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Abstract
Semantic diversity refers to the degree of semantic variability in the contexts in which a particular word is used. We have
previously proposed a method for measuring semantic diversity based on latent semantic analysis (LSA). In a recent paper,
Cevoli et al. (2020) attempted to replicate our method and obtained different semantic diversity values. They suggested that this
discrepancy occurred because they scaled their LSA vectors by their singular values, while we did not. Using their new results,
they argued that semantic diversity is not related to ambiguity in word meaning, as we originally proposed. In this reply, we
demonstrate that the use of unscaled vectors provides better fits to human semantic judgements than scaled ones. Thus we argue
that our original semantic diversity measure should be preferred over the Cevoli et al. version. We replicate Cevoli et al.’s
analysis using the original semantic diversity measure and find (a) our original measure is a better predictor of word recognition
latencies than the Cevoli et al. equivalent and (b) that, unlike Cevoli et al.’s measure, our semantic diversity is reliably associated
with a measure of polysemy based on dictionary definitions. We conclude that the Hoffman et al. semantic diversity measure is
better-suited to capturing the contextual variability among words and that words appearing in a more diverse set of contexts have
more variable semantic representations. However, we found that homonyms did not have higher semantic diversity values than
non-homonyms, suggesting that the measure does not capture this special case of ambiguity.
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Introduction

A wealth of work indicates that the contexts in which we
encounter words have powerful effects on how we learn and
represent their meanings (Firth, 1957; Landauer & Dumais,
1997; Schwanenflugel et al., 1988). We and other researchers
use the term semantic diversity to refer to the degree of se-
mantic variability in the contexts in which a particular word is
used (Hoffman et al., 2011; Jones et al., 2012). In a paper
published in BRM in 2013, we proposed a measure of seman-
tic diversity based on latent semantic analysis (LSA)(Hoffman
et al., 2013).We argued that words that appear in a wide range

of semantically diverse contexts are likely to have high vari-
ability in their meanings, aligning semantic diversity with no-
tions of lexical ambiguity and, in particular, polysemy. We
proposed our semantic diversity measure provided a sensitive
and objective measure of the degree to which a word’s mean-
ing is ambiguous.

In a recent paper, Cevoli et al., (2020) presented data that
challenge this interpretation of semantic diversity. They
attempted to replicate our derivation of semantic diversity
values by applying LSA to the British National Corpus
(BNC). However, their results diverged somewhat from those
we had reported: they found a correlation of r = 0.72 between
their SemD values and those we originally reported.1 Cevoli
et al. suggested that differences stemmed from a specific dif-
ference in the methods used when applying LSA: after
performing singular value decomposition (SVD) to obtain
vector representations of each context, they scaled these vec-
tors by their singular values while we did not. Cevoli et al.
opted to use scaled vectors in their computations “because

1 We are able to replicate this correlation using the data uploaded to OSF by
Cevoli et al.
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scaling by the singular values is a key feature of LSA
methods” (p. 4). Using their scaled semantic diversity values,
they assessed the relationship between lexical ambiguity and
semantic diversity in stimuli used in published studies that
manipulated polysemy and homonymy. They found that their
scaled semantic diversity values did not co-vary with either
polysemy or homonymy. They concluded that semantic diver-
sity is not related to ambiguity in a word’s meaning and is
instead determined by “a word’s spread across topics and
types of contexts”.

In this reply, we argue that the central question here—how
components of a term-document matrix as extracted by SVD
relate to important psycholinguistic constructs—is an empiri-
cal one rather than an analytic one.We demonstrate that, when
LSA is applied to the BNC, unscaled vectors are better pre-
dictors of human semantic judgements than scaled vectors and
better capture the semantic relationships between different
contexts in the corpus. We then replicate Cevoli et al.’s anal-
yses of the effects of semantic diversity on word recognition
performance and in stimulus sets used to investigate ambigu-
ity, comparing their semantic diversity measure with ours. We
refer to the semantic diversity values reported in our 2013
paper as H13_SemD and the new values computed by
Cevoli et al. as C20_SemD. We show that H13_SemD has
similar effects on word recognition as C20_SemD but greater
predictive power. In three stimulus sets used to investigate
lexical ambiguity, we show that greater polysemy is reliably
associated with higher H13_SemD values, but is unrelated to
C20_SemD. Homonymy, on the other hand, is unrelated to
either semantic diversity measure. Together these analyses
suggest that unscaled vectors like those described by
Hoffman et al. (2013) provide a more useful estimate of the
psychological constructs of interest. We end by considering
implications for what semantic diversity is and how it should
be measured.

The effect of vector scaling on latent semantic
vectors

The method Cevoli et al. used to produce the C20_SemD
values differed from our procedures in two ways. First,
Cevoli et al. lemmatised the tokens in the BNC prior to anal-
ysis and excluded function words; in contrast, we used the
original inflected wordforms in the corpus, including function
words. Second, they scaled the vectors representing each con-
text in the corpus by the singular values. It is worth noting that
when Cevoli et al. followed our procedures exactly (inflected
corpus and no scaling) they obtained semantic diversity values
that were extremely highly correlated with the H13_SemD
values (r = 0.98). Thus, we can be confident that any differ-
ences between C20_SemD and H13_SemD values stem from
either the lemmatisation or the vector scaling. Cevoli et al.

showed that lemmatisation had little effect on semantic diver-
sity values: they calculated semantic diversity values from the
lemmatised corpus (but without vector scaling) and these cor-
related with H13_SemD values at r = 0.93. The discrepancy
comes therefore from the scaling.

To understand the significance of this difference, it is nec-
essary to briefly outline the steps involved in LSA. LSA is
performed on a corpus partitioned into discrete documents or
contexts. To investigate semantic diversity, we and Cevoli
et al. used the BNC partitioned into contexts of 1000 words.
The corpus is used to generate a term-by-context matrix which
logs the number of occurrences of each term in each context.
Values in the matrix are weighted (here using a log-entropy
scheme) then decomposed into k orthogonal components
using SVD, which re-represents the original matrix as a prod-
uct of three matrices. For n words and m contexts, and
extracting k orthogonal components, the procedure approxi-
mates the original data A as:

A∼ ¼ U S V

where U is an n x k matrix that expresses each term as a k-
dimensional vector, S is a diagonal matrix containing singular
values for each of the k dimensions , and V is a k x m matrix
that expresses each context as a k-dimensional vector.
Typically k is small relative to both n and m, so the SVD
represents a lower-rank approximation of the original data.
The current work uses k = 300, so each word and context is
represented in a 300-dimensional space.

In LSA, the effect of these steps is to represent terms and
contexts in a high-dimensional “semantic space” in which
terms that are used in similar contexts have similar vectors
and, similarly, contexts that contain similar terms have similar
vectors. The cosine similarity between two terms or two con-
texts (in their respective spaces) captures information about
their semantic relatedness, following the general principle that
meaning similarity can be inferred from patterns of lexical co-
occurrence in language (Firth, 1957; Landauer & Dumais,
1997; Lund & Burgess, 1996; Mikolov et al., 2013). To esti-
mate the semantic diversity of a word, we took all of the
contexts in which that word appeared and computed the mean
pairwise cosine similarity between them. High mean similar-
ity between contexts indicates that the word is used in related,
semantically homogeneous contexts that discuss similar
topics, while a low level of similarity indicates greater diver-
sity in usage.

In some natural-language workflows, the vectors are scaled
by their singular values before cosines are computed. This
simplymeans that the first element of each vector is multiplied
by the first singular value, the element by the second singular
value and so on, and the cosines are then computed between
the scaled vectors rather than the original vectors. As a con-
sequence, dimensions that have high singular values “count
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more” in the estimation of pairwise similarity between vec-
tors. Scaling is described as a standard part of the analysis
workflow in the Handbook of LSA(Martin & Berry, 2007).
In psycholinguistic research, however, such a step amounts
to a hypothesis about how the latent spaces estimated by
SVD relate to the psychological similarities encoded in the
human semantic system. Specifically, scaling assumes that
dimensions are strongly important for reconstructing the orig-
inal data matrix (captured in diagonal matrix S above) are
likewise more important in determining psycho-semantic sim-
ilarity between two terms or two contexts. An alternative hy-
pothesis is that psycho-semantic similarities are better
expressed by the unscaled embeddings. Neither hypothesis
is transparently true analytically, so we see this as an empirical
question.

In the Python library Cevoli et al. used to perform LSA
(scikit-learn) scaling is performed automatically, but this step
is by no means universal. For example, the commonly used
LSA Boulder website gives users the option of comparing
terms without singular value scaling (“term space”) or with
scaling (“document space”) (Dennis, 2007). Likewise the
landmark Psychological Review paper in which Landauer
and Dumais (1997) first proposed LSA as a tool for under-
standing human semantic representation appears not to have
used scaling.2 In general, scaling is thought to be advanta-
geous when evaluating similarity between a term vector and
a context vector, for example when using keywords to search
for documents (Hu et al., 2007; Martin & Berry, 2007).
Psycholinguistic applications of LSA, however, rarely require
such comparisons of term vectors with context vectors.
Typically, LSA is used to compare one term vector with an-
other, in order to estimate the semantic relatedness of the
terms (e.g., Pereira et al., 2016). Likewise when computing
semantic diversity, we compare context vectors with other
context vectors but not with term vectors. In these situations,
we argue that it is best to assess empirically whether scaling
improves the quality of the semantic representations.

To this end, we performed two empirical investigations
comparing scaled and unscaled vectors. Although there are
many ways in which vectors could potentially be scaled
(e.g., by the square root of the singular values or by their
inverse), here we focused on the simple case of multiplication
by singular values, as used by Cevoli et al. We began by
assessing the ability of scaled vs. unscaled term vectors to
predict human judgements of semantic relatedness for word

pairs. Following Pereira et al. (2016), we obtained three sets of
human semantic relatedness ratings: the MEN dataset (Bruni
et al., 2014), the WordSim-353 dataset (Finkelstein et al.,
2001) and the SimLex-999 dataset (Hill et al., 2015). We
computed Spearman’s rank correlations between the rated
similarities of word pairs and the cosine similarities between
the word’s vectors, computed for the following sets of vectors:

1. BNC_unscaled: term vectors from LSA applied to the
BNC exactly as described in Hoffman et al., without vec-
tor scaling

2. BNC_scaled: Term vectors from LSA applied to the BNC
exactly as described in Hoffman et al., but with vector
scaling

3. Wiki_unscaled andWiki_scaled. Term vectors from LSA
applied to a corpus of Wikipedia articles,3 with and with-
out vector scaling. We included these to test whether the
effect of scaling is consistent across corpora.

4. Word2vec: These were publicly available vectors (https://
code.google.com/p/word2vec/), obtained by training the
word2vec neural network (Mikolov et al., 2013) with the
10-billion word Google News dataset. Pereira et al.
(2016) found that this set of vectors was the best predictor
of human semantic judgements in a comparison of “off-
the-shelf” vector spaces. We included these as a bench-
mark indicator of the current gold-standard for distribu-
tional semantic models.

The correlations between human ratings and vector cosines
are shown in Table 1. As expected, word2vec vectors provid-
ed the closest fit to the human data. More importantly,
unscaled vectors were more strongly correlated with human
ratings than scaled vectors, for both the BNC vectors and
those derived from the Wikipedia corpus. To further test
whether scaled or unscaled BNC vectors provide a better fit
to human data, we computed partial Spearman’s correlations
between the human ratings and the BNC_unscaled cosines,
while controlling for shared variance with BNC_scaled co-
sines. In each case, a strong correlation remained (MEN: ρ =
0.42, p < 0.001; WordSim-353: ρ = 0.37, p < 0.001; LexSim-
999: ρ = 0.21, p < 0.001). However, there were no significant
correlations between human ratings and BNC_scaled cosines,
when controlling for BNC_unscaled cosines (MEN: ρ = 0.02,
p = 0.24; WordSim-353: ρ = 0.09, p = 0.10; SimLex-999: ρ =
– 0.06, p = 0.06). These data clearly indicate that unscaled

2 No mention of scaling is made in their Method and the following comment
suggests that it was not performed: “It is worth noting that the cosine measure
sums the degree of overlap on each of the dimensions of representation of the
two entities being compared. In LSA, the elements of this summation have
been assigned equal fixed weights, but it would be a short step to allow
differential weights for different dimensions in dynamic comparison opera-
tions, with instantaneous weights influenced by, for example, attentional, mo-
tivational, or contextual factors.” (p. 218; emphasis added).

3 This corpus was obtained and processed as follows. A 2018 dump of the
entire English Wikipedia site was downloaded here: https://linguatools.org/
tools/corpora/wikipedia-monolingual-corpora/ . XML tags and
disambiguation articles were removed. Then 70% of the articles were
selected at random and submitted to LSA using the Text to Matrix
Generator (Zeimpekis & Gallopoulos, 2006), with each article treated as a
separate context. Log-entropy weighting was applied prior to singular value
decomposition and 300 dimensions were retained.
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BNC vectors are better predictors of human judgements of
semantic relatedness than scaled vectors. Similar effects in
the Wikipedia vectors suggest that this may be a general
result.

Why do unscaled vectors perform better than scaled ones?
Figure 1a shows the singular values for the first 30 dimensions
in the LSA space derived from the BNC. The first two dimen-
sions have much larger singular values than those of later
dimensions. Scaling therefore gives these dimensions consid-
erably more weight when computing cosines between vectors
and our investigations indicate that this is detrimental. We
repeated our calculations of the correlations between MEN
ratings and BNC vectors but this time we systematically omit-
ted one of the 300 dimensions each time. The results when
omitting dimensions one to ten are shown in Fig. 1b. We
found that if we omitted either of the first two dimensions,
the performance of the scaled vectors improved while the
unscaled vectors were unaffected. In fact, if we excluded both
of the first two dimensions, the scaled and unscaled vectors

gave near-indistinguishable correlations with relatedness
judgements (0.724 vs. 0.721). These results strongly suggest
that scaled vectors are inferior because they give too much
weight to the information contained in the first two dimen-
sions of the latent semantic space. We do not know why these
two dimensions have much higher weights than the others, but
we have observed that values on the first dimension are
strongly correlated with lexical frequency (|r| = 0.81; this
was not true for any of the later dimensions). Thus it appears
that the first dimension largely encodes information about
how often terms appear in the corpus. Since term frequency
information is unlikely to be helpful in determining semantic
relationships, over-weighting this dimension is detrimental to
performance.

So far, we have established that vector scaling is not desir-
able when considering term vectors that represent the mean-
ings of individual words. However, the calculation of seman-
tic diversity is based on context vectors, not term vectors. We
could not perform the same analyses for context vectors be-
cause there are no data for human judgements of similarity
between contexts in the BNC. Instead, we assessed the context
vectors by investigating how the semantic similarity between
two contexts is predicted by their distance from one another in
text. It seems intuitively reasonable to assume that passages of
text that appear close to one another in a document are likely
to discuss similar topics while those that are more distant will
tend to be less related. Foltz et al. (1998) demonstrated this
phenomenon empirically by using LSA to analyse semantic
similarity between different paragraphs in textbooks. They
found that adjacent paragraphs in a text tended to have high
cosine similarity values and that similarity between para-
graphs decreased as the distance between paragraphs in the

Table 1 Spearman correlations between human semantic relatedness
judgements and vector cosines

MEN WordSim-
353

SimLex-
999

BNC_
unscaled

0.72 0.64 0.27

BNC_scaled 0.65 0.57 0.19

wiki_unscaled 0.69 0.67 0.26

wiki_scaled 0.65 0.60 0.21

word2vec 0.78 0.69 0.44

Fig. 1 Comparisons of scaled and unscaled LSA vectors. a Singular
values for the first 30 dimensions when singular value decomposition is
applied to BNC data. b Correlations between MEN semantic relatedness
ratings and cosine similarity when different dimensions were omitted
from the LSA vectors. Omitting dimensions had no effect on unscaled
vectors, but omitting either of the first two dimensions considerably
improved the fit to human data for scaled vectors. c Mean cosine

similarity between neighbouring contexts, as a function of their distance
in the corpus. Both sets of vectors show reduced similarity as distance
increases, but this effect is significantly stronger for the unscaled vectors.
The dashed lines indicate the mean similarity between two contexts
chosen at random from the corpus (calculated by permuting the order of
contexts in the corpus and calculating the mean similarity between
adjacent contexts in this permuted corpus)
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text increased. They argued that these effects were indicative
of the gradual shifts in topic that occur in coherent texts. Here,
we assessed whether scaled or unscaled vectors best capture
similar effects in the BNC.

The BNC consists of a little over 3000 distinct documents
obtained from different sources. When we performed LSA on
the corpus, we sub-divided these documents into smaller con-
texts of 1000 words in length. This means that adjacent con-
texts almost always came from adjoining portions of the same
document. We would therefore expect these to be closely
related in meaning. As distance between contexts increases,
we would expect their similarity to decrease, because they
feature text drawn from increasingly distant portions of each
document (and also because it becomes more likely that the
two contexts have been sourced from different documents).

The results of this analysis are shown in Fig. 1c. For each
context, we measured the cosine similarity with its near neigh-
bours, separated by a distance of 0 contexts (adjacent) up to 4
contexts in the corpus. As expected, similarity decreased with
increasing distance between contexts. However, this rate of
decrease was significantly steeper for the unscaled vectors,
suggesting that these vectors better capture the expected rela-
tionship between proximity and meaning. This was supported
by the finding of a significant interaction between vector type
and distance in a linear mixed effect model predicting cosine
values (B = 0.0079, SE = 0.00011, t(788964) = 72.8, p <
0.001; the model included a random intercept for contexts).

Figure 1c shows another advantage of unscaled vectors.
The dashed lines show the mean cosine similarity for two
contexts selected at random from the corpus. For the unscaled
vectors the mean is close to zero, confirming the intuitive
expectation that two randomly chosen contexts should have
no semantic relationship between them. However, the value
for scaled vectors is substantially higher, indicating that scaled
vectors show similarity between randomly paired contexts not
expected to have any semantic relationship. Interestingly, we
found that this undesirable effect was again due to the over-
weighting of the first two dimensions in the scaled vectors. If
we omitted the first two dimensions from the scaled vectors,
the mean similarity for randomly selected contexts fell to zero.

When using context vectors to compute SemD values, one
potential advantage of scaling could be to increase the stability
of SemD values over the number of dimensions used in the
calculation. Applications of LSA typically use the first 300
dimensions of the semantic space (following the seminal
work of Landauer & Dumais, 1997) but this is an arbitrary
choice and other values could have been chosen. It could be
argued that scaling makes SemD values less sensitive to the
choice of number of dimensions, since the influence of adding
later dimensions is minimised by their low singular values. To
test the stability of unscaled SemD values, we compared
SemD values computed using unscaled vectors while varying
the number of dimensions (50, 100, 150, 200, 250, and 300).

SemD values were highly stable over changes in dimension-
ality: pairwise comparisons revealed very high correlations in
every case (r > 0.94). SemD values computed from scaled
vectors were also highly stable (r > 0.97). Thus scaling is
not necessary to achieve SemD values that are insensitive to
vector length.

To summarise, in this first section we have argued that
scaling of LSA vectors is not essential when computing se-
mantic diversity and that the decision whether to perform this
step should be made empirically. Our empirical investigations
indicated (a) that unscaled term vectors provide better fits to
human semantic relatedness judgements, (b) that unscaled
context vectors better capture the expected pattern of decreas-
ing semantic similarity with increasing distance between con-
texts, and (c) that only unscaled vectors satisfy the expectation
that two contexts selected at random from the corpus will
share no semantic relationship on average. Our analyses indi-
cated that scaled vectors are inferior because the scaling pro-
cess gives too much influence to the first two dimensions in
the latent semantic space. Thus, we conclude the H13_SemD
values, computed from unscaled vectors, are likely to provide
more reliable estimates of semantic diversity than the
C20_SemD values recently published by Cevoli et al.
Having established this, we proceeded to replicate Cevoli
et al.’s key analyses using H13_SemD values rather than
C20_SemD data.

Effects of semantic diversity on word
recognition

Cevoli et al. investigated how C20_SemD, as well as its in-
teraction with word frequency, age of acquisition, and word
length, predict word recognition performance in two large
open datasets: the British Lexicon Project (Keuleers et al.,
2012) and the English Lexicon Project (Balota et al., 2007).
Here we tested whether similar results would be obtained for
H13_SemD values, focusing on reaction time data. We fitted
linear mixed effects models predicting lexical decision and
word naming latencies from semantic diversity and other psy-
cholinguistic variables, using the code provided by Cevoli
et al. on their OSF page (https://osf.io/7hxvu/). Analyses
were restricted to words that had both C20_SemD and H13_
SemD values, to ensure that models were always fitted on the
same data. The effects of H13_SemD at different levels of
word frequency are shown in Fig. 2(for full results of each
model, see Supplementary Table 1). Overall, words with
higher H13_SemD values were recognised more quickly, as
found in previous studies (Hoffman & Woollams, 2015;
Hsiao et al., 2020; Hsiao & Nation, 2018). There was, how-
ever, a significant interaction with frequency in every dataset.
The facilitatory effect of H13_SemD was largest for low-
frequency words and was absent or possibly even reversed
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for the highest frequency words. These results are very similar
to those reported by Cevoli et al. using C20_SemD data.

We also compared how well models that used C20_SemD
vs. H13_SemD were able to predict reaction times. We com-
pared AIC and BIC values for models that included each se-
mantic diversity measure, and its interaction with other vari-
ables, with a baseline model that included neither. As shown
in Table 2, the inclusion of H13_SemD provided greater im-
provements over the baseline than the inclusion of
C20_SemD (indicated by lower AIC and BIC values). These
results suggest that the H13_SemD has greater explanatory
power than C20_SemD when considering word recognition
latencies.

Relationship between semantic diversity
and lexical ambiguity

In this section, we replicated Cevoli et al.’s critical analyses of
the relationships between semantic diversity and word ambi-
guity, using our H13_SemD values in place of the C20_SemD
data. Cevoli et al. investigated three stimulus sets used by

Rodd et al. (2002) and Armstrong and Plaut (2016) to disen-
tangle effects of homonymy and polysemy on word
recognition.

Experiment 1 of Rodd et al. (2002) used 184 words that
varied in ambiguity. Rodd et al. used entries in theWordsmyth
online dictionary to quantify ambiguity. This dictionary dis-
tinguishes between the number of etymologically unrelated
meanings a word has (providing a measure of homonymy)
and the number of related senses it has (providing a measure
of polysemy). To investigate how semantic diversity was re-
lated to these two types of ambiguity, Cevoli et al. fitted a
linear regression model with C20_SemD as the dependent
variable and number of meanings (binarised: one or many)
and number of senses as predictors. A number of other psy-
cholinguistic properties were also included as predictors. In
Table 3, we show results of their model alongside the same
analysis using H13_SemD as the dependent variable. Cevoli
et al. found that neither number of meanings nor number of
senses predicted C20_SemD values. However, when
H13_SemD data was used instead, there was a significant
effect of number of senses: words with more senses tended
to have higher H13_SemD values (see Fig. 3). The

Fig. 2 Effects of H13_SemD on word recognition latencies at various levels of word frequency. Word frequency values indicate log counts in the BNC

Table 2 Model fit statistics for models predicting word recognition latencies with and without semantic diversity

Dataset: BLP: Lexical decision ELP: Lexical decision ELP: Word naming

Model AIC BIC AIC BIC AIC BIC

Baseline – 116838 – 116690 – 12888 – 12735 – 170609 – 170469

Baseline + C20_SemD and its interactions – 116903 – 116713 – 12980 – 12784 – 170671 – 170488

Baseline + H13_SemD and its interactions – 116960 – 116770 – 12992 – 12795 – 170778 – 170596

The lowest AIC/BIC values in each case (indicating best model fit) are underlined
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Table 3 Linear regression models predicting semantic diversity in stimuli used in Rodd et al.’s Experiment 1

Dependent variable: C20_SemD H13_SemD

Predictor β t β t

Number of meanings 0.086 1.06 0.079 1.21

Number of senses 0.081 0.95 0.244 3.51***

Orthographic neighbours (Coltheart’s N) 0.031 0.34 0.058 0.78

Frequency 0.262 3.34** 0.280 4.39***

Length 0.113 1.22 – 0.025 0.33

Concreteness – 0.248 3.41*** – 0.405 6.93***

C20_SemD model: df = 163, R2 = 0.21. H13_SemD model: df = 164, R2 = 0.48. * = p < 0.05; ** = p < 0.01; *** = p < 0.001

Fig. 3 Effects of lexical
ambiguity on semantic diversity
in stimuli used in Rodd et al.’s
Experiment 1
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H13_SemD model therefore replicates the result originally
reported by Hoffman et al. (2013): words that are highly po-
lysemous, as measured by the number of senses they have in
the Wordsmyth dictionary, have higher SemD values, even
after controlling for other relevant psycholinguistic properties.
There was no effect of number of meanings.

Rodd et al.’s (2002) Experiment 2 employed a 2 x 2
factorial manipulation of homonymy and polysemy, again
based on Wordsmyth definitions. Mean C20_SemD and
H13_SemD values for words in each condition are shown
in Fig. 4. Cevoli et al. investigated how C20_SemD var-
ied across conditions using an ANCOVA model that

included meanings and senses conditions as between-
words factors, while covarying for word frequency and
length. As shown in Table 4, this model revealed no ef-
fects of ambiguity on C20_SemD; however, polysemy
had a significant effect on H13_SemD values. As expect-
ed, words in the Many Senses condition had higher
H13_SemD values than those in the Few Senses condi-
tion. These models do not control for concreteness, which
tends to be highly predictive of semantic diversity (see
Table 3). When we added concreteness as a covariate to
the ANCOVA model, the effect of number of senses on
H13_SemD remained highly significant (F(1,121) = 8.77,

Fig. 4 Effects of lexical ambiguity on semantic diversity in stimuli used in Rodd et al.’s Experiment 2
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p = 0.004). There was no effect of number of meanings on
H13_SemD values, similar to the Experiment 1 stimuli.

The final stimulus set was used by Armstrong and Plaut
(2016) to investigate homonymy and polysemy effects.
Cevoli et al. performed two linear regression analyses
investigating semantic diversity effects in the Armstrong and
Plaut (2016) stimuli. In the first, they adopted a binary classi-
fication of polysemy (few vs. many senses). When we repli-
cated this analysis, we found that this binary classification
predicted neither C20_SemD (β =– 0.038, p = 0.57) nor
H13_SemD (β = 0.119, p = 0.11; for full model results, see
Supplementary Table 2). But what if we used a continuous
measure of polysemy, following the approach taken to analyse
Rodd et al.’s (2002) Experiment 1? When we replaced the
binary polysemy variable with the number of senses in
Wordsmyth, we found that this was a significant positive pre-
dictor of H13_SemD (β = 0.158, p = 0.034), though not of
C20_SemD (β = -0.052, p = 0.45; for full model results, see
Supplementary Table 3). Furthermore, concreteness was not
included as a covariate in Cevoli et al.’s analyses, despite
having large effects on semantic diversity. When we included
concreteness, the effect of number of senses on H13_SemD
was highly significant, while no effect was observed on
C20_SemD (see Table 5). These effects are plotted in Fig. 5.

Thus, the degree to which a word is polysemous once again
predicted its H13_SemD value, once other relevant variables
were taken into account. We note that concreteness was a
much better predictor of H13_SemD than C20_SemD and
it’s possible that greater sensitivity to this semantic variable
partly explains why H13_SemD values are more related to
measures of polysemy (since highly polysemous words tend
to be more abstract).

In their final analysis, Cevoli et al. investigated whether
homonymy predicted C20_SemD values. Rather than classify
words as either unambiguous or homonyms, here they follow-
ed Armstrong and Plaut (2016) in adopting a continuous mea-
sure of homonym polarity. They used a measure they called
inverse dominance, in which unambiguous words take the
minimum value of 10, fully balanced homonyms (where both
meanings are equally frequent in the language) take the max-
imum value of 20 and polarised homonyms fall between these
two extremes. Inverse dominance was entered into a model
predicting C20_SemD along with other psycholinguistic var-
iables. When we replicated these analyses, we found that in-
verse dominance did not predict either semantic diversity var-
iable (see Supplementary Table 4), with the addition of con-
creteness producing similar results (see Table 6 and Fig. 5).
These results converge with the previous analyses in showing
that homonyms do not reliably differ from unambiguous
words in their H13_SemD values.

Discussion

In a recent paper, Cevoli et al. (2020) disputed the method we
used to estimate semantic diversity in Hoffman et al. (2013)
and provided a different interpretation of this variable based
on their own semantic diversity measure. Here, we have pre-
sented new data that challenge their conclusions. First, we
found that scaling the LSA vectors by their singular values
has a negative effect on the quality of the resulting semantic

Table 5 Linear regression models predicting semantic diversity in polysemy stimuli used by Armstrong & Plaut

Dependent variable: C20_SemD H13_SemD

Predictor β t β t

Number of senses – 0.044 0.65 0.179 2.62**

Frequency 0.522 6.38*** 0.138 1.64

Orthographic neighbours (OLD20) – 0.012 0.13 – 0.115 1.17

Number of syllables 0.041 0.52 0.006 0.07

Length – 0.069 0.68 0.133 1.32

Familiarity (residual) – 0.425 4.86*** 0.030 0.33

Concreteness – 0.130 1.84 – 0.423 5.85***

C20_SemD model: df = 179, R2 = 0.24. H13_SemD model: df = 178, R2 = 0.22. * = p < 0.05; ** = p < 0.01; *** = p < 0.001

Table 4 Results of ANCOVA predicting semantic diversity in stimuli
used in Rodd et al.’s Experiment 2

Dependent variable: C20_SemD H13_SemD

Effect F p F p

Number of meanings 0.000 0.54 0.052 0.82

Number of senses 0.385 0.99 7.293 0.008**

Meanings * Senses 0.018 0.18 0.334 0.56

Frequency 1.835 0.10 6.144 0.015*

Length 2.813 0.89 0.012 0.91

C20_SemD model: df = 1,122. H13_SemD model: df = 1,122. * = p <
0.05; ** = p < 0.01; *** = p < 0.001
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representations. On this basis, we argue that C20_SemD
values, derived from scaled vectors, provide a less valid mea-
sure of semantic diversity than our original H13_SemD
values. Second, we replicated Cevoli et al.’s analyses of se-
mantic diversity effects in word recognition, substituting our
H13_SemD values for their C20_SemD. Like them, we found
a positive effect of semantic diversity on word recognition
performance, modulated by frequency. However,
H13_SemD was a better predictor of word recognition than
C20_SemD. Finally, and most importantly, we replicated
Cevoli et al.’s analyses of the relationship between semantic

diversity and lexical ambiguity. Cevoli et al. found that ambi-
guity did not predict C20_SemD and argued that semantic
diversity is unrelated to variation in a word’s meaning.
H13_SemD, conversely, reliably covaried with polysemy in
every stimulus set, though it was not related to homonymy.
We conclude that, when measured appropriately, semantic
diversity is closely related to the level of polysemous variabil-
ity in a word’s semantic representation.

Based on the results reported here, we recommend that
researchers continue to use H13_SemD as a measure of se-
mantic diversity. But what is semantic diversity? At the most

Fig. 5 Effects of lexical ambiguity on semantic diversity in stimuli used by Armstrong and Plaut Left panel shows mean semantic diversity values for
words classified as Homonyms (H), Unambiguous (U) and Polysemous (P)
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basic level, we believe it provides a quantitative measure of
the degree to which the different contexts in which a word is
used are semantically distinct from one another. To this extent,
we believe we are largely in agreement with Cevoli et al., who
say:

“Overall, our analyses lead us to suggest that the metric
defined by Hoffman et al. (2013) is a measure of a
word’s spread across topics and types of contexts, rather
than a measure of the diversity of a word’s contextual
meaning. This metric is insensitive to the diversity of a
word’s meanings; instead, it captures general informa-
tion about the range of reading situations in which a
word might be encountered. Words that are high in
Hoffman et al.’s (2013) semantic diversity metric are
well distributed across topics and types of contexts,
while words that are low in this semantic diversity met-
ric are specific to particular contexts.”

Where we diverge from Cevoli et al. is in claiming that
semantic diversity also provides useful information about
the level of contextual variability in a word’s meaning, in
addition to variation in the contexts themselves. Here we use
“meaning” to refer to the semantic information that is activat-
ed upon processing of a word. Due to their contextual promis-
cuity, we propose that high semantic diversity words are as-
sociated with a wide range of possible semantic states. This
explains why there is a reliable relationship between the num-
ber of senses a word has in the Wordsmyth dictionary and its
H13_SemD value: the list of senses captures in some discrete
fashion the breadth of possible semantic states a word may
take. In typical language settings, the context preceding a
word will constrain the semantic state it engages, in line with
models that view construal of meaning at the sentence level as
an incremental process (McClelland et al., 1989; Rabovsky
et al., 2018). However, when words are presented in isolation,

as they often are in psycholinguistic studies, this constraint is
not available and we assume that words of high diversity
consequently activate noisy and under-specified semantic rep-
resentations (for a computational simulation of this idea, see
Hoffman & Woollams, 2015). This explanation accounts for
the observed negative effects of semantic diversity in tasks
that require deeper semantic processing than mere recognition
(Hoffman &Woollams, 2015; Hsiao et al., 2020; Johns et al.,
2016; Mak et al., 2021).

For recognition tasks such as lexical decision, words with
high semantic diversity enjoy a processing advantage
(Hoffman & Woollams, 2015; Hsiao et al., 2020; Jones
et al., 2012). Our theory accounts for this by positing that,
although the semantic activation elicited by these words is less
precise, it is generated more rapidly and that this aids recog-
nition (Hoffman & Woollams, 2015; for similar arguments
applied to polysemous words, see Armstrong & Plaut, 2008;
Rodd et al., 2004). Cevoli et al. propose a different “textual”
account for these effects, suggesting that low diversity words
may be harder to process because their appearance in a re-
stricted range of contexts means that they are unfamiliar to
some people. For example, one will rarely, if ever, encounter
the low diversity word crampon unless one is exposed to
specialised discourse or text on the topic of mountaineering.
Thus, most participants will be slow to recognise this word
due to limited exposure. This account neatly explains why the
semantic diversity effect is larger for low-frequency words,
since higher-frequency words are more likely to be encoun-
tered by everyone from time to time, despite their lack of
contextual breadth. It also predicts greater individual variabil-
ity in recognition of low-frequency words of low semantic
diversity, a prediction which could be tested in future work.
We find this account plausible; it seems likely that exposure
effects of this kind contribute to word recognition, in addition
to the semantically driven effects described above. However,
it is not clear how Cevoli et al.’s “textual” viewwould account
for poorer processing of highly diverse words in semantic

Table 6 Linear regression models predicting semantic diversity in homonymy stimuli used by Armstrong & Plaut

Dependent variable: C20_SemD H13_SemD

Predictor β t β t

Inverse dominance – 0.060 0.88 – 0.113 1.60

Frequency 0.490 6.11*** 0.149 1.76

Orthographic neighbours (OLD20) – 0.005 0.05 – 0.019 0.19

Number of syllables – 0.010 0.12 0.023 0.27

Length – 0.090 0.88 – 0.044 0.41

Familiarity (residual) – 0.257 2.89** 0.080 0.86

Concreteness – 0.170 2.30* – 0.385 4.96***

C20_SemD model: df = 173, R2 = 0.25. H13_SemD model: df = 173, R2 = 0.19. * = p < 0.05; ** = p < 0.01; *** = p < 0.001
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tasks, and we do not see this as a complete account of how
semantic diversity affects processing.

Semantic diversity appears to have a different relationship
with different forms of ambiguity. We found that H13_SemD
was reliably associated with polysemy, as indexed by a
dictionary-derived measure of the number of related senses a
word has. However, homonyms with two or more unrelated
meanings did not have elevated H13_SemD values compared
with single-meaning words. Thus, the measure does not ap-
pear to be sensitive to the particular, and less common, form of
ambiguity present in homonyms. In fact, Hoffman et al.
(2013) anticipated this. We noted that the contextual uses of
homonyms may cluster into two distinct sets of contexts relat-
ing to the two different meanings (e.g., for bark, a dog-related
set and a tree-related set). While we would expect the similar-
ity of contexts in different clusters to be low, similarities with-
in each cluster may be very high. This means that the overall
semantic diversity value for a homonymwill depend, amongst
other factors, on the separation of the two clusters in semantic
space, on the degree of contextual variation within each clus-
ter (i.e., how polysemous eachmeaning is), and on the relative
sizes of the clusters (i.e., when one meaning is much more
frequent than the other, the majority of the pairwise compar-
isons will reflect variation within the dominant meaning).
Thus, even if we accept the assumption that the different
meanings of homonyms have distinct contextual environ-
ments, this form of ambiguity is not straightforwardly cap-
tured by the semantic diversity measure.

Cevoli et al. go further and argue that semantic diversity is
not sensitive to homonymy because their different meanings
are not reliably associatedwith distinct context vectors. To test
this hypothesis, they took three homonyms (calf, mole, and
pupil), extracted half of their appearances in the BNC and
manually classified each appearance according to which of
their meanings was implied. For each word, they then inves-
tigated how well the contexts associated with each meaning
formed coherent clusters, measuring clustering with a
Calinski-Harabasz score that represents the ratio between
within-cluster dispersion and between-cluster dispersion.
The scores for calf, mole, and pupil were 3.28, 2.08, and
4.43, indicating that between-cluster dispersion was between
two and four times greater than within-cluster dispersion in
these test cases. Cevoli et al. describe these scores as “relative-
ly low” but they are between two and four times higher than
control analyses where they assigned the meaning labels to
contexts randomly (0.92, 1.13, and 0.97, respectively). How
high should they be in order to infer that context vectors clus-
ter based on the homonym’s meaning? We don’t have a de-
finitive answer to this, but we find these results rather encour-
aging, especially considering that they used scaled vectors
which, as we have demonstrated, are less well suited to cap-
turing semantic relationships in the BNC than unscaled vec-
tors. We also note that the lowest level of clustering was

observed for mole, but the classification for this word com-
bined two rather different interpretations (animal and spy) into
a single meaning, which may have hampered identification of
coherent clusters. Thus, we reject the idea that LSA is inher-
ently insensitive to contextual differences between different
word meanings. Future work could investigate how often the
different meanings of homonyms occupy semantically distinct
contextual environments and the circumstances in which LSA
context vectors best capture these differences.

To conclude, our analyses indicate that the original
H13_SemD measure, without scaling of context vectors, are
a more appropriate way of measuring semantic diversity than
Cevoli et al.’s alternative. We found that H13_SemD has a
positive effect on word recognition performance, particularly
for low-frequency words and, critically, that words with more
senses tend to have higher H13_SemD values. Our interpre-
tation of the latter result is that words that appear a more
diverse set of linguistic contexts become associated with more
variable semantic representations. This variability may be ei-
ther beneficial or detrimental to lexical processing, depending
on the task involved and the degree of precision required from
the semantic system.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01693-4.
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