photon distribution at ~4.1 cm of MCRF. Both simulation and experimental results show the typical 
feature of QWs with two strong lobes at the end of walking length. (c) calculated probability photon distribution 
of quantum walks in the FMCRF, and (d) experimental data of the photon distribution at ~4.15 cm of FMCRF. 
The simulation and experimental results show strong localization at the center core. Details of the fibers and 
experiments are presented in the main text.
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a symmetrical distribution of QWs as shown in Fig. 6c. It is clear that the experimental results are in a very good 
agreement with the simulations, except for small discrepancies due to unavoidable imperfections.

The simulation and experiment results in Fig. 6 show two typically different QWs in periodic (ordered) and 
quasiperiodic (deterministically disordered) core rings. In the ordered system - the MCRF, the expected dis-
tribution for typical QWs on a line has been observed experimentally with two strong “ballistic” lobes. On the 
hand, the quasiperiodic or deterministically disordered Fibonacci MCRF shows localized QWs as predicted by 
the simulations. Note that our experimental results of QWs and LQWs in MCRF and FMCRF, respectively can be 
further improved as several factors such as coupling misalignment, surface roughness, reflection by air/cladding 
interface can be reduced significantly from the current set up. Misalignment, roughness, air/cladding interfaces 
cause distortion and unwanted localization and interferences in the fiber. These issues can be resolved using index 
matching oil to reduce reflections at the interface between cladding and air. To achieve a short-length fiber with 
minimal roughness to the end faces from poor cleaving or from unwanted back-reflection from flat end faces, 
we fabricated a housing unit for the fiber made of angled-ferrules and/or canes filled completely or in part with 
index-matching oil and high-refractive index adhesive. The ferrules are polished at an angle or flat depending on 
tolerance for back-reflection. Optimization of the fiber-drawing process will improve the variation of core sizes 
in the fibers.

It is clear from simulation and experimental results in Fig. 6, LQWs in quasiperiodic Fibonacci MCRF are 
predictable and controllable due to the deterministic disorder nature of the system. Moreover, symmetrically 
distributed LQWs can be realized not only in the Fibonacci MCRF as demonstrated in this work, but also in 
the new proposed class of QPLs constructed with Fibonacci and other quasiperiodic sequences37,38. These are 
unique features of LQWs in QPLs and potentially important for several quantum applications. For example, 
Chandrashekar and Busch have recently proposed employing symmetrically distributed LQWs for quantum 
memory applications24. In their proposal, temporally disordered operations in spatially ordered systems are used 
to realize symmetrically distributed LQWs. However, it is very challenging to implement the approach because 
multiple quantum coins operations are very difficult in practice24,48.

It is important to note that localizations of light in QPLs have recently been investigated theoretically and 
experimentally49,50. These QPLs are arrays of identical waveguides constructed with quasiperiodic Fibonacci 
sequence in distances. In general, those QPLs have the same definitions of Fibonacci elements as in Eq. (1) of this 
work. However, in these works A and B were defined as the two fundamental distances 1 (unit) and golden ratio τ 
= 1.618 between the nearest waveguides, respectively49,50. Because all waveguides in these Fibonacci elements are 
identical, quasiperiodic properties were attributed to the golden ratio spacing of Fibonacci sequence49,50. These 
QPLs are constructed with Fibonacci spacing sequence (FSS) or FSS-QPLs for short. In contrast, quasiperiodic 
properties of our new class of QPLs that have recently been proposed37,38 and are demonstrated in this work are 
determined by quasiperiodic sequences such as Fibonacci, Thue-Morse etc. of two different waveguides A and 
B. As pointed out in our previous work38 it is not necessary to have spacing with golden ratio for realizing LQWs 
in FSS-QPLs. We have numerically demonstrated that the quasiperiodic Fibonacci sequence itself is responsible 
for deterministic disorders in FSS-QPLs even with different spacings38. Finally, it is worth to stress here that the 
FSS-QPLs could be classified as off-diagonal deterministic disordered QPLs. These FSS-QPLs are composed of 
identical waveguides (same propagation constants) but they have quasiperiodic distributions of coupling coeffi-
cients (off-diagonal) due to quasiperiodic spacings. Meanwhile our proposed QPLs, and the Fibonacci MCRFs 
in particular, are constructed with Fibonacci sequences of two different waveguides generating deterministic 
disorders of both propagation constants (on-diagonal) and coupling coefficients (off-diagonal).

Discussion and Conclusion
First, it is worth noting that although single-photon QWs do not explore the true quantum nature of photons, the 
effect and its demonstration are very important not only for understanding the QWs effect itself, but also very 
meaningful in research and developing protocols of quantum applications16,51–55. More importantly, there have 
been important quantum applications that make use of single-photon quantum walks, in particular in quantum 
communication and quantum information51. In quantum communication, the two photons of an entangled pair 
do not necessarily propagate together in the same devices and processing singlephotons is critical for quan-
tum communication. Several well-known quantum system protocols, for example the quantum key distribution 
(QKD) protocol BB8452, and KLM protocol of linear optical quantum computing (LOQC) demand single pho-
tons53. The QKD BB84 demand single photons traveling over a channel, first proposed by Bennett and Brassard in 
198452 and discussed with emphasizing the important of single photons in quantum applications51. Significantly, 
in 2000 Knill, Laflamme and Milburn proposed a new protocol (KLM protocol) aiming at creation of universal 
quantum computers using linear optical elements, single photon sources and photon detectors53. Since then, 
the KLM protocol have inspired great efforts of investigation of QWs of photons in photonic lattices1–5,37,38,42. In 
addition to that, an efficient idea for quantum repeaters based on single-photon sources has been first proposed 
by Sangouard et al.54, and later a protocol based on that idea has been implemented with atomic ensembles and 
a single photon source with repetition rate of 10 MHz55. Regarding to quantum walk phenomena in photonic 
lattices, the authors of Ref. 42 present a very good review both on single-photons and multiple-photon QWs. As 
for potential applications of single photons QWs in Fibonacci MCRFs, or more general – quasiperiodic photonic 
lattices, one can use two separate structures for storing and retrieving each photons of entangled pairs in quan-
tum memory applications37,38. Secondly, given the importance of single photons QWs, we want to stress here that 
the results of multi-photon quantum walks would explore true quantum nature of photons and therefore can be 
directly used in many important applications in quantum technology. Therefore, theoretical and experimental 
investigation of multi-photon QWs in general, particular in our periodic and quasiperiodic Fibonacci MCRFs 
have been undergoing in order to gain meaningful results for different quantum applications.
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In conclusion, for the first time QWs and LQWs have been demonstrated in periodic and quasiperiodic mul-
ticore ring fibers, respectively. The new multicore-ring fibers (MCRF) provide a new scalable platform for exper-
iments of QWs and other quantum effects that require extremely low insertion and large numbers of waveguides. 
The core structure in quasiperiodic FMCRF is constructed with Fibonacci sequence provides a new class of QPLs 
that possess both on- and off-diagonal deterministic disorders. Although the structures of the quasi-periodic 
Fibonacci lattices are straightforward to fabricate, the outcome results of LQWs are predictable and controlla-
ble, in contrast with LQWs in randomly disordered systems. The new class of QPL thus provide platforms for 
realizing LQWs and for investigation of quantum effects with both on- and off-diagonal deterministic disor-
ders. Furthermore, the new proposed jth-order QPLs are constructed as an orderly sequence chain of all ele-
ments up to jth-order instead of individual jth-order Fibonacci elements as in refs. 49,50, which are convenient 
to make QPLs symmetric that could be of benefit for some special applications24,48. Furthermore, the rule of 
construction for symmetrical QPLs can be applied with other quasiperiodic sequences such as Thue-Morse48,56, 
and Rudin–Shapiro48 sequences. It is worth noting that high-dimensional QWs in multimode cores have recently 
demonstrated57 revealing some new and interesting results. Using wavefront shaping, the authors can control 
the two-photon states in multimode fiber core that support ~380 modes57. Our results in this work are with 
single-mode cores at photons wavelength 1.55 μm, therefore the results are conventional 1D QWs on a line. 
It is interesting to point out that the cores of our MCRFs both periodic and quasiperiodic ones are multimode 
in shorter wavelengths, for example 850 nm. Therefore, our MCRFs can be used as new platforms for investi-
gating multi-dimensional QWs using 850 nm light. Finally, we would like to stress that although some appli-
cations would benefit from small-scale structures as our current MCRF scale, or even smaller structures like 
on-chip scales, we would like to stress that other applications would require much longer-distance lengths of 
MCRFs. In such situations, special deployments conditions and efforts must be considered for maintaining phase 
and polarization stability in multicore fibers. Several methods have been recently proposed and developed for 
auto-compensating phase and polarization in quantum cryptography in multicore optical fibers58–60. We believe 
that modifications of these methods can be applied in many different quantum problems including the one of 
QWs in our MCRFs.

Methods
Fabrication of the multicore ring fibers. In order to demonstrate QWs and LQWs in periodic and quasi-periodic 
MCRFs, we have designed and fabricated this new type of fiber with ring of cores, both periodic and 
quasi-periodic ring of cores. The fabrication method of MCRFs and FMCRFs includes fabricating disc-shaped 
segments for cladding glass by polishing flats and drilling bores in the direction orthogonal to the flats stacking a 
number of disc-shaped segments to form a combined cladding glass part, so that bores of all the disks match, and 
inserting continuous core cane segments into the bores sealing flats of the disc segments to each other, sealing 
bores to the core canes, and drawing multi-core preform into a multi-core fiber. This method provides a robust 
and cost-effective process for manufacturing of precision multi-core fiber. Core-drilling provides precision and 
robustness. Stack-sealing enables the use of short and bulky precision drilled parts of cladding glass for construct-
ing a multi-core fiber preform. Such preform may also include solid end pieces of glass for improved utilization of 
precision drilled parts in the fiber draw. Vacuum is used is used to hold the stack together in the furnace while it 
is being sealed. Sealing is achieved in all directions simultaneously. The use of temperatures above glass softening 
point enables sealing surfaces with just fine grind finish.

Modeling and simulation. As single photons QWs do not behave any differently from classically coherent 
wave propagation, and the distribution of light intensity corresponds to the probability distribution of photons. 
Therefore, we can use the beam propagation method (BPM)43–45, one of the most effective methods of light prop-
agation simulation for simulating single photons QWs in MCRFs. We start from the wave equation in paraxial 
approximation for the slowly varying electric field E(x,y,z) propagating in z-direction

= + .
d
dz

E x y z D V E x y z( , , ) ( ) ( , , )
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ˆ ˆ
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In Eq. (4) π λ= =k n k n2 /0 0 0  where n0 is the background or reference refractive index and λ is the free-space 
wavelength, Δ = −n x y z nn ( , , ) 0 is the refractive-index profile relative to the reference refractive index, and α 
is the power absorption/loss of the waveguide. A small propagation step is implemented using the following 
approximation:

ˆ ˆ ˆ ˆ ˆ
+ ∆ = ≈ .+ ∆ ∆ ∆ ∆

E x y z z e E x y z e e e E x y z( , , ) ( , , ) ( , , ) (5)D V z D z V z D z
( ) 2 2

The BPM solution, e.g., Eq. (8) can be solved very effectively by fast Fourier transformation (FFT) algo-
rithm43–45. In simulations, the input field at input core (coordinates x0, y0) has the form
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here, ω ω ω= =x x0 0 0 is spot-size of the input beam with amplitude A0.
It is worth to stress again that the modeling method described above is valid only for problems of single photon 

QWs. Modeling indistinguishable or entangled photons QWs is more complicated, aiming to explore the 
non-classical nature of photons. Even in the simplest case of two indistinguishable photons injected into the 
photonic lattice, non-classical nature of light can be observed theoretically and experimentally1,3. The results show 
that when both indistinguishable photons are coupled to a single waveguide at the center of the lattice, the corre-
lation matrix is a simple product of two single-photon distributions, thus showing no quantum interference. 
However, when the two photons are coupled to two adjacent waveguides the two photons exhibit bunching and 
will emerge from the same side of the lattice, which can be explained as a result of a generalized Hong-Ou-Mandel 
interference1,3,42. Significantly, the results show that the photon density = < >†n a aq q q  is directly determined by 
the classical light intensity and carries no quantum signature, here †a aandq q are creator and annihilator operator 
of photon, respectively. Furthermore, the results also show this behavior hold for not only separable but also path- 
entangled input states3,42. This fact indicates that our modeling and simulation method in this work is still relevant 
as the method could provide important information of the photon density in problems of multiphoton QWs. 
Again, quantum effects can be observed in the correlation function Γ = < >† †a a a aq r q r q q, . The evolution of corre-
lated or entangled particles in randomly disordered lattices was investigated in off-diagonal disordered lattices61. 
The results show that while the particle density nq evolves following the single-particle dynamics and exhibits 
Anderson localization, the two-particle correlation Γ = < >† †a a a aq r q r q q,  develops unique features that depend on 
the quantum statistics of the particles and their initial separation61. Investigation of multiphoton QWs in MCRFs, 
and Fibonacci MCRFs would reveal new features of photons in periodic and quasiperiodic photonic lattices.

Data availability
The data that support the plots within this paper are available from the corresponding author on reasonable 
request.
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