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ABSTRACT

Objective: The widespread deployment of electronic health records (EHRs) has introduced new sources of error

and inefficiencies to the process of ordering medications in the hospital setting. Existing work identifies orders

that require pharmacy intervention by comparing them to a patient’s medical records. In this work, we develop

a machine learning model for identifying medication orders requiring intervention using only provider behavior

and other contextual features that may reflect these new sources of inefficiencies.

Materials and Methods: Data on providers’ actions in the EHR system and pharmacy orders were collected

over a 2-week period in a major metropolitan hospital system. A classification model was then built to identify

orders requiring pharmacist intervention. We tune the model to the context in which it would be deployed and

evaluate global and local feature importance.

Results: The resultant model had an area under the receiver-operator characteristic curve of 0.91 and an area

under the precision-recall curve of 0.44.

Conclusions: Providers’ actions can serve as useful predictors in identifying medication orders that require

pharmacy intervention. Careful model tuning for the clinical context in which the model is deployed can help to

create an effective tool for improving health outcomes without using sensitive patient data.
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INTRODUCTION

Significant amounts of heterogeneous data from electronic health re-

cord (EHR) platforms have led to a surge in interest in using ma-

chine learning in clinical decision support (CDS) tools.1 This has

resulted in the development of tools that provide clinicians with in-

formation which, when embedded at the appropriate point in their

workflows, can improve healthcare.2–5 CDS tools encompass a vari-

ety of systems that can assist in the interpretation, diagnosis, and

treatment of patients through the use of various tools, including

alerts and reminders, clinical guidelines, recommendations, order

sets, patient data reports and dashboards, documentation templates,

diagnostic support, and other clinical workflow tools.3,4

One interesting application area lies in detecting medication or-

der errors.6 Medical errors (including invasive procedures and

hospital-acquired infections as well as those involving drugs and

medical devices) are a significant public health problem and a lead-

ing cause of death.7 For medication order errors, manual review of
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incoming pharmacy orders is the “gold standard”8 for improving

the use of medications and minimizing prescribing errors,8,9 though

a series of recent studies have shown that pharmacies in both inpa-

tient and outpatient settings are often understaffed.10–13 As a result,

pharmacists experience a high degree of burnout10 and are at higher

risk of making errors or not detecting problems with incoming

orders. Supporting clinical pharmacists with CDS tools could there-

fore improve health outcomes for patients and effectively help phar-

macists in under-resourced institutions to manage the load of

detecting and correcting orders requiring intervention.

The widespread deployment of computerized physician order

entry systems is believed to have resulted in significant declines in

traditional sources of medication order errors.5,14,15 Recent re-

search, however, has suggested ways in which these tools may have

introduced or contributed to other sources of error (eg, alert fa-

tigue, orders in the wrong medical records, etc.).14,16,17 These

types of errors tend to fall into 2 categories:18 (1) errors in the pro-

cess of entering and retrieving information (eg, interfaces that are

not suitable for a highly interruptive use context, that produce cog-

nitive overload by requiring structured information entry, that

fragment information onto different screens, and that overempha-

size information about a patient that is not useful), or (2) errors

that come from a mismatch between the structured communication

and coordination processes embedded in digital systems relative to

the highly flexible and fluid ways in which clinical work happens

in reality.

Prior work has centered on comparing the order to the patient’s

medical records and omits features representing provider behavior.

For example, Corny et al8 evaluate orders in the medical context of

the individual patient’s laboratory reports, demographics, medical

and allergy history, and physiological data. Similarly, Segal et al19

screen patients’ medical records and corresponding orders to iden-

tify time-dependent irregularities, clinical outliers, dosage outliers,

and drug overlaps that might be indicative of medication order

errors. Nguyen et al20 use an alternative approach in which patient

information is used to identify those who are at high risk of receiv-

ing an inappropriate therapeutic and to prioritize review of orders

made on their behalf.

These approaches may be missing critical signals from the pro-

vider’s suboptimal interactions with the EHR leading up to the sub-

mission of an order, and therefore entire “phenotypes” of errors. In

this paper, we develop a predictive model for flagging orders re-

quiring intervention using only information about the ordering pro-

vider’s interaction with the EHR. The model is then tuned and

evaluated within the clinical context in which it would be

deployed.

MATERIALS AND METHODS

Setting
This work was conducted within a large urban academic hospital

system comprised of 3 hospitals (a quarternary care, a tertiary care,

and an orthopedic subspecialty hospital) with over 1600 beds (com-

bined) and numerous satellite locations.

Pharmacy orders were submitted via the electronic medications

management system, EPIC. Auto-verification was implemented only

for dietary supplements. Interventions were made by pharmacists in

a main dispensing pharmacy or unit-based satellites, as well as by

clinical pharmacists that rounded directly with the medical teams in

certain specialty areas. A more comprehensive break-down of order

intervention types can be found in supplementary materials. The fre-

quency of each type of clinical intervention may vary in different

functional areas. For example, a pharmacist rounding with a medi-

cal team is more likely to see patient-specific details and optimize a

medication therapy plan to improve patient tolerance. Alternatively,

a pharmacist dispensing medications from the pharmacy may not

have access to as many patient-specific details, but may intervene on

general medication issues (eg, reviewing medication dose, checking

for appropriateness given patient renal function/age/weight, advising

of allergy risk). There may also be variability in the documentation

of interventions between pharmacists and at times of increased

workload; however, supervision of clinical pharmacists and review

of interventions by supervisors find a high rate of adherence to the

expected workflow.

Analysis
Data

This study relies on inpatient data from July 10 through July 24,

2017. The dataset included a total of 181 407 individual orders sub-

mitted by 2708 providers. On average, providers submit 4.96 orders

at once. We therefore consolidated orders made simultaneously into

36 585 order “batches.” Of these, 2054 (5.61%) contained at least

one order that required intervention. The sample is described in

Table 1.

Feature construction
Model features were determined using descriptive analysis and clini-

cal expertise. Conversations with clinician informants revealed that

they experience high administrative workload and a high degree of

disruption and fragmentation in their workflows. This can tax

working memory, which acts as a temporary storage for task-

relevant information (often in the face of distractions).21–23 This is

LAY SUMMARY
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consistent with prior research14,17 and informed our selection of 17

features (continuous features described in Table 2).

1. Measures of clinician engagement with patients and the EHR in

the hour preceding the order. These features capture behaviors

that may require the provider to store more information in

working memory22,23 (eg, seeing many patients in a short period

of time), or periods in which a provider is multitasking or their

workflow is disrupted (eg, needing to communicate information

about a patient to a colleague while engaged with a different pa-

tient).24 Interruptions and multitasking increase the demands on

working memory by requiring them to process information

unrelated to their primary task, increasing the potential for er-

ror.21,25

• Number of patient encounters.
• Number of workstations accessed by a provider.
• Number of general administrative actions the provider en-

gaged in the EHR (eg, reviewing a patient list, checking mes-

sages, using the chat tool).
• Number of administrative actions in a patient’s EHR (eg,

reviewing a prior patient’s history) outside of the current pa-

tient encounter.
• Number of administrative actions in the EHR related to a

specific patient during an in-person visit (eg, reviewing their

chart).

2. Details of the orders contained in the order batch. Creating

orders is one of the more complex parts of the order-prescribing

task21 and taxes a provider’s working memory (eg, when choos-

ing clinical elements for an order), particularly when they are

being made for multiple patients. This is especially true when

the provider is disrupted or distracted as they are placing the or-

der, increasing the probability of making an error or suboptimal

order.

• Number of orders in batch (submitted at once).

• Number of orders in a batch using a predefined order tem-

plate called ordersets.
• Number of medications in a batch which are reorders of a

prior medication order, called reorders.
• Number of orders in a batch intended to keep a patient’s

medications up-to-date, commonly from old or outdated

prescriptions, when the patient’s care is transferred from one

context to another (eg, when transferred from the ambula-

tory context to the inpatient context or from one team in the

hospital to another), called reconciliations.
• Number of time-sensitive (“STAT”) orders in a batch.
• Number of patients for whom orders within a batch are be-

ing made.

3. Contextual data related to the clinician and the order. The con-

text in which orders are made may influence providers’ behav-

ior; for example, clinicians in certain specialties (eg, Emergency

Department) may experience higher levels of cognitive load. We

include the following contextual features:

• Ordering clinician type (eg, Nurse Practitioner, Resident)
• Ordering clinician specialty (eg, Emergency Medicine, On-

cology)
• Day of the week
• Time of day (eg, early morning, late morning)
• Hospital
• Order therapeutic class (eg, Antivirals, Antibiotics)

Machine learning model
The model was designed as a binary classification task where the

target labels corresponded to whether an order batch required inter-

vention.

The data were split randomly into 70%, 15%, and 15% sets for

model training, validation, and testing, respectively. Logistic regres-

sion with L1 and L2 regularization was used as baselines, and

gradient-boosted trees (XGBoost) were employed as our focal ML

algorithm . Cross-validation was used to identify the k penalty in the

regressions with regularization where the value selected gives the

simplest model but also lies within one standard error of the optimal

value of lambda (k¼0.013 and k¼0.28, respectively).

The XGBoost model was implemented with nested 5-fold cross-

validation with early stopping (maximum of 50 rounds). Grid search

was used to tune model hyperparameters, resulting in a maximum

tree depth ¼ 7, minimum child weight ¼ 1, subsampling ¼ 0.84,

evaluation metric ¼ auc, eta ¼ 0.17, and gamma¼ 0.32. The valida-

tion set was used to monitor the model training through early stop-

ping to evaluate the model performance and the effectiveness of the

decision boundary; the test set was then used to evaluate the general-

Table 1. Description of sample used

Type Inpatient

Dates July 10–24, 2017

No. of orders 181 407

No. of order batches 38 966

No. of order batches requiring intervention 2054 (5.61%)

No. of providers 2708

No. of departments 183

No. of therapeutic classes 45

No. of patients 16 714

Table 2. Descriptive statistics of continuous features included in the model

Feature Mean Median Std. Dev.

No. of administrative actions in hour preceding order 15.42 2 29.62

No. of administrative actions in patient files in hour preceding order 30.26 7 46.30

No. of orders in batch 3.09 2 3.22

No. of ordersets in batch 0.05 0 0.44

No. of actions related to patient encounters in hour preceding order 49.65 8 79.81

No. of patients in batch 1.07 1 0.31

No. of reconciliations in batch 1.23 0 3.96

No. of STAT orders in batch 0.68 0 1.80

No. of unique patient encounters in hour preceding order 3.63 1 5.70

No. of unique workstations 1.62 1 1.06
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izability of the trained model. Due to a significant class imbalance in

the training data (5.53% of batches required intervention), synthetic

minority oversampling technique (SMOTE) was used to generate a

pseudosynthetic training set with 5672 order batches in which 2836

(50%) required intervention.

RESULTS

The XGBoost algorithm outperformed both of the logistic regres-

sions as well as the random forest algorithm by a significant margin

in both area under the receiver-operator (AUROC) and precision-

recall (AUPR) curves (Table 3). This indicates complex and nonlin-

ear relationships between predictors that are not captured by linear

classifiers or simple decision trees.

The trained XGBoost model had an AUROC of 0.908 (Figure 1);

however, the high AUROC performance is likely a result of the im-

balanced data set. In this case, the precision-recall curve can offer us

a more accurate representation of model performance (visualized in

Figure 2). The AUPR curve is 0.439. The resultant Lift curve shows

that flagging a small fraction of orders for review results in the de-

tection of a large number of the orders that required intervention

(eg, selecting the top 20% of orders according to the model results

in approximately 4 times the total number of orders requiring inter-

vention being identified). This is visualized in Figure 3.

The choice of decision boundary will influence the performance

of the model in the context of the clinical workflow. We therefore

want to consider constraints on model error that exist at different

stages in the workflow, then evaluate the model performance within

the context of each of these stages. The hospital system on which

this analysis is centered follows a well-established, digitally medi-

ated process for prescribing and dispensing medications in the inpa-

tient setting that involves the verification of all orders that are

placed by clinicians to the pharmacy. Based on this workflow, we

evaluate the model at 2 potential points:

1. Intervene at the point of order submission by the clinician. For ex-

ample, alerting the clinician at the time of order entry that it may

contain an error or require optimization. In this scenario, a high

number of incorrectly flagged orders (false positives) could be-

come burdensome and lead the provider to distrust or disregard

the system.26–28 Within these constraints the precision rate should

be relatively high, but the precision-recall curve for our model

(Figure 1) suggests that this model may not adequately minimize

both false positives and false negatives (AUPR¼ 0.439); we there-

fore consider the alternative.

2. Intervene at the point of order receipt by the pharmacist. For ex-

ample, by removing the requirement for pharmacist verification

on incoming orders that the model has identified as having a low

risk of requiring an intervention. Clinical pharmacists currently

review incoming orders assuming equal probability of requiring

an intervention. Their order verification queue could be reduced

by deprioritizing these orders. An intervention targeting pharma-

cists therefore has a requirement for a low false-negative rate, but

pharmacists can likely tolerate a higher rate of false positives (rel-

ative to prescribing clinicians) because they already review a large

number of orders that do not require intervention in the current

workflow so any reduction in this workload is an improvement.

In light of this, we compute the classification threshold for the

model that optimizes for model recall performance using the F10

score (0.076). Table 4a displays the corresponding confusion matrix

and other model performance metrics.

Though the model accuracy is only 0.41, it has a sensitivity of

0.99 and specificity of 0.37 on the test set. The associated confusion

matrix shows a very low number of false negatives (2) when

deprioritizing 35% (1933þ2) of orders identified by the model as

not requiring intervention.

To demonstrate how alternative thresholds would perform con-

sider (a) 0.5 and (b) 0.83 (model performance metrics in Table 4b

and c). The model performance metrics associated with threshold

(a) (Table 4a) show an accuracy and specificity rate of 0.88. This is

a significant increase in specificity compared with the selected

threshold (0.37) and corresponds to a substantial decrease in false

positives (from 3241 to 606 with threshold [b]). However, the num-

ber of false negatives increases from 2 to 72, corresponding to a de-

crease in sensitivity from 0.99 to 0.77 with threshold (b). These

trends continue when the decision boundary is increased to 0.83

(Table 4c). Though the percentage of orders that can be depriori-

tized increases from 85% (with threshold [a]) to 95% (with thresh-

old [b]), there is a simultaneous and substantial increase in false

negatives (the number of errors that are incorrectly labeled as not re-

quiring intervention)—well beyond what we have identified as an

acceptable rate of missing errors (maximum 5%).

Finally, we examine the global and local feature importance of

model features. In Figure 4, we display the 20 features with the high-

est gain. Whether the provider is a Resident has the greatest impact,

followed closely by the number of reconciliations contained in an or-

der batch. The number of individual orders in a batch and orders for

antibiotics has moderate gain, whereas remaining features have rela-

tively low influence over the model at the aggregate level.

To understand how these features impact individual predictions,

we visualize local feature importance (Figures 5A and 6B) as the log-

odds of an order requiring pharmacist intervention with the addition

of each feature to the model. The baseline intercept corresponds to

the naive probability that any single order batch requires interven-

tion (5.61%). Figure 5A visualizes these effects for a randomly sam-

pled order from the test set where the outcome of the model resulted

in a true positive, Figure 5B visualizes a true negative, Figure 6A vis-

ualizes a false positive, and Figure 6B visualizes a false negative. The

y-axis corresponds to the probabilities associated with the calculated

log-odds, red bars correspond to a decrease in the log-odds of an or-

der requiring intervention, and the blue bars signify an increase in

the log-odds. The order represented in Figure 5A contains 2 cardio-

vascular medications, which is associated with an increase in the

log-odds of this order requiring the intervention of 0.65 over the

baseline rate (5.61% in the sample). The plot also showed signifi-

cant increases in the log-odds attributed to the number of reconcilia-

tions contained in the batch, orders for antibiotics, and providers

who are residents (þ0.55, þ0.46, and þ0.44, respectively). The

number of patients the provider saw in the hour preceding the sub-

Table 3. Model performance metrics for baseline (Lasso, Ridge,

and Random Forest regression) and focal models (XGBoost)

Model AUROC AUPR

Logistic regression with L1 (Lasso) regularization 0.528 0.276

Logistic regression with L2 (Ridge) regularization 0.530 0.278

Random forest with pruning 0.579 0.180

Extreme gradient-boosted trees (XGBoost) 0.908 0.439

AUPR: area under the precision-recall; AUROC: area under the receiver-

operator.
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Figure 1. Average receiver-operator characteristic (ROC) curve. AUROC is 0.908. AUROC: area under the receiver-operator curve.

Figure 2. Precision-recall curve. AUPR is 0.439. AUPR: area under the precision-recall.
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mission of the order and the day of the week (Monday) was among

the features that reduced the log-odds of the order requiring inter-

vention (by �0.45 and �0.41, respectively).

DISCUSSION

The widespread deployment of EHRs and computerized order entry

systems has largely reduced medication order errors and inefficien-

cies in the inpatient setting. Emerging research suggests, however,

that they have also introduced new sources of error related to the in-

teraction between the provider and the platform. Despite this, prior

work has centered on the compatibility of the medication ordered

with the patient’s medical records. We instead developed a machine

learning model using provider behavioral data and other contextual

features related to the usage of these systems. We collected data on

providers’ actions in the EHR and pharmacy orders over a 2-week

period within the hospital system. We then built a classification

model to identify incoming orders requiring pharmacist intervention

Figure 3. Lift curve.

Table 4. Confusion matrix associated with decision boundaries displayed on the left side of the double lines in the table, and the corre-

sponding model performance metrics are displayed on the right

(a) Actual Model performance metrics

Decision boundary ¼ 0.076 Intervention No intervention Accuracy Recall Specificity Precision

Prediction Intervention 312 3241 0.41 0.99 0.37 0.09

No intervention 2 1933

(b) Actual Model performance metrics

Decision boundary ¼ 0.5 Intervention No intervention Accuracy Recall Specificity Precision

Prediction Intervention 242 606 0.88 0.77 0.88 0.29

No intervention 72 4568

(c) Actual Model performance metrics

Decision boundary ¼ 0.83 Intervention No intervention Accuracy Recall Specificity Precision

Prediction Intervention 130 120 0.94 0.41 0.98 0.52

No intervention 184 5054

(a) Displays model performance associated with the selected decision boundary (0.076);

(b) Displays the model performance with a decision boundary of 0.5; and

(c) Displays the model performance with a decision boundary of 0.83.
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and tuned the model considering the constraints of the pharmacist’s

workflow. The resultant model had an AUROC curve of 0.91and an

AUPR curve of 0.44.

Though the precision-recall curve in Figure 2 suggests that false

positives and negatives are not entirely separable, we show that by

strategically tuning the model to the clinical context in which it is

deployed we can still bring significant value to users. The model per-

formance metrics (Table 4a) show a very low number of false nega-

tives (2) when deprioritizing 35% (1933þ2) of orders deemed by

the model as not requiring intervention. While this reduction may

not be as meaningful to a well-resourced institution, many hospitals

have understaffed pharmacies. In these settings, such an intervention

may be critical for managing the workload on pharmacy staff. Fu-

ture work may further improve the accuracy of the model by taking

into consideration the severity of the intervention or stratifying by

type of intervention. This may improve the model’s utility in a

broader range of clinical contexts.

The features that have the highest gain in our model (Figures 5A

and 6B) are consistent with clinical experience. For example, Resi-

dents are often the least experienced class of provider and can have

high workloads. This could account for their orders having a higher

likelihood of requiring intervention. We also see order reconcilia-

tions providing substantial gain in this model. The reconciliation of

medications involves reviewing medications that patients were re-

ceiving at an earlier phase of care (either as an outpatient prior to

being admitted or on a different unit prior to being transferred) and

decide which ones to continue and discontinue depending on the

change of clinical context. Clinicians may anchor on the patient’s

previous prescriptions, biasing them toward continuing these medi-

cations and not thoughtfully assessing whether the change in context

should correspond to an adjustment.

The total number of orders in a batch might correlate to a

higher rate of intervention because each individual order has some

baseline probability of containing an error and the probability of

requiring intervention increases for batches containing more

orders. It could also represent cognitive overburdening of the sub-

mitting clinician; orders often accumulate as the clinician is

rounding and are submitted together at the end, providing oppor-

tunity for errors associated with switching among patients and

their different needs. Finally, antibiotic ordering is understood to

be complex and many institutions have structured guidelines and

oversight groups that direct their approach to order antibiotics. It

is thus not a surprise that antibiotic ordering is associated to in-

creased gain in our model.

This modeling approach offers us a novel perspective on the fac-

tors influencing order entry by focusing on the behavior of the pro-

vider and errors that arise from the workflow around the EHR.

Whereas previous models predicting errors ingest patients’ medical

records, by focusing on the behavior of the clinician, we also reduce

the risk to the privacy and security of these patients’ data while still

being useful to pharmacists.

Figure 4. Top 20 features with the highest global importance. Gain represents the improvement in accuracy brought by a feature to the branches it is on.
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LIMITATIONS AND FUTURE WORK

In our analysis, we used data from 2 weeks in July 2017. While we

believe that this sample is sufficient to demonstrate the use of clini-

cian behavior and other contextual features in predicting the occur-

rence of order errors, there may be seasonality and other effects that

limit the generalizability of the model. For example, July is the start

of the year for medical and surgical trainees. This introduces the

possibility of increased order errors due to new interns being less

knowledgeable about medications, the EHR system, and about pro-

cesses in busy health systems.29 Further analysis using longer periods

of data collection is needed to account for new trainees’ evolving

clinical experience and knowledge.

Future work may also consider comparing the results of these

models across hospital systems to gain a better understanding of

how different clinical contexts influence the occurrence of such

errors; however, each hospital system is likely idiosyncratic in terms

of the culture, processes, and procedures which may affect the oc-

currence and treatment of order errors. We therefore believe that

models for detecting these errors will likely need to be tuned for the

specific hospital in which they are deployed. Additional refinement

of order error by type (eg, improper dosage, incorrect medication,

etc.) may bring further precision to these models, and improve their

utility to the clinician in context.

The implementation and deployment of this model in the hospi-

tal setting remain an open question; specifically, what features are

available at the time the batch of orders is submitted to run the

model and provide decision support. Three types of features out-

lined in the analysis section include measures of EHR clinical en-

gagement, details of orders, and contextual data related to clinician

and order . Both of the latter feature sets are readily available at or-

der time. The most difficult feature is the former (EHR clinical en-

gagement) that is not routinely available in real time from our EHR

vendor. A custom build from the EHR would be required to access

these data elements. Future work could analyze more subfeature sets

to see how to maintain performance given features more readily

available.

Figure 5. The y-axis represents the change in the probability of the order requiring intervention. Red bars represent a decrease in the log-odds, whereas blue bars

represent an increase. (A) Contribution of features to the log-odds of a true positive order. The estimated probability of this order requiring intervention is 0.39,

well above the 0.076 decision boundary and consistent with the observed outcome. (B) Contribution of features to the log-odds of a true negative order. The esti-

mated probability of this order requiring intervention is 0.004, below the 0.076 decision boundary.

8 JAMIA Open, 2021, Vol. 4, No. 3



CONCLUSION

Errors involving medications are a significant challenge that is well

suited to interventions based on machine learning models. Conven-

tional approaches have opted to compare medication orders to the

contents of the patient’s medical records and do not consider sources

of error that are produced by EHRs and reflected in the provider’s

behavior.

In this work, we develop a machine learning model that relies

only on features related to the provider’s behavior and basic contex-

tual information related to the order to demonstrate a well-

performing model. Furthermore, we show that with proper tuning,

such models can significantly improve the workload on pharmacists

without risking the privacy and security of sensitive patient data.
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represent an increase. (A) Contribution made by individual features to the log-odds of a false-positive order. The estimated probability of this order requiring in-

tervention is 0.10, which is above the 0.076 decision boundary, though this particular order was not observed to require intervention. (B) Contribution made by in-

dividual features to the log-odds of a false-negative order. The estimated probability of this order requiring intervention is 0.003. Despite being well below the

0.076 decision boundary, this particular order did require intervention.
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