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A B S T R A C T   

Objectives: Liver cancer (LC) continues to rise, partially due to limited resources for prevention. To test the 
precision public health (PPH) hypothesis that fewer areas in need of LC prevention could be identified by 
combining existing surveillance data, we compared the sensitivity/specificity of standard recommendations to 
target geographic areas using U.S. Census demographic data only (percent (%) Hispanic, Black, and those born 
1950–1959) to an alternative approach that couples additional geospatial data, including neighborhood socio
economic status (nSES), with LC disease statistics. 
Methods: Pennsylvania Cancer Registry data from 2007-2014 were linked to 2010 U.S. Census data at the Census 
tract (CT) level. CTs in the top 80th percentile for 3 standard demographic variables, %Hispanic, %Black, %born 
1950–1959, were identified. Spatial scan statistics (SatScan) identified CTs with significantly elevated incident 
LC rates (p-value<0.05), adjusting for age, gender, diagnosis year. Sensitivity, specificity, and positive predictive 
value (PPV) of a CT being located in an elevated risk cluster and/or testing positive/negative for at least one 
standard variable were calculated. nSES variables (deprivation, stability, segregation) significantly associated 
with LC in regression models (p < 0.05) were systematically evaluated for improvements in sensitivity/ 
specificity. 
Results: 9,460 LC cases were diagnosed across 3,217 CTs. 1,596 CTs were positive for at least one of 3 standard 
variables. 5 significant elevated risk clusters (CTs = 402) were identified. 324 CTs were positive for a high risk 
cluster AND standard variable (sensitivity = 92%; specificity = 37%; PPV = 17.4%). Incorporation of 3 new nSES 
variables with one standard variable (%Black) further improved sensitivity (93%), specificity (62.9%), and PPV 
(26.3%). 
Conclusions: We introduce a quantitative assessment of PPH by applying established sensitivity/specificity as
sessments to geospatial data. Coupling existing disease cluster and nSES data can more precisely identify 
intervention targets with a liver cancer burden than standard demographic variables. Thus, this approach may 
inform prioritization of limited resources for liver cancer prevention.   

1. Introduction 

Incidence and mortality rates in liver cancer are on the rise in the U. 
S., increasing by close to 3% per year since 2000 (Ryerson et al., 2016). 
In the United States, 42,030 new cases of liver cancer will be diagnosed 
and about 31,780 people will die of liver cancer. By 2030, liver cancer is 
expected to exceed breast cancer as the second leading cause of cancer 
death in the U.S. (Altekruse, Henley, Cucinell, McGlynn, 2014). 

Compared to non-Hispanic Whites (NHW-6.3/100,000), incidence rates 
are higher in Blacks (10.2/100,000), Hispanics (13/100,000) and Asians 
(13.5/100,000) (Wang et al., 2016). In Pennsylvania, these racial trends 
in liver cancer are similar to those in the U.S., with Blacks having triple 
the rate of liver cancer incidence compared to NHWs (American Cancer 
Society, 2018). 

Compared to other cancer sites, pathways to liver cancer are largely 
known and potentially modifiable (Singal, Pillai, Tiro, 2014). Up to 30% 
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of liver cancer cases are attributed to Hepatitis B (HBV) and Hepatitis C 
(HCV) viral infection (Makarova-Rusher et al., 2015; Wetzel et al., 
2013). The fraction of liver cancer cases in African American and Asian 
patients attributed to chronic HBV or HCV is much higher, closer to 
40%–50% (Wetzel et al., 2013). HCV and HBV infection are often con
tracted through modifiable risk behaviors, including sexual activity, 
drug use, and unsanitary tattoo and nail salon practices (El-Serag & 
Rudolph, 2007). Additionally, treatments with high cure rates exist for 
HCV, and vaccination can help prevent HBV infection (NCCN, 2017). 
Alcohol consumption and metabolic disorders, including diabetes and 
obesity, are also associated with liver cancer. NHWs are more likely to 
develop liver cancer through metabolic disorders; Hispanics through 
HCV infection and increased alcohol consumption (Makarova-Rusher 
et al., 2015). Similarly, metabolic syndrome and alcohol consumption 
are associated with diet and lifestyle behaviors that could be modified 
through educational interventions and policies. Despite this, dispro
portionate rates of liver cancer and related risk behaviors persist across 
race/ethnic groups, suggesting that evidence-based interventions are 
not reaching vulnerable, high risk populations and that health dispar
ities and health equity issues are major contributors to the growing 
burden of liver cancer in this country. 

As detailed by a number of multilevel conceptual frameworks (Lynch 
& Rebbeck, 2013; Warnecke et al., 2008), beyond a person’s race/
ethnicity, social environmental factors, particularly the neighborhood in 
which a person lives, also inform cancer disparities (Lynch & Rebbeck, 
2013). The neighborhood social and economic environment or status 
(nSES) is often defined in cancer studies by U.S. Census variables related 
to the economic (e.g., employment, income), physical (e.g., housing/
transportation structure), and social (e.g., poverty, education), charac
teristics of a geographic area (Diez Roux & Mair, 2010). Previous studies 
have demonstrated that nSES independently effects liver cancer inci
dence and cancer mortality more broadly, even after adjustments for an 
individual’s race/ethnicity and socioeconomic status (SES) (e.g., a per
son’s education, income, and poverty level) (Chang et al., 2010; 
Makarova-Rusher et al., 2015; Wetzel et al., 2013). However, rarely are 
nSES factors considered when identifying vulnerable, high risk pop
ulations for cancer prevention. 

While screening guidelines exist for risk factors for liver cancer, 
including HBV and HCV (NCCN, 2017), screening guidelines for liver 
cancer for the general population are lacking. Thus, current recom
mendations for liver cancer prevention focus on targeting high risk, 
minority populations including: Hispanics, Blacks, and those born be
tween 1950 and 1959 who are at risk for HCV infection (Petrick, Kelly, 
Altekruse, McGlynn, & Rosenberg, 2016). As a result, U.S. cancer cen
ters, who are often tasked with implementing cost-effective educational 
and behavioral interventions for liver cancer prevention, commonly 
utilize publically-available neighborhood demographic data from the U. 
S. Census to identify these vulnerable communities in their catch
ment—defined as the neighborhoods where their patients reside (Blake, 
Ciolino, & Croyle, 2019). Neighborhood data is used because studies 
suggest an individual’s demographics are similar to the neighborhood in 
which they live, particularly at smaller geographic areas (Tunstall, 
2005). However, there are a few problems with this approach. First, the 
geographic unit of analysis used to define (and subsequently prioritize) 
neighborhoods in need of cancer prevention is typically quite large, at a 
regional, state, or county level. Using Pennsylvania as an example, 
Philadelphia County has the largest population of Blacks and Hispanics; 
however, there are approximately 1.5 million people living in Phila
delphia. Beyond demographic data, cancer rates are also traditionally 
reported at State and county levels. However, geospatial methods allow 
for small area estimations of disease risk and can be used to identify 
neighborhood clusters that have higher than expected rates of cancer at 
smaller geographic units than county (Sahar et al., 2019; Sherman et al., 
2014). Thus, to maximize often limited resources available for liver 
cancer prevention at the local level, narrowing down geographic areas, 
from counties to Census tracts, for instance, which contain on average 

about 4,000 residents, would prove useful. Second, combining existing 
demographic data with cancer incidence and mortality data, as well as 
nSES measures, could also further narrow down neighborhoods for 
cancer prevention. However, traditional neighborhood health rankings 
typically report prevalence rates of single behavioral risk factors or 
cancer mortality separately (Erwin, Myers, Myers, & Daugherty, 2011; 
Kanarek, Tsai, & Stanley, 2011; Oliver, 2010), and often without 
consideration of health disparity measures, like nSES (Thornton-Wells, 
Moore, & Haines, 2004). Coupling multiple sources of surveillance data 
to guide interventions that can benefit populations more efficiently is a 
strategy referred to as precision public health. Precision public health is 
being applied to infectious diseases and in developing countries to 
narrow down geographic areas most in need of interventions, but it has 
yet to be applied in a cancer prevention setting (Dowell, Blazes, & 
Desmond-Hellmann, 2016). 

In this study, we merge liver cancer surveillance data from the 
Pennsylvania (PA) State Cancer registry with U.S. Census data in order 
to identify geographic areas at the Census tract level that contain (alone 
or in combination): a) a high burden of liver cancer incidence; b) a high 
proportion of Blacks, Hispanics, or those born 1950–1959 (standard 
demographic variables); c) unfavorable nSES conditions found to be 
associated with liver cancer incidence in PA. Introducing a sensitivity/ 
specificity assessment that we derived from patient-level clinical tests 
and applied to area-level surveillance data, we then compare the num
ber of Census tracts identified for cancer prevention using only standard 
recommendations to combined approaches that link liver cancer disease 
rates with often underutilized nSES measures. Our goal was to test the 
precision public health hypothesis that a smaller number (i.e., fewer) 
Census tracts in need of intervention could be identified by combining 
existing surveillance data, and to evaluate which combinations (or 
number) of nSES and demographic variables were needed to improve 
sensitivity/specificity assessments. Thus, this study serves as a quanti
tative assessment of the precision public health framework. 

2. Methods 

2.1. Study sample 

Incident liver cancer cases diagnosed between 2007 and 2014 (n =
9466) were ascertained from the Pennsylvania (PA) Cancer Registry 
([dataset] Pennsylvania Cancer Registry), which is a state-wide North 
American Association of Central Cancer Registries (NAACCR) gold 
certified data system that collects basic demographics, including age 
(0–102), gender (male/female), race/ethnicity (Non-Hispanic White, 
Non-Hispanic Black, Hispanic), address at diagnosis, as well as clinical 
data, including diagnosis data, stage (In-Situ, Local, Regional, Distant), 
and treatment information. Cases without address data, or only P.O. Box 
data were removed from the dataset (n = 6). The PA registry does not 
typically release prisoner data. A total of 9,460 cases of liver cancer were 
included in this analysis. 

Using the ESRI ArcGIS geocoder with StreetMap Premium streets 
NAACCR standards (Goldberg, 2008), we were able to match and geo
code patient addresses at time of diagnosis and link the data to the 
Census tract for over 98% of patients. Thus, the geographic boundary 
used to define neighborhood in this study is the administrative Census 
tract (CT) in which the case lived at time of diagnosis, which was derived 
from the 2010 Census tract boundaries from the U.S. Census Bureau 
data. In the State of PA, there are a total of 3,217 CTs (average of 3,973 
residents). Studies show that Census tracts can serve as useful units of 
analysis to study associations between cancer outcomes and related 
disease determinants (Boscoe et al., 2014; Krieger et al., 2002). 

2.2. Statistical analysis 

2.2.1. Disease Outcome: Identification of liver cancer disease clusters 
For spatial analyses that calculated adjusted liver cancer incidence 
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rates, we grouped single-year Census tract level residential population 
estimates by race/ethnicity, sex and 19 age-groups (5-year ranges) from 
the American Community Survey 2007–2011 (diagnosis years 
2007–2011) and 2011–2015 (diagnosis years 2011–2015) to generate 
denominator data. For spatial cluster detection, we applied spatial scan 
statistics using SaTScan software, version 9.6 (https://www.satscan. 
org/). The spatial scan statistic provides evidence whether a disease is 
clustered or randomly distributed throughout the study area. This 
cluster analysis was applied at the Census tract level using a Poisson 
model and an elliptical spatial window with the maximum cluster size 
set up to 50% of the population at risk (Kulldorff, Huang, Pickle, & 
Duczmal, 2006). Using Monte Carlo 9,999 simulations testing statistical 
significance, clusters of Census tracts with significantly higher than 
expected rates of liver cancer are reported using P values < 0.05, 
adjusted for multiple testing (Kulldorff, Huang, & Konty, 2009). The 
tested clusters were adjusted for year at the diagnosis, sex, race/
ethnicity, and age at diagnosis (categorized into 19 age groups). 

2.2.2. Neighborhood measures 
To characterize the socioeconomic status of a neighborhood or 

Census tract area-based measures of disparity, we selected variables 
from the American Community Survey (ACS) 2007–2011 and 
2011–2015 that have been previously investigated in other cancer 
studies (Gomez et al., 2015). Variables of interest include standard de
mographic variables derived from U.S. Census data only (Petrick et al., 
2016): 1) race/ethnicity (% Non-Hispanic Black (NHB); % Hispanic); 2) 
age (born in the 1950–1959 birth cohort-yes/no); as well as additional 
nSES variables commonly assessed in neighborhood and cancer studies: 
3) poverty (% population 18 and older living below the federal poverty 
level (CT-Poverty); 4) immigration (% foreign born population; % En
glish language proficient); 5) migration/stability (% of households still 
living in same house as one year ago); 6) racial segregation or concen
tration, where we used Massey’s (2001) formula (Massey, Booth, & 
Crouter, 2001) and instructions for the integration of neighborhood 
income and race/ethnicity data from Krieger et al. (2016) (Krieger et al., 
2016) to calculate the index of concentration at the extremes (ICE) that 
compares the most privileged race/ethnic group (White, Non-Hispanics) 
to Blacks or Hispanics across income levels (Krieger et al., 2016); 7) 
neighborhood deprivation indices, which are composite or summary 
scores of the education, employment, housing, and access (defined in 
terms of transportation) of a neighborhood or Census tract. Specifically, 
we evaluated the Townsend Deprivation Score (TDS) (Rice et al., 2014) 
which is a summary score of the following z-transformed variables: % 
with no access to a car, % of crowded households, % of rented house
holds, % unemployed, as well as a deprivation index we previously 
created using a principal component analysis of indicator variables 
related to poverty (CT-Poverty), education (% No-High-School) and 
income (Median household income) (Supplementary File 1A2). 

In order to reduce the number of explanatory variables (n = 14), we 
applied a logistic regression model using SAS 9.1 where the outcome of 
interest was whether a patient was located in a high-risk liver cancer 
cluster (from disease outcome statistical analysis section above; 1 =
located in an elevated disease cluster; 0 = not located in a high risk 
cluster-See Supplementary File 1A2). For neighborhood variables where 
quartile summary estimates included zero observations, binary variables 
were created using the percentage of Census tracts above the State 
average as a cut-point (% foreign-born). The number of Census tracts 
located in the most unfavorable category for each neighborhood mea
sure were then plotted and visualized geospatially (Supplementary File 
1A2/3) and a frequency analysis (Supplementary File 1B), along with 
area under the curve estimates (AUC; Supplementary File 1D) were 
conducted to further optimize and compare sensitivity/specificity as
sessments (described below). 

2.2.3. Sensitivity/specificity assessments 
We first compared the number of Census tracts identified as having a 

higher than expected rate of liver cancer in the State of PA (n = 402) to 
the number of Census tracts identified as having at least one (n = 1596) 
or all of the standard recommendation variables (n = 9). We then 
combined the disease measures AND the standard demographic mea
sures from the U.S. Census in order to: a) further reduce the number of 
Census tracts by identifying areas with both a liver cancer burden and 
higher proportion of Blacks, Hispanics and those in the birth cohort; b) 
quantify and compare the number of Census tracts that might have been 
targeted for prevention efforts based on standard demographic variables 
alone, but did not have an actual disease burden. We did these com
parisons by adapting sensitivity/specificity clinical assessments, often 
used to evaluate patient-level diagnostic tests, to our geospatial data 
(See Table 1). 

Next, we determined if sensitivity/specificity assessments could be 
improved with the addition of nSES variables. We developed a system
atic analytic pipeline (See Supplementary File-1B-D) that evaluated 
changes in sensitivity and specificity for each addition of a single nSES 
variable, as well as all possible combinations of these variables. The 
assessment with the best (highest percent) sensitivity/specificity is re
ported here. 

3. Results 

Referring to Fig. 1, using standard demographic variables to target 
geographic areas with higher percentages of Blacks, Hispanics, or the 
birth cohort at risk for Hepatitis C, we identified 1,596 Census tracts that 
would meet these criteria (light-orange), while only 9 Census tracts met 
the criteria for all 3 demographic variables (dark-red; e.g., Erie). Using 
spatial scan statistics, we identified five clusters (n = 402 Census tracts) 
near Philadelphia, Pittsburgh, Allentown, Harrisburg, and Reading with 
higher than expected liver cancer incidence rates (hashed). The Allen
town cluster had the highest relative risk of 3.69 (p < 0.01), followed by 
Philadelphia 2.87 (p < 0.01). Table 2 summarizes the basic de
mographics of areas located in a high risk cluster compared to other 
areas of the State of PA. A higher proportion of cases located in the high 
risk clusters were males between the ages of 45 and 65 years old, which 
corresponds to those born in the 1950-59 birth cohort, compared to the 
rest of the State of PA, which had higher proportions of those over the 
age of 65. The majority of cases in the Philadelphia and Harrisburg 
clusters were non-Hispanic Black. Pittsburgh, Allentown, and Reading 
clusters contained majority non-Hispanic White cases, but Allentown 
and Reading had a higher proportion of Hispanic cases compared to liver 
cancer cases in the rest of the State of PA. Areas identified as having 
higher than expected rates of liver cancer also tended to have higher 
poverty, lower nSES, and higher % of foreign-born residents compared 
to the rest of the State, suggesting the potentially important role of nSES 
in helping to identify high risk cluster areas. 

In Fig. 2, we first assess the sensitivity/specificity of utilizing 

Table 1 
Combining liver cancer disease clusters and neighborhood measures for sensi
tivity/specificity assessments to evaluate precision public health approaches.   

Census Tracts in 
Statistically 
Significant Elevated 
Disease Cluster 
(Disease) 

Census Tracts Outside 
a Significantly 
Elevated Disease 
Cluster (NonDisease) 

Total 

Positive (has at 
least one 
standard 
demographic 
variable) 

A (True Positive) B (False Positive) Total 
Positive 

Negative (has no 
standard 
demographic 
variables) 

C (False Negative) D (True Negative) Total 
Negative  

Total Elevated Risk Total Non-Risk TOTAL  
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standard demographic variables with liver cancer disease cluster data. In 
assessments with any of the three standard demographic variables (% 
non-Hispanic Black; % Hispanic, % birth cohort), sensitivity was 80.6%, 
specificity 54.8% and positive predictive value (PPV) 20.3%. Over
lapping areas (dark-orange) indicate Census tracts "at-risk" or identified 
as being located in a disease cluster and containing the highest quartile 
of at least one of 3 standard demographic variables (i.e., true positives; n 
= 324 Census tracts). Yellow-shaded areas were not detected in a high 
risk cluster, but were identified to contain at least 1 standard de
mographic variable (i.e., false positives; n = 1272 Census tracts). These 
findings demonstrate that using standard approaches, areas without a 
liver cancer burden could be targeted (yellow Census tracts). Further, 
combining disease data with standard demographic variables from the 
U.S. Census would reduce targets (n = 324 Census tracts from true 
positives) more than disease cluster (n = 402 Census tracts) or standard 
demographic variables (n = 1596 Census tracts) alone. 

Next, we determined if the addition of nSES variables could improve 
sensitivity/specificity assessments. First, nSES measures that were 
significantly related to being located in a high-risk cluster were identi
fied (Supplementary File 1B), and systematically evaluated using fre
quency analysis in order to reduce the number of explanatory variables 
to optimize sensitivity/specificity assessments (Supplementary File 1B/ 
C). After these assessments, 4 nSES variables remained that were 
significantly associated with liver cancer incidence and occurred in high 
frequency within high risk liver cancer clusters: % Non-Hispanic Blacks, 
the Hispanic-ICE, TDS, and neighborhood instability. Comparisons of 
spatial patterns and changes in sensitivity/specificity assessments using 
different combinations of the 4 nSES variables alone and in combination 
with the 3 standard demographic variables were conducted to identify 
the assessment with the highest sensitivity/specificity, and to determine 
if the addition of more variables (i.e., all 7 versus 3 variables, etc.) would 

result in the best sensitivity/specificity assessment (Supplementary File 
1C/D). The final (and best) assessment included Census tracts with 
highest percentage (i.e., positive for the highest quartile) of the 
following 4 nSES measures: % Non-Hispanic Black, Hispanic-ICE, TDS, 
and neighborhood instability. This assessment had a sensitivity of 
92.8%, specificity of 67.3% and PPV 28.8%. This was chosen as the final 
model given that spatial patterns indicated that fewer Census tracts were 
classified as false positive (Fig. 3-yellow areas) in comparison to the 
model when 3 standard demographic variables were used (Fig. 2-yellow 
areas); i.e., more Census tracts in actual high risk clusters were identified 
(n = 374), and AUC estimates were most improved using this approach 
(0.80 vs 0.87) (Supplementary File 1D). Additionally, when applying 
this model at the case level instead of the Census tract level, this model 
also had similar sensitivity/specificity (95.9%/59.2%), meaning a high 
proportion of current liver cancer cases would be identified for liver 
cancer interventions. Using this final, 4 variable assessment as an 
example, we further determined if sensitivity/specificity assessments 
could be improved if we limited these calculations to areas that con
tained all 4 nSES variables vs. 3 or more, 2 or more variables, etc. We 
found that the PPV improved up to 50% if areas only positive for all 4 
nSES variables were identified, but this was at the expense of sensitivity 
(which reduced down to 25%) (Supplementary File 1D2). 

3.1. Application of precision public health to liver cancer prevention in 
Philadelphia 

Utilizing findings from the best model of the sensitivity/specificity 
assessments (Fig. 3), we apply this knowledge to outline priority areas in 
Philadelphia to target for liver cancer prevention (Fig. 4). Philadelphia 
County is located in Southeast Pennsylvania. It is the most populated 
city/county in Pennsylvania (1.5 Million residents, Census 2010), and it 

Fig. 1. Location and Number (N) of Census Tracts (CT) in Pennsylvania by Standard Demographic Variables (any 1 out of 3 standard demographic variables (light- 
orange) or all 3 standard demographic variables (dark-red)) and Liver Cancer Cluster Analysis (hashed). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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contains 384 Census tracts. Of the 384 Census tracts, 231 Census tracts 
were identified as being located in a significant cluster of elevated 
relative risk, demonstrating the high burden of liver cancer in the city. 
Using the 4 selected nSES measures from the final model, we plan to 
maximize our limited resources, and focus on Census tracts that also 
contain a high burden of disparity (i.e., that contain the highest per
centage of all 4 (Category 1) or at least 3 nSES variables (Category 2)). 
This approach allows us to reduce intervention targets identified with a 
disease burden down to 179 Census tracts with the highest local rates of 
liver cancer (Category 1 relative risk (RR) = 2.96; Category 2 RR =
2.95). However, in the absence of more sophisticated geospatial ana
lyses that identify clusters of higher than expected rates of liver cancer, if 
we were to only use the 4 nSES variables that are available by down
loading Census tract-level data and identify those Census tracts with the 
highest burden of all 4 or at least 3 of these variables, we would be 

targeting 66 Census tracts that do not have a statistically significant 
elevated risk of liver cancer compared to the rest of the State of PA (i.e., 
not in a liver cancer cluster), but that do have a significantly elevated 
local risk of liver cancer (Category 1 outside of the disease cluster RR =
1.59). Further, this number is much lower than if we were to use the 3 
standard demographic variables for liver cancer prevention in Phila
delphia, where 324 Census tracts and additional 126 Census tracts 
would be unnecessarily targeted. This suggests that utilizing nSES var
iables (with or without disease data) when identifying intervention 
targets for liver cancer could help to maximize limited resources by 
more precisely pinpointing areas that are likely to have a disease 
burden. 

Table 2 
Baseline demographics of cases and census tracts located inside and outside of liver cancer disease clusters in Pennsylvania (PA).   

Cluster Areas with Higher than Expected Rates of Liver Cancer Incidence  

Disease Rates State of PA Philadelphia Pittsburgh Allentown Harrisburg Reading Rest of PA 
(outside of 
clusters) 

Census Tracts (n) 3217 231 132 8 19 12 2815 
Cases (n) 9460 1240 339 42 87 47 5658 
Mean Relative Risk (p-Value) 1.0 

(Reference) 
2.87 
(<0.01) 

1.83 
(<0.01) 

3.69 
(<0.01) 

2.23 
(<0.01) 

2.59 
(<0.01) 

N/A 

Patient Characteristics N % N % N % N % N % N % N % 
Age at Diagnosis (years) 

0-45 313 3.3 55 4.4 7 2.06 0 0.0 2 2.3 2 4.3 176 3.1 
46-65 4818 50.9 780 62.9 199 58.7 30 71.4 56 64.4 31 65.9 2812 49.7 
>66 4329 45.8 405 32.7 133 39.2 12 28.6 29 33.3 14 29.8 2670 47.2 

Sex 
Male 6810 72.0 929 74.9 257 75.8 32 76.2 74 85.1 39 82.9 4008 70.9 
Female 2650 28.0 311 25.1 82 24.2 10 23.8 13 15.0 8 17.0 1650 29.2 

Race/Ethnicity 
White Non-Hispanic 7217 76.3 414 33.4 177 52.2 27 64.3 29 33.3 29 61.7 4653 82.2 
Black Non-Hispanic 1655 17.5 664 53.6 145 42.8 6 14.3 48 55.2 7 14.9 713 12.6 
Hispanic 116 1.2 26 2.1 3 0.9 3 7.1 1 1.2 9 19.2 63 1.1 
Asian/Pacific Island 324 3.4 93 7.5 8 2.4 1 2.4 7 8.1 0 0.0 161 2.9 
Other 148 1.6 43 3.5 6 1.8 5 11.9 2 2.3 2 4.3 68 1.2 

Select Census Tract Characteristics N N N N N N N 
Total Population 12779559 922469 289547 26849 65495 38913 7344275 
Age (%) 

0-45 55.6 67.5 63.3 73.5 64.5 71.0 54.5 
46-65 28.0 22.2 22.6 19.6 24.3 20.5 28.5 
>66 16.3 10.3 14.1 6.9 11.2 8.5 17.0 

Race/Ethnicity (%) 
White Non-Hispanic 78.1 29.2 62.9 19.7 32.4 22.7 79.2 
Black Non-Hispanic 10.5 43.7 26.3 15.5 42.7 9.0 9.9 
Hispanic 6.4 17.1 2.7 61.2 17.0 64.5 6.3 
Asian/Pacific Island 3.1 7.5 5.2 1.4 3.9 0.7 2.7 
Other 1.8 2.2 2.7 2.0 3.8 3.1 1.9 

Neighborhood Instability (%Population Living at the Same Place 
as 1 Year Ago) 

87.6 83.2 80.0 65.9 79.9 76.3 88.2 

Neighborhood Poverty level 
Q1 < 5.6% (LOW) 28.5 1.8 5.1 0.0 2.3 0.0 29.0 
Q2 < 10.16 25.9 8.3 12.9 0.0 16.0 0.0 26.5 
Q3 < 17.6 24.1 14.4 20.8 0.0 17.1 0.0 25.4 
Q4 > 17.6 (HIGH) 21.5 75.5 61.1 100 64.6 100 19.1 
Townsend Deprivation Score 
Q1 –Very Low Deprivation Level 26.4 0.0 5.8 0.0 3.2 0.0 27.6 
Q2 26.8 0.3 6.3 0.0 2.3 0.0 26.1 
Q3 24.1 9.1 32.6 0.0 29.9 7.1 26.7 
Q4-Very High Deprivation Level 22.7 90.6 55.3 100 64.6 92.9 19.6 
ICE (Hispanic Households) 
Q1 – Very Low Concentration of Hispanic Households 24.7 0.4 4.4 0.0 0.0 0.0 22.0 
Q2 25.8 2.9 8.9 0.0 0.0 0.0 26.7 
Q3 25.3 9.5 39.2 0.0 3.2 0.0 27.4 
Q4- Very High Concentration of Hispanic Households 24.1 87.3 47.5 100 96.8 100 23.9 

Q1 = quartile 1. 
Q2 = quartile 2. 
Q3 = quartile 3. 
Q4 = quartile 4. 
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4. Discussion 

Precision public health requires the linkage of multiple primary 
surveillance data resources, and the rapid application of sophisticated 
analytics to track the geospatial distribution of disease in order to reduce 
geographic targets and act on this information in the form of in
terventions (Dowell et al., 2016). In this study, we applied precision 
public health approaches to inform liver cancer prevention efforts in 
Pennsylvania. We found that combinations of surveillance data, 
including neighborhood measures from the U.S. Census together with 
liver cancer disease rates generated from Pennsylvania State cancer 
registry data, can narrow down Census tracts to target for liver cancer 
prevention more than standard approaches that use demographic data 
(race/ethnicity and age) from the U.S. Census only. Using this approach, 
we are also able to account for or target 4,825 (51%) of the total number 
of 9,460 liver cancer cases in PA. To our knowledge, we are one of the 
first studies to quantitatively evaluate precision public health ap
proaches by applying sensitivity/specificity assessments to linked sur
veillance resources. Utilizing sensitivity/specificity assessments, we 
were able to evaluate the utility of precision public health by quanti
fying the number of Census tracts without a known liver cancer burden 
that might have been targeted using standard recommendations (i.e., 
identify false positives; n = 1272). Given the high false positive rate, we 
then sought to determine if nSES factors could improve sensitivity/
specificity assessments. This is because in the disease cluster analysis, 

nSES factors related to income, deprivation, stability, and immigration 
status were found in higher proportions in high-risk cluster areas 
compared to the rest of the State of PA. Further, previous 
population-based studies have found that these nSES measures 
contribute to both liver cancer incidence, race/ethnic disparities 
(Nguyen & Thuluvath, 2008), and are also correlated with access to care 
measures, such as screening utilization (Diez Roux & Mair, 2010). Our 
model with the highest sensitivity (92.8%) and specificity (67.3%) 
included one standard demographic variable (% Non-Hispanic Black) 
and 3 additional nSES variables related to segregation (Hispanic-ICE), 
deprivation (Townsend Index), and neighborhood instability (% of 
households still living in same house as one year ago). These findings 
suggest that nSES could serve as an additional informative marker for 
high-risk populations in need of liver cancer prevention, particularly in 
the absence of available disease cluster data, as demonstrated by the 
application of precision public health approaches to the city of Phila
delphia. Thus, moving forward, the incorporation of nSES to prioritize 
neighborhoods for future community-based liver cancer prevention ef
forts appears warranted. 

While the incorporation of nSES factors improved sensitivity/speci
ficity assessments, the specificity and PPV estimates were still low. In a 
clinical setting, the goal is to achieve measures above 90%. It is possible 
that other data resources that include additional risk factor information 
at the neighborhood level, such as Hepatitis C or B rates, could further 
improve specificity. The inclusion of additional liver cancer-related 

Fig. 2. Spatial application of the Sensitivity/Specificity approach to Census Tracts (CT) in Pennsylvania using Liver Cancer Disease Cluster Data and the 3 Standard 
Demographic Variables (%Black, %Hispanic, %born 1950–1959) from the U.S. Census. Note: Sensitivity = True Positive/(True Positive + False Negative)*100 – 
80.6%Specificity = True Negative/(False Positive + True Negative)*100 – 54.8%Positive Predictive Value = True Positive/(True Positive + False Negative)*100 - 
20.3% Negative Predictive Value = True Negative/(True Negative + False Negative)*100 – 95.2%. 
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Fig. 3. Spatial application of the Sensitivity/Specificity approach to Census Tracts (CT) in Pennsylvania using Liver Cancer Disease Cluster Data and the final 
assessment, which included one standard demographic variable (%Black), and 3 neighborhood socioeconomic (nSES) variables (Hispanic-Index of Concentration at 
the Extremes (ICE); Townsend Index, neighborhood instability). Note: Sensitivity = True Positive/(True Positive + False Negative)*100 – 93.0%Specificity = True 
Negative/(False Positive + True Negative)*100 – 62.9%Positive Predictive Value = True Positive/(True Positive + False Negative)*100 - 26.3% Negative Predictive 
Value = True Negative/(True Negative + False Negative)*100 – 98.4%. 

Fig. 4. Application of Precision Public Health to Liver Cancer Prevention in the City of Philadelphia: Combination of selected neighborhood socioeconomic (nSES) 
Measures and Disease cluster data from the final sensitivity/specificity assessment helpsto prioritize Census tracts for intervention. Note: Sensitivity = True Positive/ 
(True Positive + False Negative)*100 Specificity = True Negative/(False Positive + True Negative)*100 Positive Predictive Value (PPV) = True Positive/(True 
Positive + False Negative)*100 Negative Predictive Value (NPV) = True Negative/(True Negative + False Negative)*100. 
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disease (i.e., Hepatitis B and C surveillance data) and behavior-related 
risk factors (i.e., obesity, alcohol drinking) could improve not only 
sensitivity/specificity assessments, but could also lead to the generation 
of neighborhood profiles that would tell us not only “where” to target 
liver cancer prevention, but “what type” of intervention would be most 
useful. For instance, we would target Hepatitis B vaccination in areas 
with high Hepatitis B rates, but not in areas with low Hepatitis B rates. 
This targeted approach would further support the application of preci
sion public health for liver cancer prevention. However, ongoing pre
ventive programming and monitoring of the targeted regions will likely 
be needed to monitor the potential for precision public health ap
proaches to truly reduce regional LC burdens over time. 

There are a number of limitations in this study to note. Sensitivity/ 
specificity assessments in a clinic setting rely on a “gold standard” for 
disease identification. There are no “gold standards” for disease cluster 
identification. SatScan software is one of the most reliable and 
commonly-used methods to define spatial clusters of high risk, but it is 
possible that areas with a liver cancer burden might not have been 
detected or that Census tracts might have been included in a high risk 
cluster due to aggregation assumptions within scanning windows 
(Ozdenerol, Williams, Kang, & Magsumbol, 2005). In the present study, 
we used the GINI method (Han et al., 2016), and 50% scanning window 
size was found to be most suitable. Although not reported, we did 
compare cluster results from SatScan to another software package, 
BayesX and results were similar. Additionally, our evaluation of the 
effect of nSES measures on liver cancer incidence was not comprehen
sive, and it’s possible other nSES measures may be better suited for this 
type of analysis (Krieger et al., 2002; Wiese, Stroup, Crosbie, Lynch, & 
Henry, 2019). Additionally, given that the frequency of nSES variables 
likely changes across State and geographic scale, it’s possible that 
findings from this study might not be generalizable to other States. 
Measures of race/ethnic concentration that were found to be important 
in this study may be related to the fact that the majority of the LC cases 
are clustered in urban areas, which tend to be racially segregated 
(Massey, 1990), and therefore have high concentration of a single 
race/ethnicity in certain neighborhoods. In rural areas with less racia
l/ethnic segregation and concentration, racial/ethnic ICE measures 
might not be as effective. Further, it is possible that cases from mental 
health/treatment facilities could have been included in this analysis and 
impacted cluster results; however, there were 9,286 unique addresses 
out of the 9,460 cases, suggesting this effect would be minimal. Addi
tionally, the application of similar methodology to other diseases may 
require adjustments in scanning window size selection and alternative 
nSES variables. Finally, utilization of administrative Census tract 
boundaries may not reflect the true neighborhood utilized or perceived 
by the population. It’s possible that residents within a Census tract may 
also be influenced by neighboring Census tracts (Sperling, 2012). Future 
studies may consider using Census-derived measures that are estimated 
using surrounding areas to ensure inclusion of neighborhoods with 
similar conditions. In this way, contiguous geographic areas with similar 
profiles may be considered as target intervention sites. 

5. Conclusion 

The methods and subsequent findings in this study are particularly 
informative, given that public health and community outreach organi
zations from U.S. cancer centers are increasingly tasked with imple
menting cost-effective educational, behavioral, and screening related 
interventions that have the broadest reach in their cancer center 
catchment areas (i.e., areas where their patient populations reside). Due 
to limited resources, the majority of these centers implement 
community-based interventions and select priority neighborhoods for 
intervention, not based on disease outcomes, but on demographic data 
from the U.S. Census that is publically available and easily accessible. In 
this study, utilizing our novel strategy of combining established sensi
tivity/specificity assessments with geospatial cluster analysis, we found 

that using only standard approaches would lead to targeting lower risk 
areas, and not using limited prevention resources efficiently. Analyses 
that couple disease and Census data, should be standard moving for
ward; however, in the absence of having geospatial expertise or disease 
data, coupling demographic and nSES data could help reduce targets for 
intervention. Further exploration of the present methodology for liver 
cancer and other diseases across different States, as well as the inte
gration of additional neighborhood SES factors are needed, but findings 
do support the utilization of precision public health approaches for 
cancer prevention. 
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