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Abstract In microsporocytes of the European larch, we
demonstrated the presence of several mRNAs in
spherical nuclear bodies. In the nuclei of microspor-
ocytes, we observed up to 12 bodies, ranging from 0.5
to 6 um in diameter, during the prophase of the first
meiotic division. Our previous studies revealed the
presence of polyadenylated RNA (poly(A) RNA) in
these bodies, but did not confirm the presence of
nascent transcripts or splicing factors of the SR family.
The lack of these molecules precludes the bodies from
being the sites of synthesis and early maturation of
primary transcripts (Kolowerzo et al., Protoplasma
236:13-19, 2009). However, the bodies serve as sites for
the accumulation of splicing machinery, including the Sm
proteins and small nuclear RNAs. Characteristic ultra-
structures and the molecular composition of the nuclear
bodies, which contain poly(A) RNA, are indicative of
Cajal bodies (CBs). Here, we demonstrated the presence
of several housekeeping gene transcripts—o-tubulin,
pectin methylesterase, peroxidase and catalase, ATPase,
and inositol-3-phosphate synthase—in CBs. Additionally,
we observed transcripts of the RNA polymerase II
subunits RPB2 and RPB10 RNA pol II and the core
spliceosome proteins mRNA SmD1, SmD2, and SmE.
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The co-localization of nascent transcripts and mRNAs
indicates that mRNA accumulation/storage, particularly in
CBs, occurs in the nucleus of microsporocytes.

Introduction

Coiled bodies were discovered in mammalian nervous
tissue by a Spanish researcher, Ramon y Cajal (Cajal
1903). Coiled bodies, revealed by studies at the ultrastruc-
tural level, are composed of coiled fibrils that resemble a
coil of twisted thread. Due to their convoluted structure,
they were named coiled bodies by Monneron and Bernhard
(1969) in mammalian cells. Later, the same architecture of
these bodies in plant cells was confirmed by Moreno Diaz
de la Espina et al. (1982). A hundred years after their
discovery, they were finally named Cajal bodies (CBs) to
honor their discoverer (Gall et al. 1999). They are
evolutionarily conserved structures present both in animal
cells (Cioce and Lamond 2005) and plant cells (Shaw and
Brown 2004), which indicates their fundamental role in the
nuclei metabolism of eukaryotic cells. CBs participate in
the storage and maturation of both snRNPs and small
nucleolar RNAs, as well as other splicing factors necessary
for mRNA and pre-rRNA processing, but they do not
directly participate in transcription. Despite the presence of
splicing machinery elements, numerous transcription fac-
tors (Schul et al. 1998), and even RNA polymerase II (Xie
and Pombo 2006) in CBs, they are not considered to be a
direct site of transcription and splicing. DNA (Moreno Diaz
de la Espina et al. 1982; Thiry 1994; Wrobel and Smolinski
2003), newly formed transcripts (Biggiogera and Fakan
1998; Kotowerzo et al. 2009), and several crucial splicing
factors, such as SC35 and U2AF (Gama-Carvalho et al.
1997), were not observed in CBs. CBs are involved in tRNA
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maturation (Jarrous et al. 2001), histone mRNA maturation
(Wagner and Marzluff 2006), and telomere synthesis
(Venteicher et al. 2009). Therefore, CBs are currently thought
to provide a location where various components and sub-
complexes can be assembled before they are released to the
site of function (Shaw and Brown 2004).

In plant cells, nuclear structures that morphologically
resemble CBs have been observed for a long time (for a
review, see Risuefio and Medina 1986). The term “plant
coiled body” was first used by Moreno Diaz de la Espina et
al. (1980), which was based primarily on the ultrastructural
similarity of the nuclear bodies of onion cells to animal cell
CBs. Plant CBs are characterized as being similar to animal
CBs. In plant cells, both free CBs and perinucleolar CBs
were observed to accumulate splicing system elements,
such as small nuclear RNAs (snRNAs) and Sm proteins
(Chamberland and Lafontaine 1993; Beven et al. 1995;
Gulemetova et al. 1998; Jennane et al. 1999; Wrdbel and
Smolinski 2003; Kotowerzo et al. 2009). The investigations
of Boudonck et al. (1999), using a U2B"-GFP fusion
protein that illustrated the CB movement within the cell
nucleus, demonstrated that nucleoplasmic CBs and nucle-
olar Cajal bodies presented different locations of the same
structure. Plant CBs were shown to contain the rRNA
processing machinery components, U3 snoRNA and fibril-
larin (Olmedilla et al. 1997; Boudonck et al. 1999; Acevedo
et al. 2002; Wrobel and Smolinski 2003), but are devoid of
rDNA (Lafontaine and Chamberland 1995) and rRNA
(Wrébel and Smolinski 2003). Visualization of CBs in
living plant cells revealed also that plant CBs exhibit
dynamic movement, fusing together and splitting apart
within the nucleus (Boudonck et al. 1999). Moreover, the
number of CBs in plant cells was observed to change
during the cell cycle and differentiation (Boudonck et al.
1998; Straatman and Schel 2001; Segui-Simarro et al.
2006; Zienkiewicz and Bednarska 2009). Recently, plant
CBs were shown to contain also Atcoilin (Collier et al.
2006; Koroleva et al. 2009), which is a homolog of the
mammalian protein coilin, a marker of CB in animal cells.

In summary, CBs are highly conserved nuclear structures
that perform similar functions in all eukaryotic cells,
although plant CBs have been implicated as sites of siRNA
biogenesis whereas siRNA dicing occurs in the cytoplasm
in animals (for a review, see Pontes and Pikaard 2008).

In our earlier studies on the diplotene microsporocytes of
larch, we observed that polyadenylated RNA (poly(A)
RNA) localizes to CBs (Kotowerzo et al. 2009), which
had not yet been observed in animal cells (Visa et al. 1993;
Huang et al. 1994). In this study, we aimed to clarify the
type of poly(A) RNA that is present in CBs to determine
whether it is protein-coding. The large microsporocyte
nuclei size facilitated our study of the mRNA in the larch
by in situ hybridization.
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Materials and methods
Plant material and isolation of meiotic protoplasts

To maintain constant experimental conditions, Larix decidua
Mill. anthers were collected from the same tree in successive
meiotic prophase stages of middle diplotene for 4 weeks.
The whole diplotene stage in larch microsporocytes lasts
15 weeks. Anthers were fixed in 4% paraformaldehyde in
phosphate-buffered saline (PBS), pH 7.2, for 6 h and
squashed to obtain free meiocytes. Meiotic protoplasts were
isolated from these cells (Kotowerzo et al. 2009) and were
then used for immunodetection of Sm and m3G snRNA and
detection of poly(A) RNA, U2 snRNA, 5S rRNA, 26S
rRNA, and mRNAs by fluorescence in situ hybridization
(FISH).

Immunodetection of bromouridine incorporation
before FISH detection of poly(A) RNA

Bromouridine (BrU) incorporation was performed accord-
ing to Smolinski et al. (2007) with a 90-min incubation
time. The long incubation allowed BrU to penetrate through
all the layers of the anther and enter the microsporocytes. It
facilitated the comparison of transcripts at all analyzed
stages, which differed in RNA synthesis intensity. Under
these conditions, part of the product moved from the
synthesis site to the cytoplasm at some stages. After
incubating the anthers with BrU, the material was prepared
as described above and incubated with a mouse anti-BrU
primary antibody (F. Hoffmann-LaRoche Ltd., Rotkreuz,
Switzerland) in 1% bovine serum albumin (BSA) in PBS
(diluted 1:100), pH 7.2, overnight at 4°C. The protoplasts
were incubated with a goat anti-mouse secondary antibody
conjugated to Alexa Fluor 488 (Invitrogen, Carlsbad,
CA, USA) in 0.2% BSA in PBS (diluted 1:1,000) for
1 h at 37°C, washed in PBS, and assessed for poly(A)
RNA presence using FISH. Finally, the slides were stained
using DAPI (1 pg/ml for 3 min), washed in double-distilled
water, and mounted in Citifluor glycerol solution (Agar
Scientific, Essex, UK). Some additional experiments were
performed using longer (2.5-6 h) incubation times, while
other conditions were kept the same.

Preparation of probes

Sequences of mRNA for 40 protein-coding larch genes
were chosen for this study (Table 1), which were composed
of 25 housekeeping genes and 15 genes coding for proteins
that are cyclically very highly expressed during the meiotic
prophase, including six mRNAs coding for RNA polymer-
ase II subunits and transcription factors and nine mRNAs of
snRNP proteins involved with snRNA. The study was
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Table 1 Localization of the fol-

lowing larch microsporocyte mRNA type

Presence in CB

mRNAs to Cajal bodies was

analyzed using FISH Housekeeping genes

mRNA pectin methylesterase (PME1)

mRNA for peroxidase (px1 gene)
mRNA for alpha-tubulin

mRNA for catalase

mRNA for ATPase

Present in CB

mRNA for inositol-3-phosphate synthase

mRNA for NADH-glutamate synthase
mRNA for 60S ribosomal protein L3

Doubtful or unconfirmed localization

mRNA for cinnamyl alcohol dehydrogenase (CAD)

mRNA for phytochrome
mRNA for coumarate CoA ligase

mRNA for cytochrome P450 CYPA1

mRNA for (1-3)-beta-glucanase

mRNA for transcription factor MYBS

mRNA for transcription factor MYB10

mRNA for homeodomain transcription factor

mRNA for AP2-related transcription factor AP2L3

mRNA for histone deacetylase HDA101 (HDac)

mRNA for ATP binding/nucleotide kinase/phosphotransferase

protein (ADK)

mRNA for cellulose synthase-like H2 (CIS_H2)

mRNA for phosphoribulokinase

mRNA for translation initiation factor (eIF5A)

mRNA for aquaporin (Aqgp)
mRNA for DNA ligase

mRNA for argonaute/Zwille-like protein

snRNP mRNA

mRNA for SmD1
mRNA for SmD2

mRNA for SmE

mRNA for Ula protein
mRNA for Ulc protein

mRNA for Dim 1 protein
mRNA for Dim 2 protein
mRNA for like Sm 8 protein
RNA pol II genes and TF

mRNA for: RPB2 of Pol II RNA
mRNA for: RPB10 of Pol II RNA

mRNA for transcription factor MYBS

Present in CB

Doubtful or unconfirmed localization

Present in CB

Doubtful or unconfirmed localization

mRNA for transcription factor MYB10
mRNA for homeodomain transcription factor
mRNA for AP2-related transcription factor AP2L3

performed using 63 antisense DNA oligonucleotide probes,
15 of which positively localized to CBs and were used in
further investigations (Table 2).

For mono-labeling and double labeling of single
mRNAs, probes were labeled at the 5" end with digoxigenin
(Genomed) and at the 3’ end with digoxigenin-11-dUTP

(Roche) and ChromaTide Alexa Fluor 488-5-dUTP nucleo-
tides (Invitrogen) using a tailing reaction by terminal
deoxynucleotidyl transferase TdT (Roche). For double
labeling with single mRNAs, a U2 snRNA DNA oligo
probe was used—5" ATATTAAACTGATAAGAACAGA
TACTACACTTG 3’ (Genomed)—which was labeled at
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Table 2 Probe sequences for
mRNAs that positively localized
to Cajal bodies

mRNA type

Probe sequence

Housekeeping genes

mRNA for pectin methylesterase

mRNA for peroxidase (px1 gene)

mRNA for «-tubulin (exon 1)

mRNA for x-tubulin (exon 3)

mRNA for a-tubulin (3" UTR fragment)
mRNA for catalase

mRNA for ATPase

mRNA for inositol-3-phosphate synthase
snRNP mRNA

mRNA for SmD1

mRNA for SmD2

mRNA for SmD2

mRNA for SmE

RNA pol II genes

mRNA for RPB2 of Pol II RNA (exon 2)
mRNA for RPB2 of Pol II RNA (exon 3)
mRNA for RPB10 of Pol Il RNA

5" ATAAACTCCTGCTTTTATATRAATTACGTATCT 3’

5" GTAGTTTAAACTTGGTAGTAAGAGTCTGGAG 3’

5" GATCTAGACAGAGGTCCACAATCTC 3’

5" GACTTTTTACCGTAGTCCACTGAAA 3’

5" GAAGTCCAAAACAACACAATCTAAGA 3’

5" GTAACRTCTAAAGGATCAAAGTCATATTTATCCT 3’
5" GATTCCAGAGTACAGACACATAAATAAAAAC 3’

5" CTTTTTAAGTTGAATCCTGGTACAGAG 3’

5" AGGAGTTGACATAAGTATGAATACACATCT

5" CTATTCACTTTGGATTTCTAAGAACAATAAT 3’

5" GTATATAATTTCCTCTTCAAAAACTACTTTTCTCT 3’
5" AATACAAGGTTCATGTACTCATCAAATC 3’

5" GACCTAGAAATATCATAGCAGATAATTTTCTAC 3’
5" CTGTGGATAATAGAGTACATATGCTAAGGTAT 3’
5" GTAATTCAAAAGCTTCTCRATGAGATC 3’

the 3’ end with ChromaTide Alexa Fluor 594-5-dUTP
(Invitrogen) by the TdT reaction (Roche).

mRNA probes for multiplex FISH were prepared with
one residue of Cy3 at the 5’ end (Genomed, Warsaw,
Poland). For double labeling with mix mRNA, a U2
snRNA DNA oligo probe was labeled at the 5’ end with
Alexa 488 (Sigma-Proligo, Poznan, Poland). The mRNA
probe for RPB2 of Pol II RNA was prepared with one
residue of Cy3 at the 5" end (Genomed) for double labeling
with U2 snRNA (probe was labeled at the 5’ end with
Alexa 488).

For poly(A) RNA (Sigma-Proligo), 26S rRNA, and 5S
rRNA (IBB PAN, Warsaw, Poland), the following DNA
oligonucleotides were used:

Poly(A) RNA 5’ Alexa 546 TTTTTTTTTTTTTTTTTT
TTTTTTTTTTTT 3’

26S rRNA 5’ Cy3 CTACTTTTAACGTTATTTTACTT
ATTCCGTG 3’

5S IRNA 5’ Cy3 GGTGCATTAACGCTGGTATGATC 3'

In high-resolution in situ hybridization (HISH), the
mRNA probes were labeled chemically at the 5’ end with
digoxigenin (Genomed) and at the 3" end with digoxigenin
nucleotides using TdT (Roche).

FISH in mono-labeling, double-labeling, and multiplex
reactions

For hybridization, the probes were resuspended in hybridiza-
tion buffer (30%, v/v, formamide, 4x SSC, 5x Denhardt’s
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buffer, | mM EDTA, and 50 mM phosphate buffer) at a
concentration of 50 pmol/ml. In situ hybridization of
meiotic protoplasts was conducted as described previ-
ously (Smolinski et al. 2007). Hybridization was
performed overnight at 28°C with gentle agitation.

For multiplex hybridizations, all 15 probes (Table 1) that
localized to CBs were mixed with U2 snRNA and placed
into a hybridization buffer at a concentration of 50 pmol/ml
for each probe. Digoxygenine (DIG) probes were detected
after hybridization using mouse anti-DIG (Roche) and anti-
mouse Alexa 488 (Invitrogen) antibodies in 0.01% acety-
lated BSA in PBS (1:100 and 1:1,000, respectively) in a
humidified chamber for 1 h at 37°C. In double/multi-
labeling FISH (mRNA—-U2 snRNA), the probes were added
simultaneously to the hybridization medium.

HISH immunogold labeling of mRNA, U2 snRNA,
and immunogold labeling of Sm proteins and m3G snRNA

After fixation in 4% PA in PBS overnight, the anthers were
rinsed in PBS, dehydrated, and mounted in LR Gold resin
(Sigma) according to Majewska-Sawka and Rodriguez-
Garcia’s (1996) protocol. Ultrathin sections were collected
on formvar-coated nickel or gold grids, pretreated with pre-
hybridization buffer (hybridization buffer without probe)
for 1 h at room temperature, and incubated with mRNA
probes in the hybridization buffer. Hybridization was
performed in a sealed, humidified chamber for 20 h at room
temperature at a concentration of 50 pmol/ml for each probe.
Post-hybridization washing was performed according to
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Smolinski et al. (2007). Nonspecific antigens were blocked
with PBS buffer containing 0.05% acetylated BSA for 0.5 h.
DNA-RNA hybrids were localized by incubation with a
sheep anti-digoxigenin antibody coupled to 10-nm diameter
colloidal gold particles (Orion Diagnostica, Espoo, Finland;
1:30 in PBS containing 0.02% acetylated BSA for 1 h at
room temperature). Grids were rinsed and contrasted
according to Smolinski et al. (2007). Immunogold labeling
of Sm proteins and m3G snRNA was performed according to
Wrobel and Smolinski (2003).

Immunodetection of m3G snRNA and Sm proteins

For detecting the m3G cap, we used an anti-m3G antibody
(Calbiochem, Bad Soden, Germany) according to the
protocols provided by Zienkiewicz et al. (2006). Sm
proteins were also detected by incubating with a primary
anti-Sm Y12 mouse antibody, which recognizes Sm B'/B
and DI proteins in plants (Hirakata et al. 1993; Echeverria
et al. 2007), according to the method in Zienkiewicz et al.
(2008b), in 0.1% acetylated BSA in PBS (1:10) in a
humidified chamber at 8°C overnight and an anti-mouse
Alexa 488 (Invitrogen) secondary antibody. For all experi-
ments (Sm—mRNA, m3G snRNA-mRNA), immunocyto-
chemistry always preceded in situ hybridization because
immunofluorescent signals were extremely weak if ISH
was applied first.

Optical and electron microscopy

The results were analyzed with a Nikon C1 confocal
microscope with an argon ion laser emitting a wave-
length of 488 nm (blue excitation) and a He—Ne laser
emitting wavelengths of 543 nm (green excitation) and
594 nm. A mid pinhole, long exposure time (75 us),
and a x60 (numerical aperture, 1.4) Plan Apochromat
DIC H oil and CFI Plan Apochromat x60 oil immersion
lens were used. Images were collected simultaneously in
the green (Alexa 488 fluorescence) and yellow—red
(Cy3, Alexa 546 or Alexa 594) channels. To minimize
bleed-through between the fluorescence channels, low
argon laser power (3—10% of maximum power) and
control single-channel collections were applied. For
bleed-through analysis and control experiments, Lucia
G software was used (Laboratory Imaging, Prague,
Czech Republic). For image processing and analysis,
the EZ Viewer software package (Nikon Europe BV,
Badhoevedorp, the Netherlands) was used. For DAPI
staining, a fluorescence inverted Nikon Eclipse TE
2000-E microscope equipped with a mercury lamp,
UV-2EC UV narrow band filter, Nikon DXM 1200 FX
and Nikon DS-5Mc digital cameras were used. Nikon
NIS-elements deconvolution software was used. The

material was examined and photomicrographs were
taken under a TEM Jeol 1010 (Japan) electron micro-
scope at 80 kV.

Control reactions

For the immunofluorescence and immunogold methods,
control incubations lacking the first antibody were
performed. For the in situ hybridizations, high-
resolution and fluorescent, sense-labeled probes and
ribonuclease-treated samples were used. For the detec-
tion of new transcripts, control reactions were performed
on sections incubated without bromouridine. All control
reactions produced negative results, or the result of the
control reaction was undetectably low compared with
the standard reactions.

Results

Out of the 40 tested mRNAs, 11 positively hybridized to
spherical nuclear. For the other mRNAs, their localization
was not observed in nuclear bodies or was disputable
(Table 1). Probes for the mRNAs that localized to nuclear
bodies were used in further analysis (Table 2). A high
accumulation of mRNA was observed in the spherical
nuclear bodies, which ranged in diameter from 0.5 to 6 um
(Fig. 1). Several nuclear bodies were frequently observed in
one microsporocyte (Fig. 1). These probes demonstrated the
nuclear body localization for mRNA of six housekeeping
genes, including pectin methylesterase, peroxidase, x-tubulin,
catalase, ATPase, and inositol-3-phosphate synthase
(Fig. la—f); three Sm protein-coding genes (Fig. 1g—i);
and two genes coding for the second and tenth subunits of
RNA polymerase I (Fig. 1j, k). The oligo probes were
designed to prevent their reciprocal hybridization, which
would weaken the level of hybridization to the target
sequences in multiplex experiments. Multiplex reactions
significantly increased the signal detection (Fig. 11) and
were used in double-labeling reactions with splicing
factors (Electronic supplementary material (ESM) Fig.
S1), which are considered to be markers of CBs (ESM Fig.
Sla, b, ¢).

Simultaneous localization of core spliceosomal Sm
proteins (ESM Fig. S1d) and mRNA (ESM Fig. Sle)
revealed that the CBs, which contain large amounts of Sm
proteins (ESM Fig. Sla), are the same structures that house
mRNA. Additionally, double labeling of U2 snRNA (ESM
Fig. Slg) and a mix of mRNA (ESM Fig. S1h) revealed
that CBs co-localized with the mRNA-containing bodies.
Similarly, the mature forms of small nuclear RNA, detected
by anti-snRNA m3G cap antibodies (ESM Fig. S1j) with a
mix of mRNA (ESM Fig. S1k), co-localized at CBs. In
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Fig. 1 a—k FISH reaction using
probes complementary to 11
larch mRNAs reveal high con-
centrations of the studied
mRNAs in the oval, regular
nuclear bodies. In the nucleus
outside the nuclear bodies and in
the cytoplasm, the mRNA is
dispersed. 1 Multiplex FISH
reaction using 15 probes com-
plementary to 11 larch mRNAs
(see MM, Table 2). Bars, 10 pm

pectin methylesterase] b

peroxidase mRNA ] C a tubulin mMRNA

ATPase mRNA|f Inositol-3-phosphate

synthase mRNA

SmD1 mRNA}h

addition to localizing to the CBs, m3G snRNA was
dispersed in the nucleoplasm (ESM Fig. S1j).

The double-labeling analysis demonstrated that the
nuclear bodies, which contain mRNA and splicing mole-
cules, were occasionally heterogeneous. Sometimes differ-
ent levels of individual mRNAs in CBs were observed
(ESM Fig. S2a—c). Sometimes CBs lacked individual
mRNAs (an example of labeling the mRNA of the second
subunit of RNA polymerase II at ultrastructural level; ESM
Fig. S2e).

The strongest hybridization signals were obtained in
double FISH with a mix of mRNA and U2 snRNA, so
an attempt was made to use double FISH for U2
snRNA as a marker of CB and mRNA of distinct genes.
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U2 snRNA co-localized with CBs for all 11 studied
mRNAs. Pectin methylesterase mRNA co-localization
with U2 snRNA (Fig. 2a—d) served as a positive control
for the set of housekeeping genes. However, CBs in the
cell occasionally lacked these mRNAs (data not shown).
Figure 2e—h illustrates an example of the heterogencous
localization of an mRNA of the second subunit of RNA
polymerase II in different CBs after double labeling with
U2 snRNA. In addition to the concentrated localization to
CBs, a high level of signal proximal to these structures
was observed. In such cases, the localization of the studied
mRNA to CBs was not clearly visible until the signals
from the U2 snRNA and mRNA were merged. The mRNA
of the Sm protein group was present in the majority of
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nicrosporocyte

Fig. 2 a-1 Double labeling of mRNA of distinct genes: pectin
methylesterase (PME) mRNA (a), mRNA of the second subunit of
RNA polymerase II (RPB2) (e), mRNA of the core spliceosomal Sm
protein D2 (i), and U2 snRNA (b, f, j, respectively). Merge—mRNAs
present in CBs (¢, g, k). Nuclei were stained with DAPIL All
corresponding DAPI images were collected using widefield fluores-
cence and deconvolution software. Bars, 10 pm. m—o Ultrastructural
localization of mRNA. For better visualization of mRNA localization
at the ultrastructural level, results of in situ hybridization, in which

several probes for mRNA to three genes coding Sm protein (m, o) or a
multiplex reaction (n) were shown. m A high level of labeling in the
microporocytes was observed primarily in a Cajal body (cb) (arrows,
outline). n A lack of mRNA in dense nuclear bodies (¢b). The gold
particles are present in the nucleoplasm and in CBs in single form
(arrows). o Studied mRNA was not present in CBs in the somatic cells
of tapetum, which surround the microsporocytes; the signal was only
observed in the nucleoplasm (arrows, outline), outside dense
chromatin (chr), and the nucleolus (Nu). Bars, 0.5 pm
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CBs containing U2 snRNA (Fig. 2i-1); however, their
levels were also heterogencous (data not shown).

In situ hybridization and electron microscopy analysis
confirmed that larch microsporocyte nuclei exhibited an
accumulation of the studied mRNAs in CBs. In situ
hybridization results, with two to three probes for mRNA
of the same protein group (Sm mRNA as an example), are
shown in Fig. 2m.

mRNA localized exclusively to the CBs; moreover, their
localization was not confirmed in other types of nuclear
bodies, such as dense bodies, which were also observed in
the nuclei of larch microsporocytes (Fig. 2n). In somatic
tapetal cells, which surround microsporocytes, numerous
fine CBs (with a diameter of 0.1-0.8 pum) were present.
Detectable amounts of mRNA were not observed in these
structures (Fig. 20). Labeling was observed only in the
nucleoplasm outside the CBs.

Double labeling of newly formed transcripts and poly(A)
RNA, which can be considered as an indicator of mature
mRNA transcript levels, enabled us to analyze the
dynamics of occurrence of CBs that contained mRNA in
comparison to the microsporocyte transcriptional activity.
Characteristic changes in newly formed transcript levels
and in the distribution of poly(A) RNA in microsporocytes
were observed during the 4 weeks of the middle diplotene
stage. Seven stages were distinguished in the studied period
(Fig. 3a-—n).

At the beginning of the middle diplotene (stage I), the
newly formed transcript levels were low, and a low poly(A)
RNA signal was observed in the nucleus. The cytoplasm
exhibited a much higher and more dispersed poly(A) signal
(Fig. 3a, b). At the second stage, a high level of newly
synthesized RNA was observed, and elevated levels of poly
(A) RNA were visible in the nucleus as small clusters
(Fig. 3c, d). The third stage exhibited still a high level of
newly formed transcripts in the nucleus, and poly(A) RNA
was visible in single CBs and was dispersed in the
nucleoplasm (Fig. 3e, f). During this stage, we rarely
observed transcripts at the periphery of CBs during
prolonged incubations (2.5-6 h; ESM Fig. S3a—d). In stages
II and III, FISH with the oligo T probe gave a strong signal
(ESM Fig. S3e, h). ESM Fig. S3f, i exhibits Fig. 3c, e
“uncovered” newly formed transcripts at stages II and III. At
stage IV, a decrease in the level of newly formed transcripts
was observed, and poly(A) RNA accumulated primarily in
numerous CBs (Fig. 3g, h). In the next stage, the levels of
newly formed transcripts remained low, whereas poly(A)
RNA levels increased in both the nucleoplasm and the
cytoplasm while decreasing in the CBs in the nucleus
(Fig. 3i, j). At stage VI, the low level of newly formed
transcripts persisted in the nucleus. No CBs that contain poly
(A) RNA were observed. Poly(A) RNA was primarily
dispersed in the nucleus and was observed at small
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concentrations in the cytoplasm (Fig. 3k, 1). At the last
stage, newly formed transcripts became extremely elevated,
particularly in the nucleolus, and the poly(A) RNA localized
predominantly to the cytoplasm as large spots (Fig. 3m, n).

During this diplotene stage (stage VII), we have
previously observed a rapid increase in the nucleolar
volume and a restart of the transcriptional activity of the
nucleolus (Smolinski et al. 2007). The microsporocytes
in this period possessed a high content of 26S rRNA
(Fig. 30) and 5S rRNA (Fig. 3p) in the nucleolus and
cytoplasm.

Discussion

Previous reports regarding the spatial organization of succes-
sive pre-mRNA maturation stages indicate that the main sites
of poly(A) RNA and mRNA concentration in the nucleus are
dynamic, irregular structures termed speckles (Carter et al.
1991, 1993; Wei et al. 1999; Molenaar et al. 2004; Xie and
Pombo 2006; Ishihama et al. 2008; Bogolyubova et al. 2009;
Batalova et al. 2010). We have previously demonstrated that
in larch, poly(A) RNA localizes in speckles, but this
occurred independently from the RNA accumulation in
nuclear bodies (Kotowerzo et al. 2009).

Detailed analysis showed that the oval, regular concen-
trations of poly(A) RNA localized to CBs. In this study, we
aimed to categorize the types of poly(A) RNA that localize
to the CBs in larch. We confirmed that the poly(A) RNA
detected in CBs is mRNA. Part of the poly(A) RNA that is
present in the CBs in larch microsporocytes may be
mRNA-like non-coding RNA that are, like mRNAs,
spliced, capped, and polyadenylated (Erdmann et al.
1999; Hiller et al. 2009). Their function is not fully
elucidated, but they likely regulate genes and play
important roles in organogenesis and cell differentiation
(Inagaki et al. 2005).

Based on mRNA sequence libraries, we aimed to
localize, in situ, several dozen mRNAs and verify their
localization to larch CBs. Detection of mRNA using in situ
methods has been technologically difficult due to detection
sensitivity. Specifically, lowly expressed gene transcript
levels have been difficult to properly assess. Therefore, we
selected genes coding for primary metabolism proteins,
which are ubiquitously and constitutively expressed; genes
coding for subunits of RNA polymerase II and transcription
factors, which are highly and cyclically expressed during
diplotene in larch (data not published; Kotowerzo 2010);
and genes coding for various splicing factors, which are
also highly and cyclically expressed during the meiotic
prophase in larch (Smolinski et al. 2011). Analysis using
the double-labeling method, with snRNA and snRNP
spliceosomal factors being the markers for CBs in plants
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Fig. 3 a—n Double labeling of a newly formed transcript (green, 90-
min BrU incubation time) and poly(A) RNA (red) in microsporocytes
during the middle diplotene (stages I-VII). Nuclei were stained with
DAPI (blue). The DAPI images were collected using widefield

(Beven et al. 1995; Straatman and Schel 2001; Lorkovi¢ et
al. 2004), confirmed that mRNA accumulated in CBs.
Eleven out of the 40 mRNAs studied were present in CBs.

fluorescence and deconvolution software. Cajal bodies (cb, arrow-
heads), nucleus (N), cytoplasm (C). Detection of ribosomal RNA 26S
(0) and 5S (p) conducted in the last period highly accumulated these
RNAs both in the nucleolus (Nu) and the cytoplasm. Bars, 10 pm

In addition to CBs, other types of plant nuclear
bodies have been extensively analyzed, including kar-
yosomes and argyrophilic intranuclear bodies or dense
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bodies (Barlow 1981, 1983). They are easily distin-
guished from CBs by their dense structure and smaller
diameter. The ribonucleoprotein nature of those bodies has
been strongly suggested. An EDTA-regressive staining
technique revealed the presence of a ribonucleoprotein
material (Docquier et al. 2004), but a lack of splicing factors
(Niedojadto and Gorska-Brylass 2003) and fibrillarin
(Jennane et al. 1999), in dense bodies (DBs). Their dense,
compact structure place them in a class of nuclear bodies
distinct from CBs. Due to the lack of good DB markers,
verification relies on the presence of accumulated mRNA
in the DB, on an ultrastructural level. The localization of
mRNA observed by electron microscopy confirmed the
presence of the studied mRNA in CBs and its absence in
other types of nuclear bodies.

The confirmation of the presence of the mRNA transcripts
is the first report of its kind, both in plants and in animals.
Studies conducted so far have not demonstrated the presence
of mRNA or poly(A) RNA in CBs (Visa et al. 1993; Huang et
al. 1994). Those studies were performed only in animals,
primarily in somatic cells; moreover, such studies in plants
have been absent. Our analysis of mRNA localization to CBs
in the somatic cells of larch anthers demonstrates a lack of
the studied mRNA in these bodies. Whether the presence of
mRNA in CBs in the microsporocytes directly correlates to
its elevated synthesis or whether the bodies are storage sites
remains unknown.

To answer those questions, we analyzed the distribution
of the pool of mRNAs with a simultaneous detection of
newly formed transcripts using a double-labeling technique.
The studies encompassed microsporocytes in middle
diplotene, which lasts approximately 4 weeks in larch. This
period included three phases of microsporocytes develop-
ment: (1) a lack of CBs that contained mRNA, (2) an
abundance of CBs in the nucleus, and (3) the disappearance
of CBs that contained mRNA at the end of the middle
diplotene. The entire larch diplotene lasts for approximately
15 weeks. The developmental synchronization of larch
meiocytes allowed for the sequential tracking of the level
and distribution of poly(A) RNA in comparison to changes
in the level of total transcription.

The increase in transcriptional activity, which was observed
in the first stage of microsporocyte development, was
accompanied by an elevation in the mRNA levels in the
nucleus. These molecules were primarily dispersed in the
nucleus. Significant increases in mRNA were not observed in
the cytoplasm. The first CBs that contained poly(A) RNA were
observed during the period of decreased microsporocyte
transcriptional activity. Similar to other studies (Biggiogera
and Fakan 1998), newly formed transcripts were absent in
CBs even during the long 90-min incubations. We observed
transcripts at the periphery of several CBs when we used
extremely long incubations ranging from 2.5 to 6 h.

@ Springer

Therefore, long incubations may reveal newly formed
snRNAs or U3 snoRNA at CBs. In the last stages of the
studied period, in the presence of low levels of total
transcription, a gradual loss of mRNA accumulation in CBs
and an increase in mRNA in the cytoplasm were observed.
The cyclical appearance and disappearance of CBs that
contain poly(A) RNA indicates that, in larch microsporo-
cytes, CBs serve as a storage site for mRNA transcripts,
which are subsequently transported to the cytoplasm.

After the disappearance of CBs that contain mRNAs, and
the increase of RNA levels in the cytoplasm, the transcriptional
activity of the nucleolus, which was suppressed from pachy-
tene, reinitiates, resulting in the expansion of the nucleolus size
(Smolinski et al. 2007) and in the increase of ribosomal RNA
in the cytoplasm. The larch microsporocytes exhibit high
protein biosynthesis activity during this period (Chwirot and
Gorska-Brylass 1981). The RNA, previously synthesized in
the nucleus and stored in CBs, is likely gradually released and
translated after its transport to the cytoplasm.

Whether mRNA accumulation in nuclear CBs results from
the atypical developmental strategy of the larch or whether it
is a common process is unknown. The localization of poly(A)
RNA in the nucleus of the lily (Chandra Sekhar and Williams
1992) may indicate an answer. They observed the accumu-
lation of poly(A) RNA in the nucleus during meiotic
prophase in the microsporocytes of lily (Chandra Sekhar
and Williams 1992). In this work, in situ hybridization
techniques with immunogold-silver detection were used,
which, because of low resolution, do not allow the
determination of whether this RNA type is present in the
structures of nuclear bodies. High levels of poly(A) RNA were
found in the pollen grain of the hyacinth (Zienkiewicz et al.
2006); however, it accumulated in the cytoplasm, not in the
nucleus (Zienkiewicz et al. 2008a). In generative plant cells,
mRNA storage may occur both in the nucleus and in the
cytoplasm. Recognition of this new role of CBs in mRNA
metabolism during larch microsporocyte development
requires further, detailed study.
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