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The mainstream method used for the analysis of task functional Magnetic Resonance
Imaging (fMRI) data, is to obtain task-related active brain regions based on generalized
linear models. Machine learning as a data-driven technical method is increasingly used
in fMRI data analysis. The language task data, including math task and story task, of the
Human Connectome Project (HCP) was used in this work. We chose a linear support
vector machine as a classifier to classify math and story tasks and compared them
with the activated brain regions of a SPM statistical analysis. As a result, 13 of the 25
regions used for classification in SVM were activated regions, and 12 were non-activated
regions. In particular, the right Paracentral Lobule and right Rolandic Operculum which
belong to non-activated regions, contributed most to the classification. Therefore,
the differences found in machine learning can provide a new understanding of the
physiological mechanisms of brain regions under different tasks.

Keywords: generalized linear models, support vector machine, contribution of brain region, task fMRI,
lasso regression

INTRODUCTION

In functional magnetic resonance data analysis, GLM (generalized linear models) are one of
the most common model-based methods that correlate measured hemodynamic signals with
controlled experimental variables (Friston et al., 1994; Holmes and Friston, 1998). Specifically, each
voxel of the functional Magnetic Resonance Imaging (fMRI) image and the experimental paradigm
are analyzed by a generalized linear model, and each voxel corresponds to a coefficient Bata of
a regression equation, and all coefficients are combined to form a statistical parameter map (Yan
et al., 2011; Wu et al., 2012). In a group analysis, a one sample t-test is performed on the statistical
parameter maps of all subjects to determine the activation region of the group (Beckmann et al.,
2003). Although the GLM is currently the dominant approach to brain activation detection, there
is growing interest in multivariate approaches (Zhang et al., 2009). For example, machine learning
as a data-driven technology is not only sensitive to subtle spatial differentiation patterns, but also
capable of exploring the inherent multivariate nature of high-dimensional image data (Norman
et al., 2006). Since machine learning can find features that contribute most to classification (Meier
et al., 2012; Lv et al., 2015), differences found can provide a new understanding of the physiological
mechanisms of brain regions under different tasks.

Applying machine learning methods to neuroimaging data began with the work of Haxby
et al. (2001), who recognized the distribution characteristics of visual cortex activation patterns
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from functional MRI. At present, machine learning has been
widely used in fMRI data classification (Yan et al., 2017a,b)
to explore the cognitive state of the brain (Yan et al., 2018).
Under different visual stimulation conditions, the stimulus may
be different visual pictures (objects or people, shoes or bottles),
raster stimulation at different angles, etc., and the type of task
received by the subject is determined by classifying the collected
fMRI data (Haxby et al., 2001; Kamitani and Tong, 2005; Norman
et al., 2006). Machine learning is used in psychiatry to distinguish
patients from controls. Patients with severe depression (Fu
et al., 2008) were classified with an accuracy rate of 70 to 80%.
Individuals and controls with autism spectrum disorder were
distinguished based on two fMRI experiments (Chanel et al.,
2016). Machine learning is therefore a promising method used to
detect brain state (Ecker and Murphy, 2014). Machine learning
mostly uses support vector machines as classifiers in functional
magnetic resonance data classification (De et al., 2008; Pereira
et al., 2009; Ecker et al., 2010; Xin et al., 2013).

When the number of features far exceeds the number
of subjects, it will cause problem which commonly occurs
in machine learning known as the curse of dimensionality
(Bellman, 1961). If the dimension reduction of features cannot
be performed, it is easy to cause over-fitting (Guyon, 2003).
Over fitting means that the model has poor generalization ability,
that is, the ability to accurately predict new samples is poor
(Mayer et al., 2009). Therefore, feature selection is required
before training the model (De et al., 2007; Pereira et al., 2009;
Mwangi et al., 2014).

In this study, we sought to explore the effects of activated
brain regions and inactivated brain regions on the classification
results of functional magnetic resonance data for different tasks.
We extracted the average t value of the generalized linear model
as the eigenvector and chose the Lasso regression algorithm
(Tibshirani, 1996) for feature dimension reduction. Using a linear
support vector machine, the classification weight was used as
an index to evaluate the importance of each brain region in
the classification and compared this with the group analysis
results. Results revealed two brain regions that did not appear
in the activated brain region but contributed significantly to the
classification, namely the right Paracentral Lobule and the right
Rolandic Operculum.

MATERIALS AND METHODS

Participants
Experimental data for 1046 healthy subjects was obtained from
the open source database, WU-Minn Human Connectome
Project (HCP) Data - 1200 Subjects (HCP_1200), published
by the Public Connectome Data1. Most participants were
between the ages of 22 and 35. All participants had no
previously documented history of psychiatric, neurological or
medical disorders that affected their brain function. Of the
1046 participants, 560 were female and 486 were male, 223
were between the ages of 22–25, 455 were between the ages

1https://db.humanconnectome.org/

of 26–30, 357 were between the ages of 31–35 and 11 were
over the age of 36. We used the 3T MR Language Task fMRI
Preprocessed sessions.

Experimental Paradigms
The language task contained an auditory story presentation with
comprehension questions and math problems. It consisted of two
runs that each had eight blocks (four story blocks and four math
blocks) randomly combined. The length of each block varied,
but the average length was about 30 s. In order to complete a
3.8 min run, the math task blocks needed to match the length
of the story task blocks, and additional math tasks were added
when the total length was less than 3.8 min. The story blocks
presented participants with a brief auditory story (around 5–9
sentences) adapted from a collection of Aesop’s fables. After each
story, the participant was asked about the topic of the story, in the
form of a 2-alternative forced-choice question. For example, after
a story about an eagle that saves a man who had done him a favor,
participants were asked, “Was that about revenge or reciprocity?”
Participants pressed a button under the right index finger to select
the first choice or a button under the right middle finger to select
the second choice. Math tasks were also presented in a phonetic
manner, requiring participants to complete simple addition and
subtraction problems. Each series of arithmetic operations ended
with the word “equals” followed by two alternative choices,
e.g., “Four plus twelve, minus two plus nine, equals twenty-
two or twenty-three?” The participants pushed a button to
select either the first or the second answer (Binder et al., 2011;
Barch et al., 2013).

fMRI Data Acquisition
Whole-brain EPI acquisitions were acquired with a 32 channel
head coil on a modified 3T Siemens Skyra with TR = 720 ms,
TE = 33.10 ms, flip angle = 52◦, BW = 2290 Hz/Px, in-plane
FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a
multi-band acceleration factor of 8 (Feinberg et al., 2010; Moeller
et al., 2010). For further information please refer to Ugurbil et al.
(2013) for an overview of the acquisition details of the task fMRI.
Two runs of each task were acquired, one with a right-to-left
phase encoding and the other with a left-to-right phase encoding.

fMRI Data Processing
Preprocessing
We used the 3T MR Language Task fMRI Preprocessed data. This
data was processed using FSL and FreeSurfer. The steps included
gradient unwarping, motion correction, fieldmap-based EPI
distortion correction, brain-boundary-based registration of EPI
to a structural T1-weighted scan, non-linear (FNIRT) registration
into MNI152 space, and grand-mean intensity normalization. In
addition, spatial smoothing was done with an 8 mm full-width at
half-maximum Gaussian core (Figure 1) for GLM analysis.

SPM Statistical Analysis
In order to identify the differences between the two tasks and
to evaluate the significance of functional activation, we used a
GLM analysis. In the first level (within-subject) analysis, the data
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FIGURE 1 | Data processing flowchart for SPM and machine learning analysis.

was skillfully modeled in GLM. Four kinds of contrast images
were created for each participant, including math task, story
task, math vs. story task and story vs. math task. In the second-
level analysis, the contrast (con files) images were used from
the first-level analyses of all 1046 subjects. The four conditions
were analyzed by one-sample t-test analysis. The SPM (T) map
of math and story tasks were obtained and the threshold was
p< 0.05(FWE) at voxel level. To eliminate artifacts, we used math
contrasts and story contrasts as a mask and the mask threshold
was p < 0.001 at voxel level for math vs. story and story vs.
math tasks, respectively. The SPM (T) map of math vs. story and
story vs. math tasks were then obtained and the threshold was
p < 0.05(FWE) at voxel level. These results were used to analyze
the activation of brain functions and were compared with the
results of machine learning.

Classification Using Machine Learning
After the SPM2 processed individual data, the spmT file
was generated for each of the two experimental conditions.
Under GRETNA (Wang et al., 2015), the AAL903 (Anatomical

2https://www.fil.ion.ucl.ac.uk/spm
3http://www.gin.cnrs.fr/en/tools/aal-aal2/

Automatic Labeling) template was used to segment the brain
region of the spmT file, and the average statistical T value of
each brain region was extracted to generate a 90 × 1 feature
matrix. For a total of 1046 participants, the feature vector was:
math task 1046 × 90, story task 1046 × 90. The characteristics
of 800 subjects were selected as a training set. The math task tag
was 1, the story task tag was −1 and the training set was sent to
the classifier for classification. The remaining 246 subjects were
used as the prediction test set. Before classification, a z-score was
used to normalize the preprocessed training set. And the Lasso
regression algorithm was used for feature selection. Then the
linear support vector machine was used as the kernel function
and the 10-fold cross-validation was used to calculate the correct
rate of training. Brain region contribution results could also be
obtained while establishing a classification model. Finally, the test
set was sent to the classifier to obtain the classification label and
the accuracy of the prediction result was calculated. In order to
obtain the optimal classification result, it was necessary to debug
the classification parameters to predict the correctness of the
results as the debugging standard. It included two parameters,
one was the regularization parameter α of the Lasso algorithm,
and it directly determined the number of features. The larger
the alpha, the sparser the model, therefore, more regression
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coefficients β were set to 0, thus deleting some features to achieve
feature selection. The other was the penalty coefficient C of the
linear support vector machine, and it directly determined the
accuracy of training. The value of C was generally between 0.01
and 0.1. The contribution of the brain region was proposed under
two preconditions: firstly, the feature was extracted based on the
region partitioned by the brain template, so that the feature was
associated with the three-dimensional brain structure, therefore,
each feature corresponded to a brain region; secondly, the linear
support vector machine was selected as the classifier, because the
weight of the linear support vector machine was in one-to-one
correspondence with the feature vector. The larger the weight
value, the more important the corresponding feature was to
the establishment of the classification decision surface. Through
the relationship between the features and the brain regions and
the relationship between features and classification weights, the
corresponding relationship between brain regions and weights
was established. In simple terms, the contribution of the brain
region, was the weight value of the optimal decision function, of
the linear support vector machine classifier.

RESULTS

Behavioral Data
The behavioral data were collected from 1046 participants during
the fMRI experiments. Only one subject’s data was lost during
the experiment. We used the average reaction time and correct
rate data of 1045 participants for statistical analysis. There were
two tasks. The mean reaction times (RT) (Figure 2A) and the
mean accuracy (Figure 2B) were 3.79 ± 0.38 s and 83.28% (SD
3.42), respectively, for the math task and 3.50 ± 0.39 s and
92.57% (SD 12.94), respectively, for the story task. Two tailed
two-sample t-tests were performed to compare the mean RTs and
the mean accuracy between the math task and story task. The
results showed that the math task had a slower reaction time
compared to the story task (t = 17.260, P < 0.001). And the
accuracy of the math task was significantly lower than the story
task (t = 15.834, P < 0.001).

Imaging Data
Group Analysis Results
The specific group results of the four groups of activated brain
regions were shown in Table 1. The activations of math and story
tasks showed that both the left and right temporal lobe were
activated (Figures 3A,B). In addition to the temporal lobe, in
the math task, the brain area with a greater activation intensity
included: the left Precentral Gyrus, left Middle Temporal Gyrus,
left Superior Temporal Gyrus, right Inferior Frontal Gyrus and
the right Middle Frontal Gyrus (Wang et al., 2007). In the story
task, the brain area with a greater activation intensity included:
the left Inferior Frontal Gyrus, left Middle Frontal Gyrus and
the right Inferior Semi-Lunar Lobule. Compared to the story
results (Figure 3C), the math results included: the left Inferior
Frontal Gyrus, left Inferior Parietal Lobule and the left Superior
Parietal Lobule which had a higher activation intensity than
the story task; while the Superior Parietal Lobule and Inferior

FIGURE 2 | Behavioral results. (A) Mean reaction time for the math stimuli and
story stimuli. (B) Mean accuracy rates for the math stimuli and story stimuli.

Parietal Lobule only activated in the math task. Compared with
the math results (Figure 3D), the brain area of the story task,
the left Inferior Temporal Gyrus, Superior Temporal Gyrus and
the Middle Temporal Gyrus, had a significantly higher activation
intensity than the math task, and the Parahippocampal Gyrus
Amygdala on the left and right sides only activated in the story
task (Binder et al., 2011; Barch et al., 2013).

Parameter Debugging Result
As shown in Figure 4A, it was found that as the α increased,
the number of features decreased exponentially. Therefore,
in order to reduce the dimensional disaster and improve
the classification performance of the classifier, the appropriate
number of important features were selected, α were taken as:
0.001, 0.002, 0.003, 0.005, 0.007, 0.01, and the corresponding
feature numbers were: 38, 25, 19, 11, 9, 8. Next, the penalty
coefficient C of the linear support vector machine was debugged,
and finally the accuracy of the prediction result was used as
a criterion for evaluating the performance of the classifier. As
shown in Figure 4B, when α = 0.002, C = 0.09, the highest
classification accuracy rate was 87.60%. The current parameters
and the effects of the trained models could be visually evaluated
by plotting the ROC curve and the AUC indicator. As shown in
Figure 4C, the area under the curve was 0.96, which was close to
1, indicating that the classifier had a good classification effect.

Machine Learning Results
As shown in Figure 5, a three-dimensional brain region
contribution distribution map in six directions was shown.
Some regions tended to exhibit higher classification weights
than others. In particular, if the weight of some areas was

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2019 | Volume 13 | Article 10

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00010 March 4, 2019 Time: 17:3 # 5

Wang et al. SVM for Task-State fMRI

TABLE 1 | Activated regions during the two auditory stimuli and the different activated regions between them.

Cluster Anatomical regions and BA t-score x y z

size (voxels) (FWE, p < 0.05)

Math

2498 L Precentral Gyrus BA 6 20.70 −48 −2 44

L Precentral Gyrus BA 6 20.22 −44 2 34

L Middle Frontal Gyrus BA 6 15.03 −26 −4 50

1700 L Superior Temporal Gyrus BA41 33.25 −56 −20 4

L Superior Temporal Gyrus BA 38 6.26 −56 6 −6

1542 R Superior Temporal Gyrus BA 22 36.82 64 −18 2

1266 L Inferior Parietal Lobule BA 40 18.83 −42 −42 42

L Superior Parietal Lobule BA 7 10.80 −26 −62 44

L Precuneus BA 7 10.51 −28 −66 36

857 R Tuber 27.62 30 −60 −28

782 R Inferior Parietal Lobule BA 40 15.51 46 −38 42

733 L Superior Frontal Gyrus BA 6 20.23 −6 10 54

R Superior Frontal Gyrus BA 8 12.33 8 16 50

459 R Inferior Frontal Gyrus BA 47 18.12 32 26 0

316 R Inferior Frontal Gyrus BA 9 8.83 44 6 30

284 L Uvula 20.54 −28 −64 −26

189 R Middle Frontal Gyrus BA 6 9.16 32 0 52

50 R Substantia nigra 7.35 10 −14 −10

44 R Inferior Semi-Lunar Lobule 13.00 18 −68 −44

23 R Inferior Temporal Gyrus BA 20 7.93 54 −48 −8

23 L Caudate-Caudate Head 5.56 −12 6 4

22 R Superior Parietal Lobule BA 7 6.54 12 −66 56

17 L Substantia nigra 5.80 −8 −16 −12

9 R Lingual Gyrus BA 18 5.10 8 −86 −2

6 L Thalamus 4.71 −10 −14 2

4 L Postcentral Gyrus BA 3 4.65 −36 −26 50

Story task

4087 L Superior Temporal Gyrus BA 22 59.72 −62 −16 4

L Middle Temporal Gyrus BA 21 32.53 −56 4 −10

L Superior Temporal Gyrus BA 38 31.59 −52 10 −16

2768 R Superior Temporal Gyrus BA 22 63.16 62 −12 2

R Superior Temporal Gyrus BA 38 26.30 48 12 −24

759 L Inferior Frontal Gyrus BA 47 25.10 −48 30 −6

L Inferior Frontal Gyrus BA 45 19.17 −52 22 16

442 R Inferior Semi-Lunar Lobule 22.01 22 −74 −36

R Pyramis 21.03 20 −72 −28

R Culmen 6.40 30 −60 −26

110 L Middle Frontal Gyrus BA 6 9.82 −42 4 48

71 R Parahippocampal Gyrus Amygdala 10.06 18 −6 −14

37 L Parahippocampal Gyrus Amygdala 7.79 −18 −8 −14

33 R Inferior Frontal Gyrus BA 47 8.40 46 32 −8

11 R Cerebellar Tonsil 8.68 6 −56 −42

9 L Postcentral Gyrus BA 3 5.56 −36 −26 50

9 R Superior Temporal Gyrus BA 39 4.67 52 −54 22

Math vs. Story

2717 L Insula BA 13 50.5 −34 18 6

L Inferior Frontal Gyrus BA 6 47.82 −44 2 32

L Sub-Gyral BA 6 46.54 −26 4 56

1529 L Inferior Parietal Lobule BA 40 74.98 −42 −46 44

L Superior Parietal Lobule BA 7 62.76 −28 −64 46

(Continued)
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TABLE 1 | Continued

Cluster Anatomical regions and BA t-score x y z

size (voxels) (FWE, p < 0.05)

L Superior Parietal Lobule BA 7 51.08 −10 −68 52

1337 R Insula BA 13 59.33 40 18 0

R Middle Frontal Gyrus BA 6 53.07 32 4 56

R Inferior Frontal Gyrus BA 9 41.46 46 6 28

1026 R Inferior Parietal Lobule BA 40 80.95 50 −40 48

R Superior Parietal Lobule BA 7 61.34 32 −64 46

R Superior Parietal Lobule BA 7 48.52 12 −68 52

884 R Medial Frontal Gyrus BA 8 61.51 4 20 46

866 R Cerebellar Tonsil 48.22 32 −58 −32

R Declive 24.72 10 −74 −22

344 L Uvula 46.25 −32 −64 −26

L Declive 31.49 −12 −76 −22

139 R Caudate Body 16.24 18 2 16

R Substantia nigra 10.12 10 −14 −10

101 L Substantia nigra 12.18 −6 −16 −14

L Thalamus Medial Dorsal Nucleus 9.36 −10 −18 10

L Thalamus 7.18 −12 −12 2

76 L Lentiform Nucleus Putamen 14.76 −20 2 16

L Nucleus Medial Globus Pallidus 6.76 −12 0 −2

L Lentiform Nucleus Putamen 6.39 −14 8 2

49 R Inferior Temporal Gyrus BA 20 46.97 54 −46 −10

R Middle Temporal Gyrus BA 20 6.11 50 −38 −6

45 R Inferior Semi-Lunar Lobule 19.35 18 −68 −44

32 R Lingual Gyrus BA 17 14.26 8 −84 2

Story vs. Math

4175 L Inferior Temporal Gyrus BA 21 77.75 −58 −6 −12

L Superior Temporal Gyrus BA 38 70.16 −48 10 −26

L Middle Temporal Gyrus BA 39 62.72 −50 −62 24

2764 R Superior Temporal Gyrus BA 38 68.2 46 12 −28

R Middle Temporal Gyrus BA 21 67.72 54 −4 −14

R Insula BA 13 22.56 40 −24 16

646 L Inferior Frontal Gyrus BA 47 63.66 −44 30 −12

L Inferior Frontal Gyrus BA 45 42.05 −54 26 10

279 R Pyramis 61.07 26 −76 −34

104 R Parahippocampal Gyrus Amygdala 41.73 20 −4 −16

59 R Superior Temporal Gyrus BA 39 38.66 54 −58 22

55 L Parahippocampal Gyrus Amygdala 50.85 −20 −6 −18

51 R Middle Frontal Gyrus BA 11 42.62 44 34 −12

R Inferior Frontal Gyrus BA 47 33.73 50 32 −6

44 L Middle Frontal Gyrus BA 6 18.33 −40 10 50

20 R Cerebellar Tonsil 26.82 6 −56 −42

at least greater than the average weight of all areas, plus a
standard deviation of one time, we considered these areas to
have significant weights (Tian et al., 2011). The mean value plus
the standard deviation of the contribution was equal to 0.0614.
The brain region with a contribution greater than 0.0614 was
considered significant, including: the right Paracentral Lobule,
right Rolandic Operculum and the right Inferior Parietal Lobule,
excluding the supramarginal and angular gyri.

Comparing the classified brain region contribution results
and the group analysis activation region results, as shown in

Table 2, it was found that 13 of the 25 characteristic brain regions
overlapped with the group analysis activated brain regions.
Among the 13 brain regions, there were 11 brain regions that
overlapped with a different activation map between the math task
and the story task. The 11 brain regions were: the left and right
Inferior Parietal Lobe (not include supramarginal and angular
gyri), left and right Middle Frontal Gyrus, left Supramarginal
Gyrus, right Superior Parietal Gyrus, right Superior Frontal
Gyrus, dorsolateral, right Inferior Frontal Gyrus, opercular part,
right Angular Gyrus, left Amygdala, left Heschl Gyrus. Moreover,
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FIGURE 3 | Global brain activation of the group analysis. (A) Math shows a three-dimensional brain activation map in the math task. (B) Story shows a
three-dimensional brain activation map in the story task. (C) Math vs. Story shows the difference of activated brain regions between the Math task relative to the
Story task. (D) Story vs. Math shows the difference of activated brain regions between the Story task relative to the Math task. WM = working memory,
IPS = Intraparietal sulcus, AC = Auditory cortex, SMA = Supplementary Motor Area.

FIGURE 4 | (A) The relationship between the regularization parameter alpha of the Lasso regression algorithm and the number of feature selections (B) The
relationship between the penalty coefficient C of the linear support vector machine and the correct rate of the prediction result under different alpha values (C) ROC
curve of optimal classification results.

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2019 | Volume 13 | Article 10

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00010 March 4, 2019 Time: 17:3 # 8

Wang et al. SVM for Task-State fMRI

FIGURE 5 | Three-dimensional contribution of brain regions for classification.
Each node represented a brain region divided by AAL90 (Anatomical
Automatic Labeling template). The node colors represent different regions and
the node size was scaled according to the weight value of the brain regions.
The greater the contribution of the brain region, the larger the radius
of the node.

these coincident regions had strong activation in the group
analysis results (t values were greater than 18). The remaining
12 brain regions did not overlap with the group analysis
activation region results, including the two brain regions with
significant contributions: the right Paracentral Lobule and right
Rolandic Operculum.

DISCUSSION

One of the experimental paradigms designed by Wang et al. was
the auditory computing task in Mandarin Chinese and English.
The calculation included addition and multiplication. It is similar
to the math task. Study participants included 19 adult native
Mandarin Chinese speakers, with no history of speech or hearing
impairments. The active brain regions of the calculation task
in English after the group analysis include: the left Precentral
Gyrus, left Middle Temporal Gyrus, right Inferior Frontal Gyrus,
and the right Middle Frontal Gyrus (Wang et al., 2007). Barch
et al. (2013) chose 77 participants (58 women and 19 men)
and all participants were aged between 22 and 35, with no
previously documented history of psychiatric, neurological or
medical disorders that are known to influence brain function.
Binder et al. (2011) chose 34 healthy, right-handed adults as
participants. (17 women and 17 men), aged between 18 and
50 years (mean 29 years). They all used the same experimental
paradigm of this article, and similar results were obtained: the
story vs. math results showed that the largest activation cluster
involved the temporal lobe and strong medial temporal activation
involved the uncus, amygdala, and the anterior hippocampus,
extending posteriorly into the parahippocampal and posterior
fusiform gyrus.

Comparative Analysis of Brain Region
Contribution and Group Results
The contribution of brain regions is to combine the different
partitions of the three-dimensional physiological structure in
the brain space, with the weights of the classifiers. Therefore,
the brain region contribution degree reflects the importance of
different brain regions to the classification results. The higher
the contribution value is, the more important the brain area
is for classification results. Classification is to compare the
differences between the two categories. Therefore, the results of
the classification mostly coincided with the differential activation
of the brain region. These overlapping brain regions were: the
Middle Frontal Gyrus, which is involved in expressive language
processes including semantics (Brown et al., 2010), grammar and
syntax. Broca’s area played a role in syntactic processing during
Chinese reading comprehension, verbal fluency (Abrahams et al.,
2003), and verbal working memory (Leung et al., 2002). Inferior
Parietal Lobule has been involved in the perception of emotions,
facial stimuli and interpretation of sensory information. The left
Supramarginal Gyrus was most likely involved with language
perception and processing (Gazzaniga et al., 2013). The left
Heschl Gyrus, which is found in the area of the primary auditory
cortex buried within the lateral sulcus of the human brain, was the
first cortical structure to process incoming auditory information.
The Heschl Gyrus was active during auditory processing under
fMRI for tone and semantic tasks (Warrier et al., 2009). The
right Superior Frontal Gyrus, dorsolateral, is involved in self-
awareness, in coordination with the action of the sensory system
(Goldberg and Harel, 2006; Wang et al., 2017). The Amygdala
plays a major role in memory, decision making, and emotional
response (including fear, anxiety, and aggression), which is
thought to be part of the limbic system (Amunts et al., 2005). The
left Amygdala, plays a major role in memory, decision making,
and emotional response (including fear, anxiety, and aggression),
which is thought to be part of the limbic system (Amunts et al.,
2005). Moreover, the intensity of activation of these overlapping
brain regions in the results of the group analysis reflected the
correctness of the classification features and could identify brain
regions with large activation differences between the two tasks.

There were 12 brain regions in the feature brain region
that did not coincide with the group activation results,
including two brain regions with significant contributions:
the right Paracentral Lobule, which is concerned with Motor
and sensory innervations of the contralateral lower extremity
(Spasojević et al., 2013) and it is also responsible for control
of defecation and urination, and the right Rolandic Operculum.
Some studies have proven that articulatory disorders correspond
with lesions of the Rolandic Operculum (Tonkonogy and
Goodglass, 1981). The reason for the significant difference
between the classification result and the group analysis result
can be explained by using the Paracentral Lobule brain area
as an example. On the one hand, when comparing the brain
regions of the two task differences in the group analysis, a
mask (Gajdoš et al., 2016) was added to eliminate the pseudo
activation. The mask was defined by the activation of the brain
area of the math or story task. As shown in Figure 6, the T
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TABLE 2 | Comparison with degrees between the brain region contribution and group analysis: Label and regions represent the brain region label and brain region name
of the classification result under the AAL90 template.

Label Region Cs Coincidence brain region M(t) S(t) M vs. S(t) S vs. M(t)

70 Paracentral_Lobule_R 0.0918 None

18 Rolandic_Oper_R 0.0792 None

62 Parietal_Inf_R 0.0618 R Inferior Parietal Lobule 80.95

43 Calcarine_L 0.061 None

61 Parietal_Inf_L 0.0592 L Inferior Parietal Lobule 74.98

2 Precentral_R 0.055 None

7 Frontal_Mid_L 0.0529 L Middle Frontal Gyru 15.03 9.82 18.33

46 Cuneus_R 0.0522 None

63 SupraMarginal_L 0.048 L Inferior Parietal Lobule 74.98

50 Occipital_Sup_R 0.0449 None

71 Caudate_L 0.0431 None

60 Parietal_Sup_R 0.0425 R Superior Parietal Lobule 61.34

10 Frontal_Mid_Orb_R 0.0409 R Middle Frontal Gyrus 53.07

80 Heschl_R 0.0394 None

57 Postcentral_L 0.0318 L Postcentral Gyrus 4.65 5.56

4 Frontal_Sup_R 0.0314 R Middle Frontal Gyrus 53.07

12 Frontal_Inf_Oper_R 0.0308 R Inferior Frontal Gyrus 8.40 41.46 33.73

34 Cingulum_Mid_R 0.0268 None

44 Calcarine_R 0.0246 None

65 Angular_L 0.0195 R Insula 59.33 22.56

5 Frontal_Sup_Orb_L 0.0177 L Superior Frontal Gyrus 4.44

25 Frontal_Mid_Orb_L 0.0152 None

41 Amygdala_L 0.0121 L Parahippocampal Gyrus 7.79 50.85

79 Heschl_L 0.011 L Insula 50.50

19 Supp_Motor_Area_L 0.0073 None

The order of the table is arranged by the brain region contribution degree from large too small. Cs represents the contribution score of the brain region. The coincident
brain region indicates the activated brain region in which the classification result coincides with the group analysis solution. The following sections showed the groups and
t values that appear in the coincident brain regions: math, story, math vs. story, story vs. math.
∗R = right, L = left, Oper = operculum, Inf = Inferior, Mid = Middle, Sup = Superior, Orb = orbital part, Supp = Supplementary.

FIGURE 6 | The averaged T value in inactivated brain regions under two
tasks. The numbers on the 12-column chart represented the brain area
number of the AAL90 template, the gray box represented the math task, and
the orange represented the story task. The number of asterisks represented
the degree of p value. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

value of the brain region (label number 70) was negative for
both tasks. Therefore, the differential activation of the brain
area must be included in the scope of the single task activation
brain area. The main function of the Paracentral Lobule brain
area is to control the movement of the contralateral lower limbs

and sensory innervation. The functionality of the Paracentral
Lobule was independent of the activation of the task and was
not activated in the separate analysis of math and story tasks.
Therefore, the differential brain regions of the two tasks were
unlikely to show activation in the Paracentral Lobule brain
region. On the other hand, from the classification principle
(Cherkassky, 1997), machine learning did not need to consider
the problem of pseudo activation. The selection of features
was not limited to the activation range, but the whole brain
range. The linear support vector machine mapped the feature
vector from the Euclid space to the Hilbert space, making the
data set linearly separable in the high-dimensional space. In
Hilbert space, finding such a decision surface, not only separated
the two types of features, but also made the distance between
the two types of features, to this decision surface, as large
as possible (Schölkopf, 2000; Huang et al., 2012). The greater
the distance between the two types of features, the greater the
weight of the classifier, and the greater the contribution value
of the brain region corresponding to the feature. Therefore,
the contribution essentially reflected the difference between the
two types of features corresponding to the brain region in the
Hilbert space. The Paracentral Lobule brain region had the
highest contribution, indicating that the distance between the
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corresponding features of the brain region was very far in the
high-dimensional space. We speculated that the difference in
this brain region was not obvious in low-dimensional space, and
statistical analysis did not show any significance.

Machine learning used the difference between the two
tasks for classification. Among the negatively activated brain
regions, the difference was more obvious, so the contribution
in classification was higher than that in the activated
brain region. However, the mechanism of these negatively
activated brain regions in task execution remains unclear.
This is because, in the two tasks used within the brain
regions involved, the mechanism was quite different from
the mechanism for negatively activating the brain region,
therefore, there was no need to use negative activation brain
regions for task execution. Depending on the supply of
cerebral blood flow, the higher the degree of correlation of
the regional function, the greater the degree of cerebral blood
flow supply.

We compared the T values of 12 inactive brain regions for
two tasks, as shown in Figure 6. The T values of brain regions
in both tasks were mostly negative, and the paired sample t-test
mostly had a p value of less than 0.05. This showed that there
was a significant difference between the two tasks in the negative
activation of brain regions. The negative activation of brain
regions varied greatly among different tasks, suggesting that in
addition to activating brain regions, negative activation of brain
regions played an important role in brain research.

In order to study the contribution of the brain region to the
classification, the linear support vector machine was selected as
the classifier, because the weight value of the classifier reflected
the importance of the feature to the classifier. In addition, Lasso
regression was selected as the feature selection method, which
was related to the training of the final machine learning algorithm
model. The training model was trained based on the input
training data. After the training was completed, the features were
sorted based on the model representation and the importance
of the features. It was only a screening process. If a feature has
a strong influence on the classification performance, it will be
retained, and will be zero if it has no effect on the classifier.
This method did not change the correspondence between brain
regions and features.

CONCLUSION

In this paper, the average T value of the one-sample generalized
linear model was extracted as the eigenvector. The Lasso
regression algorithm and the linear support vector machine
were used for classification, and the result was compared with
the SPM group analysis activation result. It was found that

there were coincident brain regions and non-coincident brain
regions: the coincident brain regions were mostly the difference
between tasks to activate the brain regions, and the activation
intensity was strong. Non-coincident brain regions included
brain regions with significant classification contributions, right
Paracentral Lobule and right Rolandic Operculum. The difference
between the two results was mainly due to the difference in
the algorithm. In the statistical analysis, in order to eliminate
pseudo-activation, the differential activation was limited to a
single task activation range; while machine learning did not need
to consider pseudo-activation, which can be from the scope of the
whole brain, it found feature brain regions that were not related
to task activation but contributed significantly to classification.
In summary, the contribution of the brain region was from
another perspective, analyzing the difference between the two
states of brain activity, and finding important brain regions with
no statistical difference. This suggested an important role for
negative activation of brain regions in brain research.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: https://db.humanconnectome.org/.

AUTHOR CONTRIBUTIONS

MW, CL, JW, YL, XZ, and XL analyzed the data using SPM. MW,
WZ, RC, YW, and YF analyzed the data using machine learning.
MW and CL prepared the figures, and drafted the manuscript.
WZ and RC contributed substantial to wrote and revised the
manuscript. All authors contributed to manuscript development,
and read and approved the final manuscript.

FUNDING

This study was financially supported by the grants
from the National Natural Science Foundation of China
(Grant Nos. 61727807, 81771909, 31600933, 61701323,
81671776, and 61633018), the Beijing Municipal Science and
Technology Commission (Grant Nos. Z161100002616020,
Z131100006813022, and PXM2017_026283_000002), the Yang
Fan Plan of Beijing Municipal Administration of Hospitals
(Clinical Innovation Project, Grant No. XMLX201714),
the Capital Medical University Fundamental and Clinical
Foundations of China (Grant Nos. 16JL-L08 and 17JL68),
and the Excellent Talents Programme of Beijing (Grant No.
2016000020124G098).

REFERENCES
Abrahams, S., Goldstein, L. H., Simmons, A., Brammer, M. J., Williams, S. C.,

Giampietro, V. P., et al. (2003). Functional magnetic resonance imaging of
verbal fluency and confrontation naming using compressed image acquisition

to permit overt responses. Hum. Brain Mapp. 20, 29–40. doi: 10.1002/hbm.
10126

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah,
N. J., et al. (2005). Cytoarchitectonic mapping of the human amygdala,
hippocampal region and entorhinal cortex: intersubject variability and

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2019 | Volume 13 | Article 10

https://db.humanconnectome.org/
https://doi.org/10.1002/hbm.10126
https://doi.org/10.1002/hbm.10126
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00010 March 4, 2019 Time: 17:3 # 11

Wang et al. SVM for Task-State fMRI

probability maps. Anat. Embryol. 210, 343–352. doi: 10.1007/s00429-005-
0025-5

Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L.,
Corbetta, M., et al. (2013). Function in the human connectome: task-fMRI
and individual differences in behavior. Neuroimage 80, 169–189. doi: 10.1016/j.
neuroimage.2013.05.033

Beckmann, C. F., Jenkinson, M., and Smith, S. M. (2003). General multilevel
linear modeling for group analysis in FMRI. Neuroimage 20, 1052–1063.
doi: 10.1016/S1053-8119(03)00435-X

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton, NJ:
Princeton University Press. doi: 10.1515/9781400874668

Binder, J. R., Gross, W. L., Allendorfer, J. B., Bonilha, L., Chapin, J., Edwards,
J. C., et al. (2011). Mapping anterior temporal lobe language areas with fMRI:
a multicenter normative study. Neuroimage 54, 1465–1475. doi: 10.1016/j.
neuroimage.2010.09.048

Brown, S., Martinez, M. J., and Parsons, L. M. (2010). Music and language side by
side in the brain: a PET study of the generation of melodies and sentences. Eur.
J. Neurosci. 23, 2791–2803. doi: 10.1111/j.1460-9568.2006.04785.x

Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., and Grezes, J.
(2016). Classification of autistic individuals and controls using cross-task
characterization of fMRI activity. Neuroimage Clin. 10, 78–88. doi: 10.1016/j.
nicl.2015.11.010

Cherkassky, V. (1997). The nature of statistical learning theory∼. Technometrics
38, 409–409.

De, M. F., Gentile, F., Esposito, F., Balsi, M., Di, S. F., Goebel, R., et al. (2007).
Classification of fMRI independent components using IC- fingerprints and
support vector machine classifiers. Neuroimage 34, 177–194. doi: 10.1016/j.
neuroimage.2006.08.041

De, M. F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., and Formisano, E.
(2008). Combining multivariate voxel selection and support vector machines
for mapping and classification of fMRI spatial patterns. Neuroimage 43, 44–58.
doi: 10.1016/j.neuroimage.2008.06.037

Ecker, C., and Murphy, D. (2014). Neuroimaging in autism–from basic
science to translational research. Nat. Rev. Neurol. 10, 82–91. doi:
10.1038/nrneurol.2013.276

Ecker, C., Rocharego, V., Johnston, P., Mouraomiranda, J., Marquand, A., Daly,
E. M., et al. (2010). Investigating the predictive value of whole-brain structural
MR scans in autism: a pattern classification approach. Neuroimage 49:44.
doi: 10.1016/j.neuroimage.2009.08.024

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S., Glasser,
M. F., et al. (2010). Multiplexed echo planar imaging for sub-second whole brain
FMRI and fast diffusion imaging. PLoS One 5:e15710. doi: 10.1371/journal.
pone.0015710

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., and
Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging:
a general linear approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.
460020402

Fu, C. H., Mourao-Miranda, J., Costafreda, S. G., Khanna, A., Marquand, A. F.,
Williams, S. C., et al. (2008). Pattern classification of sad facial processing:
toward the development of neurobiological markers in depression. Biol.
Psychiatry 63, 656–662. doi: 10.1016/j.biopsych.2007.08.020
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Spasojević, G., Malobabic, S., Pilipović-Spasojević, O., Djukić-Macut, N., and
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