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Dendritic spines are small protrusions from the dendrite membrane, where contact with
neighboring axons is formed in order to receive synaptic input. Changes in size, shape,
and density of synaptic spines are associated with learning and memory, and observed
after drug abuse in a variety of neurodegenerative, neurodevelopmental, and psychiatric
disorders. Due to the preeminent importance of synaptic spines, there have been major
efforts into developing techniques that enable visualization and analysis of dendritic
spines in cultured neurons, in fixed slices and in intact brain tissue. The classification
of synaptic spines into predefined morphological groups is a standard approach in
neuroscience research, where spines are divided into fixed categories such as thin,
mushroom, and stubby subclasses. This study examines accumulated evidence that
supports the existence of dendritic spine shapes as a continuum rather than separated
classes. Using new approaches and software tools we reflect on complex dendritic spine
shapes, positing that understanding of their highly dynamic nature is required to perform
analysis of their morphology. The study discusses and compares recently developed
algorithms that rely on clusterization rather than classification, therefore enabling new
levels of spine shape analysis. We reason that improved methods of analysis may help
to investigate a link between dendritic spine shape and its function, facilitating future
studies of learning and memory as well as studies of brain disorders.

Keywords: dendritic spines, neuronal morphology, mushroom spine, thin spine, stubby spine,
classification, clusterization

INTRODUCTION

Dendritic spines are tiny protrusions from dendrites, which form functional contacts with
neighboring axons of other neurons (Smith et al., 2014). Dendritic spines are very plastic
and their size and shape are constantly changing in response to neuronal activity. Complex
machinery composed of various signaling molecules and cascades maintains the unique structure
and function of dendritic spines (Yasuda, 2017; Nakahata and Yasuda, 2018). Dendritic spine
shape is controlled by the actin cytoskeleton. A characteristic feature of excitatory spines is a
postsynaptic density (PSD), which is visible on electron microphotographs. PSD consist of densely
packed ion channels, receptors, and kinases/phosphatases anchored by scaffolding proteins.
Learning and memory formation processes are tightly linked to remodeling or elimination of
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existing dendritic spines and formation of new ones, which
enables modulation of information transfer efficiency between
neurons (Yang et al., 2014; Segal, 2017; Chidambaram et al., 2019;
Stein and Zito, 2019). For example, motor learning induces rapid
growth of new dendritic spines atmice contralateral motor cortex
neurons, and subsequent elimination of spines existing before
training, so the overall spine density is relatively constant (Xu
et al., 2009). For all these reasons, dendritic spines are believed
to serve as sites for memory formation and storage, initiating
memory consolidation through mechanisms of potentiation and
depression of synaptic activity (Zhou et al., 2004; Bourne and
Harris, 2007; Kasai et al., 2010; Bailey et al., 2015).

Changes in dendritic spines were detected after being subject
to various stimuli, including drug administration (Barrientos
et al., 2018), hypoxia (Saraceno et al., 2012), environmental
changes (Ashokan et al., 2018), neurodevelopmental (Nishiyama,
2019), neurodegenerative (Herms and Dorostkar, 2016) and
psychiatric diseases (Penzes et al., 2011) and many others.
Neurodegenerative disorders are characterized by synapse loss
and dendritic spine abnormalities in the brain region associated
with the disease. For example, Alzheimer’s disease is known to
be accompanied by dendritic spine shrinkage and elimination
in the hippocampal and cortexes areas, which is proposed to
start before any clinical evidence of the disease, like cognitive
decline and memory dysfunction, manifests (Tackenberg et al.,
2009; Boros et al., 2017). Genetic neurodegenerative disorder
Huntington’s disease is characterized by synapse loss in the
striatal brain region, which is linked with progressive movement
discoordination (Nithianantharajah and Hannan, 2013). In
contrast, autism spectrum disorders are characterized by a
significant increase in spine density on various brain areas,
including frontal, temporal, and parietal lobes and lateral
nucleus of the amygdala (Nishiyama, 2019). Compared with
healthy subjects, patients with Fragile X syndrome have elevated
numbers of dendritic protrusions in the cingulate, temporal,
and visual cortex with prevalence of immature one (Bagni and
Zukin, 2019; Nishiyama, 2019). The balance between spine
appearance, maturation, elimination, and plasticity is critical for
proper brain function. Methods for analyzing and understanding
the morphology of dendritic spines are critically important for
many fields of neuroscience. In this mini-review article, we
discuss recent developments, approaches, and software tools that
facilitate analysis of complex dendritic spine morphology on
microscopic images obtained from cultured neurons, fixed brain
slices, and intact brain tissue.

DENDRITIC SPINES SHAPE
CLASSIFICATION AND ITS LIMITATIONS

A synapse is a zone of specialized contact between two neurons,
serving to transmit information from cell to cell. Most synapses
are formed between the axonal bouton and the dendritic spine,
which is a specialized protrusion from the dendritic membrane.
Dendritic spines come in a variety of shapes and sizes, differing
greatly across brain areas, cell types, and animal species (Ghani
et al., 2017). During structural analysis dendritic spines are
traditionally grouped into four fixed classes according to their

morphological features reflecting head and neck properties:
mushroom, thin, stubby, and filopodia (Figure 1). Mushroom
spines have a large head and a small neck, separating them
from a dendrite. They form strong synaptic connections, have
the longest lifetime, and therefore are thought to be sites
of long-term memory storage (Hayashi and Majewska, 2005;
Bourne and Harris, 2007). Thin spines have a structure similar
to the mushroom spines, but their head is smaller relative to
the neck. They are more dynamic than mushroom spines and
believed to be ‘‘learning spines,’’ responsible for forming new
memories during the synaptic plasticity process, accompanied
by head enlargement (Hayashi and Majewska, 2005; Bourne
and Harris, 2007). Stubby spines typically do not have a neck.
They are known to be the predominant type in the early
stages of postnatal development but are also found in small
amounts in adulthood, where they are likely formed due to the
disappearance of mushroom spines (Hering and Sheng, 2001).
Filopodia are long, thin dendritic membrane protrusions without
a clear head, commonly observed in developing neurons. These
spines may also be found in mature neurons, but under specific
conditions, for example, induction of plasticity after different
types of brain injury (Yoshihara et al., 2009). Compared to
other types of dendritic spines, filopodia are very mobile and
flexible structures with a short lifetime. On electronmicrographs,
filopodia in most cases do not have PSD and the neighboring
axonal terminal contain only a few synaptic vesicles, indicating
that they are not likely to form functional synapses. Because of
this, filopodia are usually excluded from spine counts during
synaptic density calculation (Berry and Nedivi, 2017). There
are also additional spine shape classes which have been named
by different research groups such as branched and cup-shaped
spines (Maiti et al., 2015), but they are not widely used in
the field.

Classification of spines into the mushroom, thin, and stubby
was initially performed manually, but this is a very labor-
intensive process that is prone to subjective errors. Multiple
segmentation and classification algorithms were developed to
automatize this process, making it faster, easier, and with
minimal bias introduced by an experimenter. Classification is
performed using a decision tree based on the estimation of
several key parameters, such as the size of the spine head, and
the ratio of head to the neck, are the most popular approaches,
implemented in a variety of software packages available for free
and commercially (Koh et al., 2002; Rodriguez et al., 2008; Son
et al., 2011; Swanger et al., 2011; Risher et al., 2014; Basu et al.,
2016, 2018; Dickstein et al., 2016). Alternative approaches were
developed, based on semi-supervised learning (Shi et al., 2014)
and classification in the likelihood ratio space using shape and
appearance features characterizing dendritic spine morphology
(Ghani et al., 2017).

Despite its wide use, the classification approach described
above has serious limitations. The transition betweenmushroom,
thin and stubby spine subtypes occurs abruptly in the
classification, but in reality, there is a continuum of spines
shapes and sizes (Yuste and Bonhoeffer, 2004; Berry and Nedivi,
2017). This statement is supported by research data about spine
morphology organization, examining live and fixed brain tissue
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FIGURE 1 | Comparison of classification and clusterization pipelines used for the analysis of dendritic spine morphology. For classification approach (A) several
possible morphological spine types (mushroom, stubby, thin, and filopodia) are defined based on pre-determined criteria. Each spine is then assigned to one of these
classes based on numerical morphological criteria. For the clusterization approach (B), spines are grouped into clusters based on their common morphological
features. Ten different clusters (1–10) are shown as an example, but the number of different clusters and parameters used for clusterization depends on the particular
algorithm and dataset.

(Wallace and Bear, 2004; Arellano et al., 2007; Tonnesen et al.,
2014; Loewenstein et al., 2015). A study that focused on the
morphology of neurons in layers II and III of a mouse visual
cortex discovered that a continuous distribution rather than
several discrete peaks were observed for each morphological
parameter (Arellano et al., 2007). Distribution of dendritic spine
length and head diameter in neurons of cortical layer III was
also characterized by unimodal distribution (Wallace and Bear,
2004). No evidence of the existence of defined spine types
was obtained in another study performed in the neocortex
(Loewenstein et al., 2015). A study of the correlation between
spine shape and compartmentalization of synapses indicated a
great diversity in spine morphology, which was not consistent
with standard classification systems (Tonnesen et al., 2014).
Advances in live imaging make it possible to analyze the shape
of a particular dendritic spine for a prolonged time, which
revealed unique plasticity properties. Even stable, persistent
spines are changing continuously in their orientation and shape,

which also argue the pros existence of the shape continuum
(Berry and Nedivi, 2017).

Analysis of spine morphology is also limited by the resolution
limit of light microscopy. The size of dendritic spines usually
does not exceed 1,000 nm for its largest dimension in the head,
while the sizes of other parts are much smaller. For confocal
microscopy resolution, the limit is estimated as half of the
excitation wavelength, which is approximately 200–300 nm. For
two-photon microscopy, the resolution is even lower due to
the longer excitation wavelength used in these experiments.
Furthermore, resolution along the z-axis is even lower than in
the xy-plane in confocal and 2-photon imaging experiments.
Low resolution leads to erroneousmeasurements of spine shapes,
which leads to erroneous dendritic spine classification. For
example, spine neck width is believed to be the key factor
influencing dendritic spine compartmentalization and efficiency
of signal transduction (Tonnesen et al., 2014). However,
visualization of such small structures can only be done with
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super-resolution imaging, which provides much more detailed
information about spine shapes than standard light microscopic
methods. Super-resolution imaging studies suggest that stubby
spines are significantly over-represented in literature, which is
the consequence of the low resolution of the neck, as it is small
(Tonnesen et al., 2014).

Improvement of dendritic spine visualization methods is an
important part of the unbiased assessment of their morphology.
Due to the lack of clear boundaries between different spine
classes, the same brain sample may yield different ratios of
mushroom, thin, and stubby spines, depending on the criteria
used to separate these classes from each other, meaning analyses
are often biased and poorly reproducible. An attempt to fit
the continuous distribution of spine shapes and sizes into
pre-defined and rigid categories can result in multiple sources
and potential errors. For example, thin andmushroom spines are
two classical spine subtypes that have a very similar shape and
the only critical parameter by which they can be distinguished
is the head size. The head size is proportional to the area
of PSD, the number of receptors at postsynapse, and synaptic
strength (Kharazia and Weinberg, 1999; Takumi et al., 1999;
Ganeshina et al., 2004; Arellano et al., 2007). On another
hand, the length and width of the spine neck are related
to the magnitude of postsynaptic potential (Tonnesen et al.,
2014). The morphology of synapses varies depending on the
strength of synaptic contact. Changes in synaptic strength during
long-term potentiation and long-term depression are associated,
respectively, with enlargement or shrinkage of the spine head
(Yuste and Bonhoeffer, 2001; Holtmaat and Svoboda, 2009).
During this process, it has been suggested that there is an
interconversion between the thin and mushroom spine at a given
synapse, however, it is not possible to subjectively define this
point because of the continuum of spine sizes and shapes.

An additional source of error is related to the structure
of the morphological data. Because imaging data are collected
across different neurons from primary cultures or animal species
of different sexes, it leads to the generation of a multi-level
data structure. Recently published research speculates that using
conventional statistical methods for working with such types
of data, may lead to the generation of erroneous conclusions,
and mixed-effects models have been proposed to correct this
(Paternoster et al., 2018).

NON-CLASSIFICATION APPROACHES TO
DENDRITIC SPINE SHAPES ANALYSIS

The analysis could be more precise and reliable by considering
a continuum of spine shapes and forms and there are potential
solutions for these classification problems. It has been proposed
that reliance on objectively defined morphological parameters,
rather than on classification into subjective shape-based groups,
may help to solve some of these problems (Mancuso et al., 2013).

One widely used non-classification approach is the direct
measurement of key morphological descriptors. A comparison
of classification and direct morphometric measurement accuracy
during dendritic spinemorphology assessment has demonstrated
that the second approach is much more sensitive (Ruszczycki

et al., 2012). However, the direct morphometric measurement
approach does not provide information about spine shape,
which is important for biological function. For example, the
measurement of spine head size works well for thin and
mushroom spines, where it is well correlated with synaptic
strength and PSD area (Kharazia and Weinberg, 1999; Takumi
et al., 1999; Ganeshina et al., 2004; Arellano et al., 2007), but in
filopodia and stubby type spines the head is not clearly defined
and therefore not a key parameter in defining its morphology.

A newly emerging approach is a clusterization of spines
according to similarities in their shape. This ‘‘clusterization’’
approach aims to automatically group spines into similar
structural classes based on selected algorithms and without
a priori input (Figure 1), meaning the results of clusterization
are defined by data structure. The spine is presented as
a set of values of parameters reflecting its morphology,
starting from obvious such as neck and head size to a more
complex geometrical parameters that may include a combination
of several measurements. The algorithm assesses similarities
between spines based on the value of selected parameters and
performs clusterization. In this approach principal component
analysis (PCA) is used to reduce data dimensionality before
clusterization (Figure 2).

The first practical implementation of the clustering approach
was published (Ghani et al., 2016) a few years after its initial
suggestion (Mancuso et al., 2013; Table 1). A histogram of
oriented gradients (HOG), disjunctive normal shape models
(DNSM),morphological features, intensity profile based features,
or their combination were used to quantitatively describe
dendritic spine shapes. HOG is a feature descriptor used in object
recognition and computer vision (Dalal and Triggs, 2005). The
input image is divided into small connected parts where gradient
direction is counted, visualized as an arrowhead, pointing at
discrete angle 0, 30, 60, 90, etc. Later these parts are combined
to a larger one and a histogram of obtained gradients is built that
describes the analyzed object. DNSM represent a shape as a union
of convex polytopes, which are constructed by intersections of
half-spaces (Mesadi et al., 2015). Intensity profile based features
are built after examination of intensities profile in the regions
where the dendritic spine neck is expected to be located (between
the head and a dendrite; Erdil et al., 2015). The analysis was
performed on 2D maximum intensity projections (Figure 3B)
from a 3D stack of two-photon microscopic images due to the
non-sufficient resolution along the z-axis. Processing of data was
generated with the help of morphological descriptors or their
combination by x-means, clustering algorithm results to generate
4 distinct dendritic spines clusters. In all cases at least one of these
clusters could not be clearly defined as mushroom, thin, or study
spines. Authors concluded that their findings support the idea of
existence of intermediate spine shapes. Later, the combination of
DNSM and HOG morphological features was used to perform
dendritic spine classification with help of a kernel density
estimation (KDE) based framework, which enabled analysis of
spine shape classes separability in the likelihood ratio space
(Ghani et al., 2017).

Another group published an unsupervised construction of the
spine shape taxonomy in the same year (Bokota et al., 2016;
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TABLE 1 | Summary of non-classification approaches to dendritic spines shapes analysis.

No Year Reference Sample Microscopy Spines form
representation
(Figure 3)

Preprocessing and
feature extraction
approach

Number of
features

Software
(+ provided,
− not provided)

Morphological features
analysis approach

Software
availability

1 2016 Ghani et al.
(2017)

7–10 day old
mouse brain
slices neurons
(region not
specified)

Two-photon 2D projection
from image
series

Histogram of oriented
gradients (HOG), disjunctive
normal shape models
(DNSM), morphological
features, intensity profile
based features or their
combination

Varying, from 12 for
morphological to
346 for DNSM
features

Custom (−) X-means clustering, number of
clusters selected automatically
using the Bayesian information
criterion (BIC; =4)

NA

2 2016 Bokota
et al. (2016)

19–21 days
in vitro
hippocampal
neurons

Confocal 2D projection
from image
series

The most often used
morphological features
according to literature data

11 (reduced to 6) Custom (−) C-means clustering (=10),
average-linkage hierarchical
clustering (=10), data
dimensionality reduction by 2D
principal component analysis
(PCA)

UR

3 2018 Luengo-
Sanchez
et al. (2018)

layer III
pyramidal
neurons of the
human
cingulate cortex

Confocal 3D triangular
surface mesh
Multiresolution
Reeb graph

Surface of a spine is
modeled by 7 segments,
which are presented as
linked to each other
ellipses. From 54
parameters used to
describe dendritic spines,
36 reflect ellipses geometry
and position and 18
describe more complex
features, such as spine
growth direction

54 Imaris for
segmentation ($),
custom software for
feature extraction
(+)

Clustering by probabilistic
model with Gaussian finite
mixtures, number of clusters
selected automatically using the
Bayesian information criterion
(BIC; =6)

FA

4 2019 Kashiwagi
et al. (2019)

18–22 days
in vitro
hippocampal
neurons

SIM 3D triangular
surface mesh

Segmentation of spines by
multilevel thresholding
based on Otsu’s method
following geodesic active
contour, combination of
morphological features and
high geometric features

10 (reduced to 5) Custom (+) Division into mushroom and
non-mushroom spines using
SVM classifier, mapping the
trajectories of individual spines
shape transitions in the feature
space, data dimensionality
reduction by 3D principal
component analysis (PCA)

FA

5 2019 Choi et al.
(2019)

18–22 days
in vitro
hippocampal
neurons

SIM 3D triangular
surface mesh

Processing as in No4 with
addition of 5 more features
reflecting spines head and
neck size

10 DXplorer (−) K-means clustering, coordinate
plot, radar plot and 2D scatter
plot with t-Distributed
Stochastic Neighbor
Embedding

NA

6 2019 Driscoll
et al. (2019)

CLARITY-
cleared mouse
brain neurons
(region not
specified)

LSM Machine-learning based
supervised spines detection

n/d u-shape3D
software (+)

Unsupervised hierarchical
clustering (=9), data
dimensionality deduction by 2D
principal component analysis
(PCA)

NA

Software availability—NA, not available; UR, available upon request; FA, freely available.
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FIGURE 2 | Application of principal component analysis (PCA) method to dendritic spine clusterization. Spine shape is characterized by a set of parameters (A).
PCA method is used to reduce data dimensionality before clusterization. Newly generated parameters called principal components composed from initial one and
form an orthonormal basis (B). After PCA dataset in new coordinates is subjected to clusterization (C). Cluster shape and content depend on the clusterization
method used (k-means, c-means, hierarchical, et cetera).

Table 1). As a first step in the analysis, 11 features that have
been most often used in previous publications were extracted
from 2D projections of confocal image stacks (Figure 3B).
Furthermore, the PCA method was applied to reduce the data
dimensionality. Two components were generated, representing a
linear combination of six features from 11 initially selected, while
five others were neglected due to their relative insignificance.
This provides a 2D (or 3D) orthogonal basis, where each spine
can be presented as a point at the intersection of corresponding
values of two generated components. In this research, dendritic
spines in the control group and after chemical LTP induction
were compared at two time points with 10 min difference. Only

300 pairs of dendritic spines with the closest meanings of selected
parameters were used for further analysis. The authors reasoned
that such dataset normalization was due to the initial high
diversity of the spine population. Clusterization was performed
for spines from both groups at two time points together
to build shape taxonomy. Two well-established algorithms,
c-means and average-linkage hierarchical representing crisp and
fuzzy types of clustering were used. In each case, 11 clusters
were formed, but their shape and content were different.
Clusters vary greatly from small peripheral to overcrowded,
while some clusters were well represented and separated from
each other.
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To analyze changes in dendritic spine morphology over
time, the authors generated a transition shape model, which
calculated the probability of dendritic spine transition from one
taxonomic unit to another, visually presented as a transition
graph. The statistical difference between the resulting models
for the control and cLTP groups were analyzed with bootstrap-
based statistical tests. The statistics depended only on the
changes of distribution, demonstrating the differences between
models build with c-means clustering, while models build
with hierarchical clustering showed significant difference with
statistics comparing the transition of spines between shapes.
No statistically relevant differences were found between models
when transitions between clusters were compared rather than the
whole model, probably because of the little number of analyzed
spines. The authors concluded that the clustering algorithm
greatly influences the result, and therefore should be selected
carefully, considering the properties of the data and experiment
design. This study is the only study published so far, where
different clustering algorithms were compared using the same
dataset. This study was also the first that compared the control
and experimental group of dendritic spines in terms of clusters.

More recently, spines from two 40 and 85 year old individuals,
layer III pyramidal neurons in the cingulate cortex reconstructed
in 3D were subjected to clusterization (Luengo-Sanchez et al.,
2018; Table 1). Before clusterization, detached or fragmented
spines, due to the diffraction limit of confocal microscopy spines,
were repaired by semi-supervised mesh processing algorithms,
while spines with extreme features were excluded from the
data set. To characterize the spines, the surface was divided
into regions according to a multiresolution Reeb graph. In
total, seven segments, which are presented as ellipses linked
to each other, were generated to mimic the geometry of a
spine, and their major geometrical aspects such as length, width,
size or curvature were used to generate 36 spines morphology
parameters (Figure 3C). In order to create a more precise
and sophisticated spine model with an additional 18 features,
such as spine growth direction, were also used. To get a more
in-depth insight into the nature of generated clusters the most
representative feature classification rules, based on the RIPPER
algorithm, were generated for each cluster, with each spine was
attributed to its most probable cluster. However, the authors
established that a single rule cannot be used to characterize all the
spines within a cluster, and suggested that each cluster should be
defined by one, two, or three observable features.

A cluster consisting of short stubby-like spines was the
most homogeneous example, while a cluster with long spines
with relatively big heads has the highest variability within a
cluster. Stubby-like spines were also clearly separated from
other spine classes (Bokota et al., 2016). The authors compared
the number of spines in each cluster for apical and basal
dendrites, and the dependence of spine shapes on distance from
the soma and age of subjects. Statistical analysis showed that
cluster distribution significantly differs for all investigated cases.
A more precise comparison revealed that only some clusters
have valuable differences depending on dendritic compartment,
age or combination of both, providing the new information
of the relationship between spine shape and function. Basal

dendrites displayed smaller stubby-like spines, while apical
dendrites have more relatively medium and large spines with
a distinct head. Individuals younger than 40 tended to have
more small spines, while those over 80 years had more big
spines. Since small spines are believed to be a «learning spines»,
serving as sites where new memories are generated, the authors
concluded, that younger subjects have more capabilities of
learning, which requires spine plasticity. In addition, the research
group evaluated an algorithm generating simulated spines for
each cluster using as a basis of 54 morphological features. This
simulation reveals the possibility of building a computational
model of a pyramidal neuron, which can be used to study
neuronal plasticity.

New horizons in the computational analyses of the
morphological features of dendritic spines have been created
by the application of high-resolution microscopy. Structural
illumination microscopy (SIM) enables precise visualization
of dendritic spines and measurements of their nanoscale
morphological features (Smith et al., 2014). Key morphological
descriptors measured on images obtained by SIM are comparable
in resolution to electron microscopy. At the same time, SIM
provides an ability to analyzemanymore spines than EM and can
also be applied to the analysis of live neurons. SIM microscopy is
also able to provide one more meaningful morphological feature,
a concave surface: the place where the synaptic junction is
thought to be formed. The dynamics of concave surface contacts
may define correspondingly dynamic, stable, and degrading
synaptic contacts, providing more insight into the potential link
between synaptic structure and function.

A method of measuring the nanoscale surface geometry
of synaptic spines from SIM images was recently developed
(Kashiwagi et al., 2019; Table 1). For the segmentation of
spines on SIM images, the combination of Otsu’s multi-level
thresholding algorithm with geodesic active contours showed the
best result. After that, a polygonal mesh was build basing on
spine voxel representation using the marching cube algorithm
(Figure 3D). Totally 10 morphological features were extracted
from 1,335 dendritic spines, including basic shape features such
as length or volume, and more complex parameters obtained
by discrete differential-geometry operators such as convex hull
volume and open angle. We noticed that the morphological
features of large spines could be also measured on neuronal
images obtained with high-resolution confocal microscopy with
narrow confocal aperture (0.5 AU). Further processing with
PCA led to the generation of three components composed of
five morphological features (length, volume, convex hull ratio,
coefficient of variation in distance, and open angle) covering 93%
of data variance.

When analyzing the shapes of spines distributed in 3D feature
space, the authors noticed that spines exhibited a continuum
of morphologies, supporting the idea that the classification
into thin, mushroom, or stubby spines does not reflect the
presence of discrete subclasses. The authors also noted that
spines with a clearly identifiable head are located close to
each other. An SVM classifier with a nonlinear kernel trained
on the manually labeled dataset was used to divide spines
into mushroom-shaped and non-mushroom. Analysis of spine
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FIGURE 3 | Methods of spines segmentation. To assess numerical values of parameters describing spines shape (A) it is necessary to define object boundary. In
2D projection, spines are presented as flat objects (B; Ghani et al., 2016; Bokota et al., 2016). In 3D it was proposed to present the spine surface as a set of ellipses
along the spine centerline that are connected (C; Luengo-Sanchez et al., 2018; Choi et al., 2019) or a triangle mesh (D; Kashiwagi et al., 2019). Such a presentation
enables us to extract more complex parameters reflecting the constructed model of the spine.

shapes in a kinase-dead allele of Ca2+/calmodulin-dependent
protein kinase IIα (CaMKIIαK42R/K42R) knock-in mouse was
performed using this approach and it was discovered that the
mushroom shaped spines have reduced volume in mutant mice
when compared to the control. In contrast, the volume was
not changed in non-mushroom spines but their length was
significantly elevated in mutant mice samples.

The data obtained during longitudinal SIM imaging of
dendritic spine dynamics in vivo were also analyzed by the
clustering approach. A trajectory was built in 3D feature
space, reflecting the changes of spine shape from these data.
Interestingly, spines in different parts of feature space showed
different patterns of behavior, which enable us to divide them
into three groups. The first group predominantly consists
of small mushroom spines having short trajectories without
an orientation preference, the second group consists of large
mushroom spines that moved bidirectionally along the axis,
corresponding to medium/thin and large/round shape features,
and the third group was composed of non-mushroom spines
with highly variable trajectories. The authors concluded that
these three groups of spines overlapped in the feature space,
and their distribution did not support the existence of distinct
shape classes.

In 2019 a new software DXplorer was developed. It
enables interactive three-dimensional analysis of dendritic
spines morphology (Choi et al., 2019; Table 1). In DXplorer
3D rendering of spines displayed together with the parallel
coordinate plot, radar plot, and 2D scatter plot with t-Distributed
Stochastic Neighbor Embedding generated in agreement with
their high dimensional features. This work is an extension of
earlier work (Kashiwagi et al., 2019) and similar methods for
the preparation of samples and data acquisition were used
in both studies. The authors noticed that using only five
morphological features (Kashiwagi et al., 2019) is not enough
to distinguish all spines, especially the spines that belong to
different types, because spine head and neck dimensions are
not included. For example, these features have very close

values for some mushroom and stubby spines, and therefore
it is impossible to discriminate between them. To overcome
this issue five more parameters were added: maximum head
diameter (hMax), minimum head diameter (hMin), maximum
neck diameter (nMax), minimum neck diameter (nMin), and
HNR, which is the ratio of head to the neck (hMax/nMax).
To find similar 3D phenotypes, users can group spines with
similar shapes through interactive selection using the feature
and similarity plot. In addition, the similarity plot panel can
be used to divide the spines using the k-means clustering
algorithm into a certain number of clusters, which are larger than
groups formed in 2D feature space using t-Distributed Stochastic
Neighbor Embeddingmethod. Analysis of classification accuracy
in 2D by rendering the classified spines in 3D by expert
neuroscientists showed that 2D image-based classification had
an error rate of 44.27% in identifying spines shapes. The
errors occurred most often when stubby spines were labeled
as thin spines in 2D projection. This experiment demonstrated
that 2D image-based classification has a very high error rate,
and therefore analysis in 3D is required to characterize spine
shapes correctly.

The application of light sheet microscopy (LSM) enables the
collection of morphological information from an intact brain
or a large portion of it without physical separation. In a recent
application of this technology, a cleared-tissue axially swept
light-sheet microscopy (ctASLM; Chakraborty et al., 2019) was
used to collect imaging data using mouse brain precleared with
PEGASOS method. The dendritic protrusions on these images
were analyzed with u-shape3D free available software (Driscoll
et al., 2019). As a result, nine dendritic spine clusters with
similar shapes were generated after unsupervised hierarchical
clustering based on morphological measures, such as the ratio of
the spine neck area to the spine surface area. The distribution
of obtained classes is shown in the 2D feature space generated
by PCA. The development of spine clusterization approaches
based on LSM data is a very promising future direction of
this research.
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CONCLUDING REMARKS

The examples discussed above support the conclusion that the
dendritic spine clusterization approach reflects a continuum
of spine shapes and sizes much better than classification
into predefined groups. The application of the clusterization
approach enables more precise analysis and reveals qualitatively
new information about synaptic spines. All of the groups
discussed above concluded that continuous morphological
variables rather than pre-defined spine classes should be used
to describe spines morphologies. The clustering approach aims
to identify and group objects with similar shapes, with different
shape classes determined by the structure of the data. Different
clustering algorithms give different results on the same dataset, so
clusters vary in shape and content, which may greatly influence
the interpretation of these data. Future research will be needed
to compare existing methods and identify optimal approaches
to clusterization (Table 1). These algorithms should offer
maximal discrimination of clusters that facilitate subsequent
analysis and identification of the differences between control and
experimental groups. It is also possible that a new and superior
clusterization algorithm will be developed for this purpose in
the future.

As discussed above, there is no consensus on which
spine shape descriptors should be used as input for the
clusterization procedure. Taking into account the results of the
approaches discussed here, we propose that this set of parameters
should include not only obvious morphological metrics such
as spine head diameter, spine area, and volume but also
complex geometrical features that enable a more sophisticated
description of complex dendritic spines shapes. Proper statistical
procedures for comparing clustered spine data from control and
experimental groups need to be developed in the future.

Another important issue is the biological interpretation
of clusterization data. In the classification approach putative
biological functions of ‘‘mushroom,’’ ‘‘thin,’’ and ‘‘stubby’’ spines
have been extensively discussed. Further research will be needed
to relate the complex shapes of a particular cluster of spines to its
physiological role.

Despite all these challenges, this emerging approach to the
analysis of dendritic spine shapes opens a new and powerful
trend in neuroscience research. The availability of high quality,
free, and robust software is critical for these ideas to become
reality. Once developed, such tools will greatly facilitate the
investigation of dendritic spines, including function, structure,
plasticity, and pathology. Providing datasets, distributives, and
source code by developers is an essential step to speed up
this process and to open the way to further improvement and
adaptation of these methods.
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