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The microenvironment is a source of reactive oxygen species (ROS) that influence cell

phenotype and tissue homeostasis. The impact of ROS on redox pathways as well

as directly on epigenetic mechanisms and the DNA illustrate communication with the

cell nucleus. Changes in gene transcription related to redox conditions also influence

the content and structure of the extracellular matrix. However, the importance of

microenvironmental ROS for normal progression through life and disease development

still needs to be thoroughly understood. We illustrate how different ROS concentration

levels trigger various intracellular pathways linked to nuclear functions and determine

processes necessary for the differentiation of stem cells. The abnormal predominance

of ROS that leads to oxidative stress is emphasized in light of its impact on aging and

diseases related to aging. These phenomena are discussed in the context of the possible

contribution of extracellular ROS via direct diffusion into cells responsible for organ

function, but also via an impact on stromal cells that triggers extracellular modifications

and influences mechanotransduction. Finally, we argue that organs-on-a-chip with

controlled microenvironmental conditions can help thoroughly grasp whether ROS

production is readily a cause or a consequence of certain disorders, and better

understand the concentration levels of extracellular ROS that are necessary to induce

a switch in phenotype.

Keywords: reactive oxygen species, chromatin, epigenome, tissue stiffness, aging, cancer, neurodegenerative

disorders, stem cell

INTRODUCTION

The generation of reactive oxygen species (ROS) is part of normal physiology. Overproduction
of ROS or insufficient enzymatic conversion of these molecules via antioxidant mechanisms
results in oxidative stress that contributes to aging and disease. Oxidative phosphorylation, which
provides cellular energy, is at the heart of ROS generation in the mitochondria, since it also
results in the formation of superoxide anion (O−

2 ), hydroxyl radical (OH
.) and hydrogen peroxide

(H2O2) (Murphy, 2009); normally, ROS-induced translocation of signal transduction proteins and
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transcription factors to the nucleus promotes the expression of
protective antioxidant enzymes (Poon and Jans, 2005; Kodiha
et al., 2010). Other causes of intracellular ROS production include
responses to infection, mental stress, physical exercise, and
aging (Powers and Jackson, 2008; Bouayed et al., 2009; Romano
et al., 2010; Ivanov et al., 2017). Interestingly, the generation
of ROS in response to bacterial infections alters the host
metabolism, triggering inflammatory signaling pathways that
affect the transcription of proinflammatory and procarcinogenic
genes such as cyclooxygenase 2, which may lead to metabolic
diseases (Cassell, 1998; Mager, 2006; Ivanov et al., 2017), hence
linking infectious disease to chronic disorders via ROS. The
microenvironmental origin of ROS is due to extravasation and
the activity of extracellular catalase, superoxide dismutase (SOD)
and NADPH oxidases (NOX) in response to food and alcohol
consumption and to pollutants such as heavy metals, cigarette
smoke, and radiation (Limòn-Pocheco and Gonsebatt, 2009;
Bauer et al., 2014). Importantly, although extracellular H2O2

easily enters in the cells (Ohno and Gallin, 1985; Limòn-Pocheco
and Gonsebatt, 2009), thus potentially adding to intracellular
burden in case of oxidative stress, its implication in health
homeostasis remains poorly understood.

Theoretically, there are at least two means for
microenvironmental ROS to affect cellular homeostasis via
an impact on the cell nucleus. Direct diffusion of H2O2 into
cells might contribute to high intracellular ROS that has been
linked with alterations in chromatin organization and gene
transcription (Rahman, 2002; Sundar et al., 2013; Kreuz and
Fischle, 2016). Moreover, ROS-mediated activation of fibroblasts
in the extracellular matrix (ECM) increases collagen I production
(Tanaka et al., 1993), hence modifying tissue stiffness, which
might influence gene expression in neighboring cells via
mechanotransduction (Humphrey et al., 2014; Mouw et al., 2014;
Handorf et al., 2015).

The nuclear compartment possesses an exquisite organization
of chromatin necessary to maintain cellular homeostasis via
its impact on the epigenome (Abad et al., 2007; Lelièvre,
2009; Grummt, 2013). Oxidative stress can be specifically
sensed by cell nuclei (Provost et al., 2010), in part due to
mitochondrial stress leading to signal transduction and the
nuclear accumulation of respiratory enzymes like CDC like
kinase 1 (CLK1). Specifically, mitochondria-nucleus cross talk
controls the response to oxidative stress. For instance, the
expression of DNAmethyl transferase 1 (DNMT1) that mediates
epigenetic changes in mitochondria is controlled by transcription
factors responsive to oxidative stress (Shock et al., 2011),
and nuclear CLK1 maintains mitochondrial homeostasis by
regulating genes in the cell nucleus that deplete ROS (Monaghan
et al., 2015). H2O2 entering cells can be metabolized into OH.

known to induce DNA lesions (Tsunoda et al., 2010); but the
strong cellular influence of ROS might not involve such damage
(Kirkland, 1991), suggesting that beneficial and deleterious effects
of ROS likely involve transcriptional effects.

Here, we discuss how extracellular ROS might contribute
to normal aging and diseases via a dual influence on the
microenvironment, notably tissue stiffness, and on cellular
homeostasis. Knowledge on chemical and physical consequences

of incremental ROS on the cell nucleus is presented before
proposing new in vitromodels to help fill the gaps to understand
the determining impact of ROS thresholds.

REACTIVE OXYGEN SPECIES AND
CELLULAR HOMEOSTASIS

A Fine Line Between Normal and Abnormal
Stem Cell Differentiation
High levels of ROS damage macromolecules, yet ROS is
necessary for normal biological processes (Schieber and Chandel,
2014). Embryonic stem cell differentiation requires increased
ROS and ATP production in mitochondria, as shown for the
cardiovascular tissue (Schmelter et al., 2006). There is also
upregulation of NOX within cells and the microenvironment.
Yet, additional intracellular ROS, due to entry of environmental
H2O2, might inhibit nuclear translocation of proteins responsible
for the antioxidant response by binding to their cysteine motifs
(Lennicke et al., 2015). Indeed, oxidative stress has been reported
to impair the proliferation of embryonic stem cells (Brandl et al.,
2011), but whether abnormally high microenvironmental ROS
during embryogenesis alters organ development remains to be
clearly determined.

The balance of self-renewal and cell-type specific
differentiation, two functions controlled by low levels of
ROS, is essential for the maintenance of a stem cell pool within
adult organs (Maraldi et al., 2015; Cieślar-Pobuda et al., 2017),
with a fine line between desired stimulation and unwanted
damage. Adult stem cell differentiation in the central nervous
system is directed by lens epithelial-derived growth factor
(LEDGF), itself involved in the protective response to oxidative
stress (Chylack et al., 2004; Basu et al., 2016). Stem cells have
defective DNA repair capacity, which is further exacerbated by
ROS (Cieślar-Pobuda et al., 2017). Prolonged exposure to ROS
has been shown to result in cell senescence in vitro (Kuilman
et al., 2010; Davalli et al., 2016) and has been proposed to
contribute to pathologies associated with aging such as cancer
and Alzheimer’s disease in a dose-dependent manner (Sarsour
et al., 2009; Zhu et al., 2013; Childs et al., 2015; Sikora et al., 2015;
Qiu et al., 2017) (Figure 1).

For instance, stem cell self-renewal and resulting premature
pool exhaustion occurs with a moderate increase of ROS
concentration (Zhou et al., 2014; Maraldi et al., 2015).
Understandably, detrimental exposure to ROS has to be chronic
when at low dose, and, in vitro, it seems to preferably trigger
the activation of the p38-p16 pathway that induces stem cell
senescence (characterized by loss of replicative capability) (Shao
et al., 2011); whereas acute and high ROS dose exposure activates
the p53 pathway by accumulation of ataxia telangiectasia mutant
(ATM) kinase in the cell nucleus, triggering not only stem cell
aging (characterized by a diminished capacity to function and
respond to the microenvironment), but also apoptosis (Mai et al.,
2010; Liu and Xu, 2011).

The threshold at which an imbalance of ROS and thus,
oxidative stress, leads to pathologies linked to an effect on stem
cells might be low (Bigarella et al., 2014). The contributions to
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FIGURE 1 | Dose-dependent impact of ROS on cellular metabolism. Mitochondrial activities, such as oxidative phosphorylation, contribute to physiological levels of

ROS that are counterbalanced and detoxified by antioxidant defense mechanisms. These ROS are produced as a response to increased cellular demand for energy

and are essential for cell survival, differentiation, and tissue development. With the increase in imbalance between ROS and antioxidant levels due to inflammation or

prolonged exposure to environmental factors, there is a shift in redox regulation pathways from Keap-Nrf2 to NFκB. At mild oxidative stress level p53-mediated cell

death (apoptosis) is observed. Further increase in oxidative stress level in diseased cells inhibits p53-induced cell apoptosis and promotes resistance to oxidative

stress. Furthermore, chronic oxidative stress leads to altered gene expression and changes in nuclear morphology already observed in aging; the level at which

excess ROS might contribute to sustained alterations in the epigenome that trigger pathogenesis might depend on microenvironmental conditions (Chittiboyina et al.,

2018). Nuclei are shown in blue and increasing alterations in the nucleus are displayed as shortening orange wiggles.

such threshold of extracellular ROS coming from the degradation
of our environment and dietary habits remain unanswered
questions.

Oxidative Stress in the Normal Process of
Aging
Aging is the major cause of increased susceptibility to
neurodegenerative diseases, cancer, and other metabolic
disorders. It has been characterized as a progressive loss of
tissue functions due to cumulative damages in cells and their
microenvironment. The original free-radical theory of aging
and derived mitochondrial theory of aging consider ROS as
the main cause for these damages. Indeed, oxidative stress
has been connected with all of the nine potential hallmarks of
aging (López-Otín et al., 2013), including genomic instability
(Hoeijmakers, 2009), telomere attrition (Sun et al., 2015),
epigenetic alterations (Guillaumet-Adkins et al., 2017), loss
of proteostasis (Bader and Grune, 2006), deregulated nutrient
sensing (Luo et al., 2017), mitochondrial dysfunction (Harman,
1965), cellular senescence (Davalli et al., 2016), stem cell
exhaustion (Cieślar-Pobuda et al., 2017), and altered intercellular
communication (Poli et al., 2004). The unpaired electron
of the active oxygen molecule of ROS can capture another
electron from macromolecules such as DNA, lipids, and

proteins resulting in changes in biological properties; however,
the molecular alterations necessary for aging are still poorly
understood. Furthermore, the free-radical theory of aging is
challenged by the mixed results of gene knockout studies in
animal models showing that on one hand, lifespan can be
expanded by decreasing ROS level, and on the other hand,
increasing ROS level has no effect or might even prolong the
lifespan in individual mice (Hamilton et al., 2012). Among
studies related to ROS and performed in mice, mutation and
knock-out models have been developed that impair transcription
factors TP53INP1, JunD, ATM, Forkhead box O (FOXO) and
p53 normally involved in tumor suppression (Sablina et al., 2005;
Reliene and Schiestl, 2006; Tothova et al., 2007; Laurent et al.,
2008; Cano et al., 2009). As a result, there is an increased ROS
level in mice suggesting that these transcription factors play a
role in antioxidant defense. Moreover, an association between
ROS accumulation and specific aging characteristics has been
reported in multiple types of adult stem cells. For instance, ROS
level increases in murine hematopoietic stem cells when FOXO is
knocked down, which results in stem cell self-renewal exhaustion
(Miyamoto et al., 2007; Tothova et al., 2007). It remains largely
elusive whether and how deficiency of FOXO family members
can lead to aging-related diseases; however, Genome Wide
Association Studies conducted in human population samples
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revealed a positive link between FOXO genes and extreme
longevity (Martins et al., 2016). Among other examples of
comparable murine and stem cell studies, a genetic knockout of
deacetylase Sirtuin family members in mice (Mohrin et al., 2015)
as well as in neural progenitor cells (Prozorovski et al., 2008)
revealed the important function of sirtuins in ROS balance and
stem cell aging.

The aging process might rely on repair ability, especially for
DNA,more than the ROS level in the organism (Lewis et al., 2013;
MacRae et al., 2015). Repair ability has been linked to epigenetic
pathways (Dinant et al., 2008; Lahtz et al., 2013; Montenegro
et al., 2016), and it is controlled by the ECM that influences
proteins involved in higher order chromatin organization (Vidi
et al., 2012). Microenvironmental ROS can damage the ECM
and cell surface proteins, leading to altered cell adhesion and
signaling like in atherosclerosis, a disease of aging (Kennett
et al., 2011). Aging in general has been associated with an initial
increase followed by a decrease in ECM stiffness (Achterberg,
2014), and tissue stiffness depends on the impact of ROS on
fibroblasts (Tanaka et al., 1993; Siwik et al., 2001; Lijnen et al.,
2012). Therefore, understanding the relative contribution of
ROS to aging in different organs should take into account the
microenvironment.

Oxidative Stress in Disease Development
and Progression
In cells with high energy requirement the microenvironment
contributes to oxidative stress. In normal cells, this is a concern
with embryonic development as discussed above. In diseases,
concerns are with cells associated with a metabolic syndrome
(e.g., cardiovascular disease, diabetes) and other cells with
high metabolic demands like in cancers and neurodegenerative
disorders. Cell-required increased energy production, and thus
ROS, by mitochondria is fulfilled by extracellular growth factors
and hormones (Turpaev, 2002; Ward and Thompson, 2012).

The microenvironment also participates in ROS-mediated
impact in disease via stromal cells. Under oxidative stress these
cells secrete lactate and pyruvate, providing an alternate source of
energy called “aerobic glycolysis” (or Warburg effect) in rapidly
proliferating cancer cells (Gatenby and Gillies, 2004; Liberti and
Locasale, 2016). Extracellular ROS activate stromal cells (Lijnen
et al., 2012). Activated fibroblasts lose caveolin 1, which has been
associated with poor survival in patients with triple negative
breast cancer and with early breast cancer recurrence in general
(Witkiewicz et al., 2009, 2010; Popovska et al., 2014). They also
increase collagen I secretion, resulting in tissue stiffness (Karsdal
et al., 2013; Eble and de Rezende, 2014), a condition associated
with the aggressiveness of certain cancers (Hoyt et al., 2008;
Acerbi et al., 2015; Northey et al., 2017). Whether changes in
tissue stiffness associated with cancer progression truly result
from oxidative stress remains to be confirmed.

Brain susceptibility to oxidative stress is in part linked to
low levels of antioxidant mechanisms in the microenvironment
leading to high amounts of remaining ROS (Uttara et al., 2009).
An oxidative microenvironment is a feature of Alzheimer’s
disease that promotes the production and aggregation of

extracellular amyloid β plaques by influencing the activity of α-
and β-secretases (Behl, 2005; Mosconi et al., 2008). Moreover,
cytoplasmic plaque accumulation triggers the overproduction
of intraneuronal ROS by disturbing mitochondrial activity (Xie
et al., 2013). In Parkinson’s diseasemicroenvironmental oxidative
stress is due to the production of O−

2 triggered by microglial
cells, with immediate conversion to H2O2 species that attack the
surrounding neurons, eventually leading to neurodegeneration
(Dias et al., 2013).

Chronic diseases like cancer and neurodegenerative disorders,
with a microenvironmental component to their onset and
progression, are linked to alterations in the epigenome, but
deciphering the contribution of oxidative stress to epigenetic
alterations is a difficult task.

INCREMENTAL IMPACT OF ROS ON THE
CELL NUCLEUS

A major recipient of ECM signaling, the cell nucleus reflects
cell phenotypes (Bissell, 1981; Lelièvre, 2010). Changes in
the epigenome (i.e., the collection of epigenetic marks that
control transcription profiles) and morphometry (notably size
and shape) of the nucleus accompany differentiation disorders,
including cancer and neurodegeneration (Zink et al., 2004;
Lelièvre, 2009; Lattanzi et al., 2012). Beyond oxidative DNA
damage induced by hydroxyl radicals that is not necessarily
associated with disease development (Evans et al., 2004; Silva
et al., 2014; Pereira et al., 2016), ROS might influence
transcription depending on their concentration and origin.

Impact of ROS on Protein Activation and
Translocation to the Cell Nucleus
Transcription regulation mediated by ROS occurs already in the
nanomolar range of H2O2 (Schieber and Chandel, 2014) acting
as redox signaling, mainly through reversible thiol modifications
on phosphatase and kinase cysteine residues (Janssen-Heininger
et al., 2008; Collins et al., 2012). Orchestrated enhancement of
tyrosine kinase (Paulsen et al., 2011; Heppner et al., 2018) and
inhibition of tyrosine phosphatases (Sundaresan et al., 1995;
Bae et al., 1997; Denu and Dixon, 1998; Lee and Esselman,
2002) by H2O2 amplify the activation of PI3K/AKT and
transcription mediators (e.g., STAT), that favor cell proliferation
and survival. Cysteinemodifications by lowH2O2 concentrations
are likely to maintain the expression of stress-responsive genes
at basal level under normal conditions. This pathway involves
Kelch-like ECH-associated protein 1 (Keap1) in which H2O2

modifies cysteines leading to the release and translocation
of nuclear E2-factor-related factor 2 (Nrf2) into the nucleus,
where it binds antioxidant response elements in the promoter
of detoxification genes (McMahon et al., 2003), notably in
response to inflammation (Suzuki and Yamamoto, 2017). This
pathway seems attenuated in neurodegenerative diseases (Gan
and Johnson, 2014; Buendia et al., 2016), whereas constitutive
activation is commonly observed in cancers and linked to
cell survival and resistance to ROS production-based therapies
(Leinonen et al., 2014).
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Concentration dependent regulation of signaling pathways
by ROS is essential for tissue survival. Physiological levels of
ROS are known to upregulate and activate proinflammatory
cytokines such as IL-6 and IL-4 (Frossi et al., 2003), whereas
elevated ROS can lead to activation of IL-6 that mediates Nrf2
translocation to the nucleus and subsequent upregulation of
antioxidant mechanisms (Theodore et al., 2008; Hsieh et al.,
2009). Cytokines are also linked to the NF-κB/p53 pathway
under ROS stimulation. Tumor suppressor and transcription
factor p53 participates in redox-responsive control of the cellular
stress response (Budanov, 2014). Although NF-κB and p53
have opposing effects on cellular apoptosis, both are activated
and translocate to the cell nucleus under ROS, and regulate
the transcription of IL-6 (Lowe et al., 2014). Interestingly,
p53 is shown to suppress Nrf2-mediated antioxidant response,
but not the expression or activation of Nrf2 itself in mouse
hepatocarcinoma cells (Faraonio et al., 2006), hence these two
proteins seem independent from each other regarding their
involvement with IL-6 pathway. Low levels of ROS do not
induce NF-κB activation and nuclear translocation. Yet, if ROS
levels lead to oxidative stress, NF-κB becomes activated and
promotes cytokine-mediated inflammatory pathways. However,
tissue insults from proinflammatory cytokines are countered by
high levels of ROS that upregulate and activate anti-inflammatory
cytokines such as IL-10 (Kelly et al., 2010; Latorre et al., 2014). If
further strengthened, oxidative stress may trigger p53-mediated
apoptosis and even inhibit p53 activity via oxidation of certain
cysteine residues, which prevents the antioxidant response in
cells, leading to further accumulation of ROS (Cobbs et al., 2001;
Bensaad and Vousden, 2005; Halliwell, 2007).

At least part of H2O2 involved in low level activation is
transiently produced by the oxidation of cell membrane-bound
NOXs that are recruited by receptor binding of extracellular
growth factors and hormones (Sundaresan et al., 1995). The
involvement of such microenvironment-mediated cytoplasmic
production of ROS in detrimental levels of oxidative stress
remains to be determined.

Impact of ROS on Epigenetic Mechanisms
In cancer, diabetes and Alzheimer’s disease, alterations in
epigenetic pathways have been linked to oxidative stress,
although the concentrations of ROS that matter are unknown.
Epigenetic pathways encompass DNA methylation and several
posttranslational modifications (methylation, acetylation,
phosphorylation, ubiquitination) on various histone residues
(Kreuz and Fischle, 2016; Guillaumet-Adkins et al., 2017).
The combination of some of these epigenetic traits determines
the level of transcription of a particular gene. As shown in
the selected examples below, all of these types of epigenetic
modifications can be affected by ROS.

ROS-induced global heterochromatin loss may follow DNA
damage that, in turn, promotes chromatin relaxation (Pal and
Tyler, 2016), and might be linked to reduced S-Adenosyl
Methionine synthesis, caused by oxidized methyl adenosine
transferase (Towbin et al., 2012). Direct oxidation of 5 methyl
cytosine (5-mC) by ROSmight also inhibit DNMT1, contributing
to demethylation of CpG sites on the DNA. In contrast, DNA

hypermethylation might be due to oxidative stress-mediated
inhibition of methyltransferase-related TET proteins leading to
an increase in 5-mC level (Chia et al., 2011;Wu and Zhang, 2017).
Pericentromeric heterochromatin stimulated by oxidative stress
is associated with increased expression of SIRT1 that stabilizes
SUV39H1, leading to increased histone H3 trimethylated on
lysine 9 (H3K9me3) (Bosch-Presegué et al., 2011).

Under oxidative stress histone demethylases are inhibited
leading to H3K9me2/3 and H3K27me3 increase (Chervona
and Costa, 2012; Niu et al., 2015; Kreuz and Fischle, 2016),
which may repress transcription. Acetylation of histone lysine
residues associated with chromatin relaxation and transcriptional
activation might also occur following inhibition of histone
deacetylases (Ropero and Esteller, 2007). Notably, ROS increases
acetylated histone 4 (Tomita et al., 2003) and histone 3
(Choudhury et al., 2010). Several studies have shown histone
phosphorylaton under oxidative stress, for example H2AX and
histone 3 (Katsube et al., 2014; Marwick et al., 2015). Chronic
ROS leads to H2AX poly-ubiquitination due to increased
interaction between H2AX and E3 ubiquitin ligase RNF168,
which results in reduced level of H2AX and increased sensitivity
of cancer cells to chemotherapy (Gruosso et al., 2016). Thus,
depending on the posttranslational modifications the resulting
impact might be on the regulation of gene expression, DNA
replication and DNA repair, making ROS a key regulator of all
these processes via epigenetic influence.

Most interestingly, extracellular ROS alter nuclear
morphometry (e.g., size and shape) (Barascu et al., 2012), in
part by disrupting lamins involved in the structural organization
of the nucleus (Shimi and Goldman, 2014). Peripheral
heterochromatin is organized into lamina-associated domains
that directly participate in the control of heterochromatin linked
with the degree of tissue differentiation (Gonsalvez-Sandoval
et al., 2013; Solovei et al., 2013). Impaired interaction between
nuclear envelope and heterochromatin proteins, like HP1,
leads to the mislocalization of heterochromatin (Eskeland
et al., 2007; Schneider and Grosschedi, 2007), which could
affect transcriptional regulation. We have shown that nuclear
morphometry responds to ROS in a dose dependent manner
(Chittiboyina et al., 2018). The impact of oxidative stress-
mediated alterations of nuclear morphometry on chromatin
organization and gene transcription remains to be studied.

Epigenetic changes might be protective against DNA damage
and mediate ROS resistance in cancer. Many contributing
experiments included extracellular H2O2, which calls for
clarifications regarding the contribution of microenvironmental
ROS in these nuclear events.

IMPROVING KNOWLEDGE ON THE ROLE
OF OXIDATIVE STRESS IN CELLULAR
HOMEOSTASIS

The antioxidant cellular mechanisms activated in response to
elevated levels of ROS are fairly known. Glutathione (GSH) can
directly scavenge super oxide anions (O2−.), one of the most
reactive free radicals, while GSH peroxidases, peroxiredoxins
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and thioredoxins all target H2O2 (Hanschmann et al., 2013).
The expression of these antioxidant enzymes is due to the
activation and resulting cytoplasmic to nuclear translocation
of transcriptional coactivators Nrf2 and LEDGF upon ROS
generation (Sharma et al., 2000; McMahon et al., 2003). However,
themechanisms by which these transcriptional coactivators sense
altered ROS homeostasis and may themselves be compromised,
leading for instance to oxidative stress resistance in cancer
(Freitas et al., 2012; Balvan et al., 2015), remain to be understood.

Elevated ROS levels have been reported in various
pathologies that result from epigenetic alterations and for
which microenvironmental modifications are instrumental.
For instance, oxidative stress leads to increased ECM stiffness
(Eble and de Rezende, 2014). Enhanced microenvironmental
stiffness triggers mechanotransduction via stimulation of the
cytoplasmic form of transcriptional activator Yes-associated
protein (YAP) (Dupont et al., 2011), leading to its relocalization
to the cell nucleus. Upon reaching chromatin YAP may activate
the transcription of genes such as those coding for β-catenin,
ErbB4, FoxO1 that are involved in apoptosis, cancer progression
and stem cell self-renewal (Dupont et al., 2011; Zhu et al., 2015;
Moleirinho et al., 2017). Interestingly, ECM stiffness may not
only activate YAP, but also regulate its transcription (Low et al.,
2014). The modulation of mechanical strength affects the actin
cytoskeleton, which in turn, influences YAP phosphorylation
and thus, its nuclear localization (Das et al., 2016). Hence,
mechanotransduction generated by changes in ECM stiffness has
posttranslational and transcriptional effects. How the combined
actions of microenvironmental ROS on ECM composition
(via an effect on fibroblasts) and directly on epithelial cells
(via chromatin regulation, as discussed in previous sections),
ultimately transforms the cell phenotype is difficult to study
in simple cell culture as well as in complex whole organisms
like in mice. Thus, the mechanisms of microenvironmental
ROS-induced differentiation and pathogenesis remain to be
clarified. Moreover, the dual impact of ROS, either beneficial or
detrimental, underlines the need to identify thresholds for action
within the cell nucleus.

Microenvironmental impact on tissues is best studied with
controlled 3D cell culture models (Lelièvre et al., 2017). Using
a microfluidic system in which a gradient of H2O2 was
delivered inside the ECM, we showed that there were thresholds
for phenotypic response measured by nuclear morphometry
depending not only on the tumor grade, but also on matrix
stiffness (Chittiboyina et al., 2018). Microscale optics was used
to assess H2O2 concentrations delivered in different regions of
the culture chamber. However, this method is cumbersome and
cannot be used in real time. Assessment of ROS impact on the cell
nucleus was measured by indirect means, such as the expression
of antioxidant genes, but there was no direct measurement of
ROS concentration inside cells.

To better understand the relationship between cell nucleus
and microenvironmental ROS production extracellular H2O2

should be measured. ROS concentration is not uniform, but
rather a dynamic gradient as seen in vivo (Ogasawara and Zhang,
2009; Zorov et al., 2014). Measurements might be accomplished
by placing biosensors within the ECM (Hynes et al., 2014). Once

H2O2 enters inside cells, it remains there due to differences in
diffusion radii (Huang et al., 2017). Intracellular ROS assessment
relies on indirect and low precision methods such as antioxidant
capacity or redox potential (Barzegar and Moosavi-Movahedi,
2011), using fluorescent probes that react with free radicals.
To determine the contribution of microenvironmental ROS
to intracellular ROS, it might be possible to use differential
assessment techniques where mitochondrial ROS concentrations
(primarily H2O2), detected using Mitotracker, are deducted from
the total intracellular ROS. Noticeably, the nucleus is in a
higher oxidizing state than mitochondria (Go and Jones, 2008),
and maintenance of nuclear redox homeostasis is essential for
proper transcription of antioxidants in response to oxidative

FIGURE 2 | Summary of some effects of ROS on extracellular matrix,

cytoplasm and cell nucleus involved in dynamic reciprocity. Reactive oxygen

species (ROS), such as superoxide anion (O2−), transported from the

vasculature to the extracellular matrix (ECM) are converted to hydrogen

peroxide (H2O2) by superoxide dismutase (SOD) and NADPH oxidases

(NOX1) in the ECM. H2O2 may be reduced to water (H2O) by reductases such

as peroxireductase (Prdx1) in the ECM. Extracellular H2O2 can diffuse through

cell membrane into the cytoplasmic compartment, but it cannot exit cells

(green arrows), where it contributes to the increase in intracellular ROS levels

by production of hydroxyl radicals (OH.) by Fenton’s reaction, or it can be

transported to the nucleus to activate the transcription of matrix

metalloproteases (MMP). Collagen can be broken down by MMP activity in the

ECM. Besides extracellular ROS, mitochondrial activity also contributes to

intracellular ROS, which can further add to H2O2 going to the cell nucleus.

Stromal cells such as fibroblasts are activated by ROS (primarily H2O2), which

increases collagen production via Notch signaling activation. Increased

collagen deposited in the ECM (red arrow) contributes to increased stiffness of

the ECM that, in turn, activates mechanotransduction pathways such as Rho

and YAP/TAZ signaling with an impact on gene transcription. Nuclei are

depicted in blue and mitochondria in dark orange.
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stress (Provost et al., 2010; Espinosa-Diez et al., 2015). The
nuclear accumulation of ROS may be measured by detection
of Mn-Superoxide dismutase, but this enzyme is not influenced
only by H2O2 (Miao and St. Clair, 2009; Wedgwood et al.,
2011; Candas and Li, 2014). Nanoprobes might enable direct
measurement of ROS in the nucleus, which would require
removing interference from mitochondrial ROS possibly using
Mitotracker (Puleston, 2015). Systems that track the production
of ROS in the microenvironment and their transport to the
nucleus through the cytoplasm are awaited since methods
used to sense ROS in lower organisms with heavy metal and
electrochemical probes or semi-stable paramagnetic compounds
(Suárez et al., 2013; Koman et al., 2016) are considered too
invasive and potentially toxic for mammalian cells.

CONCLUSION

Due to their dual effect as a benefactor and also a damage
inducer, ROS are re-emerging as therapeutic targets. Most
ROS inducing therapeutics are effective only under a highly
oxidative microenvironment, further supporting the role of the
microenvironment in disease and therapy. As an example, the
tissue damage induced by ROS is considered to be an advantage
in order to target tumor cells using agents such as procarbazine
that releases azo compounds in the highly oxidative environment
of cancers (Vallejo et al., 2017). These compounds further
generate ROS that target tumor cells. Unfortunately, such an
increase in ROS has been linked to differentiation of cancer stem
cells and rapid recurrence of cancer (Ding et al., 2015). Improved
cancer therapy based on ROS might require a combination
of ROS inducers and inhibitors of ROS-mediated stem cell
differentiation pathways, requiring further understanding of the
epigenetic mechanisms influenced by ROS.

There is little doubt thatmicroenvironmental ROS contributes
to aging and disease. The concentration threshold necessary
to induce lasting effects (via an impact on the epigenome)

is essential to determine. Thorough investigations of the
microenvironment are paramount in light of the influence of
ROS on stromal cells and on the ECM. Physical alterations of
the ECM nourish the concept of dynamic reciprocity between
nucleus and microenvironment (Bissell, 1981), by possibly
influencing the epigenome via mechanotransduction, which
would consequently alter the impact of ROS on genes. Nuclear
reciprocity targeting the ECM is illustrated by the fact that
certain ROS-responsive pathways may control the expression of
metalloproteases (Daugaard et al., 2007; Sims et al., 2011) that
contribute to aging and cancer progression (Figure 2). Another
example of reciprocity are the (epi)genetic alterations in cancer
cell genes that regulate energy producing pathways, requiring
more absorption of soluble factors from the microenvironment.
Interestingly, tissue heterogeneity is emerging as an engine for
cancer progression (Lelièvre et al., 2014; Mohanty et al., 2014;
Kang et al., 2015). The microenvironment is likely a source
of heterogeneity (Kim and Zhang, 2016; Natrajan et al., 2016)
depending on variable local concentrations of oxygen, hormones,

and growth factors. The contribution of extracellular ROS to such
heterogeneity is an interesting avenue of investigation.
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