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1  | INTRODUC TION

Parental genetic similarity often reduces offspring fitness, prob‐
ably because homozygosity leads to the expression of recessive 
deleterious alleles (Bensch, Hasselquist, & Schantz, 1994; Billing 
et al., 2012; Charlesworth & Charlesworth, 1987; Keller & Waller, 
2002; Kempenaers, Adriaensen, Noordwijk, & Dhondt, 1996). There 
is accumulating evidence that reproductive success of mates be‐
comes lower as their genetic similarity increases (reviewed in Keller 
& Waller, 2002; Spottiswoode & Møller, 2004; Amos et al., 2001; 
Wright, Tregenza, & Hosken, 2008). Specifically, in birds elevated 
parental genetic similarity is related to decreased hatchability (re‐
viewed in Spottiswoode & Møller, 2004). However, little is known 

about effects of increased parental genetic similarity on posthatch‐
ing development. The results of existing studies are equivocal. For 
example, studies on passerine birds found no effects of genetic 
similarity on fledgling survival (Kempenaers et al., 1996; Kleven, 
Jacobsen, Robertson, & Lifjeld, 2005; Krokene & Lifjeld, 2000; 
Schmoll et al., 2005). Similarly, in the house sparrow (Passer domes‐
ticus) there was no relationship between the parental genetic simi‐
larity and nestling body weight or immunocompetence (Edly‐Wright, 
Schwagmeyer, Parker, & Mock, 2007). In contrast, Freeman‐Gallant, 
Wheelwright, Meiklejohn, and Sollecito (2006) showed that the 
fledging weight and growth rates of sons decreased substantially 
with increasing genetic similarity of the parent mates, but only in one 
of the two studied breeding seasons. Moreover, in great tits (Parus 

 

Received:	22	April	2019  |  Revised:	15	May	2019  |  Accepted:	19	May	2019
DOI: 10.1002/ece3.5367  

O R I G I N A L  R E S E A R C H

Parental genetic similarity and offspring performance in blue 
tits in relation to brood size manipulation

Aneta Arct1  |   Szymon M. Drobniak1 |   Samantha Mellinger1 |   Lars Gustafsson2 |   
Mariusz Cichoń1

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Institute of Environmental 
Sciences, Jagiellonian University, Kraków, 
Poland
2Department of Animal Ecology/Ecology 
and Genetics, Evolutionary Biology 
Centre, Uppsala University, Uppsala, 
Sweden

Correspondence
Aneta Arct, Institute of Environmental 
Sciences, Jagiellonian University, 
Gronostajowa 7, 30‐387 Kraków, Poland.
Email: aneta.arct@uj.edu.pl

Funding information
National Science Centre, Grant/Award 
Number: DEC2013/09/B/NZ8/03322 and 
UMO‐2015/18/E/NZ8/00505

Abstract
In birds, as in many other taxa, higher genetic similarity of mates has long been known 
to reduce offspring fitness. To date, the majority of avian studies have focused on 
examination whether the genetic similarity of social mates predicts hatching suc‐
cess. Yet, increased genetic similarity of mates may also reduce offspring fitness 
during later life stages, including the nestling period and beyond. Here, we inves‐
tigated whether parental genetic similarity influences offspring performance using 
data from free‐living blue tits (Cyanistes caeruleus) collected across three breeding 
seasons. Additionally, we tested whether brood size manipulation affects the mag‐
nitude and direction of the relationship between genetic similarity of mates and off‐
spring performance. Sixteen microsatellite markers were used to measure genetic 
similarity between biological parents. We found that the genetic similarity of parents 
negatively affects offspring immune response and this effect was independent of the 
experimental brood size manipulation.
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major) parental genetic similarity reduced fledging success, although 
only late in the season, when environmental conditions are likely to 
be harsh (van de Casteele, Galbusera, Schenck, & Matthysen, 2003).

The available evidence, therefore, suggests that the relationship 
between genetic similarity and offspring fitness is detected and/or 
more pronounced under harsher environmental conditions and may 
be nonsignificant under favorable conditions. Indeed, Keller, Grant, 
Grant, and Petren (2002) found negative effects of mating between 
close relatives in Darwin's finches only under nutritional constraints.

Furthermore, there is evidence that environmental conditions 
may strengthen the relationship between heterozygosity and fit‐
ness, with stronger correlations arising under poor environmental 
conditions (Ferrer, García‐Navas, Sanz, & Ortego, 2016; Forcada 
& Hoffman, 2014; Voegeli, Saladin, Wegmann, & Richner, 2012). 
However, to our knowledge no experimental research has addressed 
this question.

Here, we investigate the relationships between genetic similarity 
of parents and offspring performance in the blue tit (Cyanistes caeru‐
leus). Specifically, we investigated whether genetic similarity within 
the pair influences offspring quality in terms of body weight, tarsus 
length, and immunocompetence. We expected to see negative ef‐
fects of parental genetic similarity on these three measured traits. 
If the relationship between genetic similarity of mates and offspring 
quality and its magnitude depend on environmental conditions, one 
can expect a significant interaction between parental genetic simi‐
larity and environmental conditions. We therefore manipulated the 
brood size to alter conditions of nestling growth, and we expected to 
see a negative relationship between genetic similarity of mates and 
nestling quality that will be particularly pronounced among offspring 
from experimentally enlarged broods.

2  | METHODS

2.1 | Study site and experimental procedure

Our	study	was	carried	out	on	Gotland,	Sweden	(57°03′N,	18°17′E),	
during April–June, from 2009 to 2011. Adult birds were caught 
while feeding nestlings (May–June), using nest‐box traps or mist 
nets. Birds were bled by brachial venepuncture for genetic analyses. 
All nestlings were weighed on days 2 and 14 prior to the blood sam‐
pling and on days 11 through 12 as a part of the immune response 
assay. Additionally, on day 14 after hatching, nestlings were meas‐
ured for tarsus length and ringed. To assess nestling T‐cell‐mediated 
immune response, on day 11 posthatching nestlings were injected 
with a nonpathogenic antigen, phytohemagglutinin (PHA) into their 
right wing web, and 24 hr later, the thickness of the wing web was 
measured with a pressure‐sensitive calliper (see details in Drobniak 
et	al.	(2010)	and	Arct,	Drobniak,	Podmokła,	Gustafson,	and	Cichoń	
(2013), Arct et al. (2017)). The measurements were taken by a sin‐
gle person and were highly repeatable (r = 0.92, F461,924 = 36.1, 
p < 0.0001). The mean value of the three repeats was used in fur‐
ther analyses.

Here, we analyzed data on blue tits subjected to a brood size 
manipulation treatment, which is known to alter conditions of nest‐
ling growth and has a negative effect on various nestling character‐
istics	 (Cichoń	&	Dubiec,	 2005;	 Neuenschwander,	 Brinkhof,	 Kolliker,	
& Richner, 2003). The following treatment description takes into ac‐
count the cross‐fostering experiment that was performed on all nests 
by exchanging halves of broods between nests and performed in an‐
other study (for details see Drobniak et al., 2010). Half of the nestlings 
were exchanged between control and experimental nests. Briefly, on 
the second day after hatching, we matched pairs of broods accord‐
ing to the same hatching date and similar brood size (±1 chick) (in 
year 2009:16 pairs, 2010:15 pairs and 2011:19 pairs of broods). One 
randomly chosen brood in each pair was subjected to brood size ma‐
nipulation—enlargement by three nestlings coming from donor nests 
(ca. 30% increase in brood size), while the second brood was left un‐
manipulated, constituting the control group. Donor nests and donor 
nestlings were not included in further analyses. The birds were caught 
and manipulated under a ringing license from the Swedish Ringing 
Office (Stockholm Museum of Natural History), in accordance with the 
Swedish guidelines for work on natural populations.

2.2 | Genetic analysis

Sexing of nestlings was performed by using the P2–P8 primers 
(Griffiths, Double, Orr, & Dawson, 1998) that amplify the sex‐spe‐
cific CHD locus. Parentage was assigned by genotyping adults and 
chicks at 5–15 microsatellite loci, as described in the study by Arct 
et al. (2013) and Arct et al. (2017). In total, 30 out of 72 broods con‐
tained at least one extra‐pair young (EPY) and 55 out of 716 offspring 
were identified as EPY. We genotyped all adult birds (N = 238, 143 
males and 140 females) using a panel of sixteen autosomal micros‐
atellite markers: Ase18; PmaTGA45; PmaGAn40; PmaGAn27; PCA7; 
PCA4; PCA9; Pocc6; PMAC25; Mcyl4; PK12; Cdi31; PCA3; Pma303; 
Pocc1; and Pca8. The PCRs were performed with the Qiagen multiplex 
PCR kit (Qiagen AG, Hombrechtikon, Switzerland) as described in the 
study of Olano‐Marin et al. (2010). In our study, we used only neutral 
microsatellite markers (sensu Olano‐Marin, Mueller, & Kempenaers, 
2011a, 2011b). We calculated the relatedness within a breeding pair 
using the R package DEMERELATE (Kraemer & Gerlach, 2013) and 
used the Wang estimator (2002) as a measure of genetic similarity 
of	the	pair	members.	This	estimator	ranges	from	−1	to	1,	with	nega‐
tive values indicating that individuals share fewer alleles than average 
(Thuman & Griffith, 2005). We estimated the heterozygosity–het‐
erozygosity correlations (HHC, Balloux, Amos, and Coulson (2004)) 
coefficient (r) and the 95% confidence intervals using the inbreed R 
package for R (Stoffel et al., 2016). We also calculated the parameter 
g2 as a measure of identity disequilibrium. There was no indication for 
inbreeding in our population: HHC and g2 for the markers were not 
significantly different from zero (i.e., 95% quantiles crossed zero) [all 
markers: rHHC	=	0.00,	95%	CI	=	−0.098	to	0.094	 (1,000	randomiza‐
tions); g2	=	0.0007,	95%	CI	=	−0.002	to	0.0009,	p = 0.73 (based on 
100 permutations)].
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TA B L E  1   Linear mixed model analyses (LMMs) of the body mass on day 14 (g), tarsus length (mm), and T‐cell‐mediated immune response 
to PHA

Body mass on day 14, N = 377

Fixed effects Estimate SE df t p

Intercept 11.03 0.24 2.59 46.87 <0.001

Parental genetic similarity 0.88 1.02 49.83 0.87 0.389

Experimental treatment −0.37 0.13 46.8 −2.8 0.007

Sex 0.52 0.09 340.07 5.71 <0.001

Random effects Variance SD

Nest of rearing 0.167 0.41

Nest of origin 0.218 0.47

Year of study 0.108 0.33

Residual 0.67 0.82

R2(m) 8.50%  

R2(c) 47.31%  

Tarsus length on day 14, N = 377

Fixed effects Estimate SE df t p

Intercept 16.31 0.16 2.68 101.33 <0.001

Parental genetic similarity 0.6 0.64 46.81 0.937 0.354

Experimental treatment −0.1 0.08 44.54 −1.223 0.228

Sex 0.36 0.05 332.35 6.81 <0.001

Random effects Variance SD

Nest of rearing 0.076 0.28

Nest of origin 0.086 0.29

Year of study 0.055 0.23

Residual 0.22 0.47

R2(m) 8.51%  

R2(c) 53.93%  

PHA immune response, N = 351

Fixed effects Estimate SE df t p

Intercept 12.56 9.19 194.68 1.37 0.173

Parental genetic similarity −26.73 11.85 38.34 −2.26 0.030

Experimental treatment −2.44 2.01 53.36 −1.22 0.229

Sex −0.64 1.74 343.4 −0.36 0.715

Body mass on day 12 3.97 0.85 193.69 4.65 <0.001

Random effects Variance SD

Nest of rearing 12.02 3.47

Nest of origin 15.93 3.99

Year of study 0.00 0.00

Residual 231.17 15.20

R2(m) 11.39%  

R2(c) 20.89%  

Nest of rearing, nest of origin, and the year of study were included as higher‐level random effects. Parental genetic similarity was entered as a covari‐
ate; experimental treatment (experimental nests/control nests) and offspring sex (female/male) were defined as fixed factors. In the analysis of the T‐
cell‐mediated immune response, we used the body mass on day 12 (when the immune response was measured) as a covariate. We present two types 
of R2—marginal R2(m) and conditional R2(c) for both LMMs.
Bold indicates significant effects (p > 0.05).	
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2.3 | Statistical analysis

We used a linear mixed model (LMM) in R (R Development Core 
Team, 2014) with the add‐on R package lme4 (Bates, Maechler, 
Bolker, & Walker, 2014) to test for the effects of genetic similarity 
of biological parents on body mass on day 14, tarsus length, and 
the T‐cell‐mediated immune response to PHA. All the models in‐
cluded offspring sex and experimental treatment as fixed categor‐
ical variables. The genetic similarity between biological partners 
was entered as a covariate. Year of study, box of origin, and box 
of rearing were included as random factors. During data analysis, 
we first introduced a random effect of “pair ID” to control for the 
fact that nests were paired in cross‐fostering blocks according to 
hatching date and brood size. The variance of this parameter was 
virtually 0, and therefore, the term was culled as redundant, allow‐
ing model simplification. We tested only one interaction (paren‐
tal genetic similarity × treatment), because we had clear a priori 
predictions. The interaction between parental genetic similarity 
and experimental treatment turned out nonsignificant (p	>	0.05)	
for all the measured traits and was thus deleted from the final 
model (Table S1), which allow us to interpreted main results (e.g., 
Schielzeth, 2010).

In the analysis of the T‐cell‐mediated immune response, we 
used the body mass on day 12 (when the immune response was 
measured) as a covariate. The data met the assumptions of a linear 
mixed model (which we judged visually using model residuals). We 
used the “MuMIn” package in R to estimate the coefficient R2 from 
the	mixed	models	 (Bartoń,	2009;	Nakagawa	&	Schielzeth,	2013).	
Sample sizes differed between the analyses of body mass/ tarsus 
length on day 14 and analysis of immunocompetence, as measure‐
ments of the PHA immune response were not available for all the 
nestlings. In the final analyses, we removed extra‐pair nestlings, 
thus eliminating the potentially confounding effect of an extra‐
pair sire genetic contribution to nestling performance. Inclusion 
of these extra‐pair young in analyses did not change the results 
(Table S2). We confirm that the total number of excluded obser‐
vations and the reasons for making these exclusions have been 
reported in the Method section.

3  | RESULTS

The interaction between parental genetic similarity and experimen‐
tal treatment appeared nonsignificant for all measured traits (Table 
S1) and was thus deleted from the final model.

We found a significant negative correlation between T‐cell‐me‐
diated immune response to PHA and parental genetic similarity 
(Table 1, Figure 1). There were no effects of parental genetic simi‐
larity on body mass and tarsus length on day 14. Experimental treat‐
ment significantly affected the body mass of nestlings (means ± SD: 
control nests 11.25 ± 0.86 g; experimental nests 10.84 ± 1.14 g 
(Table 1) but had no significant effect on PHA immune response and 
tarsus length.

4  | DISCUSSION

In this study, we investigated the effect of brood size manipulation 
treatment on the relationship between genetic similarity and off‐
spring performance. To our knowledge, the effect of environmental 
condition on the relationship between parental genetic similarity and 
offspring performance has never been experimentally investigated. 
However, we failed to find any evidence that the brood size manipu‐
lation experiment affects the relationship between genetic similar‐
ity and offspring performance. There is accumulating evidence that 
brood size manipulation has an effect on nestling immunocompe‐
tence and body condition (Horak, Tegelmann, Ots, & Moller, 1999; 
Sanz & Tinbergen, 1999). It is probable that brood enlargement cre‐
ates a competitive environment for the offspring. Here, we showed 
that enlargement of the brood size affected nestling body mass on day 
14. However, in the case of PHA immune response and tarsus length, 
we observed only a trend that offspring from experimental nests had 
lower immunocompetence and shorter tarsi. Such discrepancy may 
be a result of a relatively small sample size. This obviously reduces the 
power to find a significant interaction between experimental treat‐
ment and parental genetic similarity. Our previous studies on blue tits 
also did not support the idea that heterozygosity–fitness correlations 
become stronger under stressful conditions than under optimal con‐
ditions (Arct et al., 2017). This does not, however, exclude the pos‐
sibility that other environmental factors, such as parasite prevalence, 
food availability, or harsh weather conditions, might strengthen the 
association between parental genetic similarity and offspring fitness.

Here, we showed that genetic similarity between pair members 
had a significant effect on offspring immunocompetence in blue 
tits. Specifically, in line with our prediction, we found a negative 

F I G U R E  1   Nestling T‐cell‐mediated immune response to PHA in 
relation to parental genetic similarity. The graph shows the best‐fit 
regression line for the mean of the width variable. See the Methods 
section for details on statistics
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relationship between parental genetic similarity and offspring PHA 
immune response (Figure 1). Similar to the previous study on great 
tits (P. major) (van de Casteele et al., 2003), we showed that the ef‐
fect of parental genetic similarity on offspring fitness‐related traits is 
not limited to embryonic stage but may also be important at later life 
stages. The ability to mount a strong immune response to pathogens 
was found to play an important role in determining individual sur‐
vival	prospects	(Cichoń	&	Dubiec,	2005).	Indeed,	immune	response	
was positively related to the probability of survival in nestlings 
(Cichoń	&	Dubiec,	2005)	as	well	as	adult	birds	(Gonzalez	et	al.,	1999;	
Saino, Calza, & Møller, 1997), and the genetic variability in immune 
response to pathogens in natural populations is well documented 
(Cichoń,	Sendecka,	&	Gustafsson,	2006;	Drobniak	et	al.,	2010;	Saino	
et al., 1997). Thus, our study suggests that high parental genetic sim‐
ilarity may have potentially detrimental fitness consequences in blue 
tits. Previous studies on house sparrows (P. domesticus) (Edly‐Wright 
et al., 2007) failed to find a relationship between parental genetic 
similarity and offspring PHA immune response. It is possible that 
Edly‐Wright et al. (2007) did not detect such a relationship because 
in their genetic similarity assessment they used band sharing coeffi‐
cients of DNA fingerprints. Griffith and Montgomerie (2003) raised 
doubts as to whether band sharing coefficients based on multi‐locus 
DNA fingerprints allow reliable evaluation of the genetic similarity 
between mates, because coefficients for different pairs of individu‐
als of given relatedness show considerable random variation.

In our study, the negative relationship between parental genetic 
similarity and offspring fitness‐related traits was visible only in the im‐
mune response. Similarly, in our previous study on blue tits we found 
that the immune response of extra‐pair young to phytohemaggluti‐
nin was stronger than that of within‐pair half‐sibs, but at the same 
time the superior quality of EPY was not confirmed in terms of body 
mass and tarsus length. This could theoretically be due to a causal 
relationship between the individual level of genetic diversity and the 
PHA immune response (Fossøy, Johnsen, & Lifjeld, 2008). However, a 
correlation between the PHA immune response and individual level 
of heterozygosity was not supported in our previous studies on the 
same population of blue tits (Arct et al., 2017). In contrast, we found 
a positive relationship between individual heterozygosity and body 
mass of female nestlings 14 days posthatching. Thus, the observed 
relationship between parental genetic similarity and offspring immu‐
nocompetence may potentially be explained not only through genetic 
effects but also by maternal effects. Indeed, there is evidence that fe‐
males may adjust their reproductive investment in response to the ge‐
netic similarity of their partners (Arct, Rutkowska, Martyka, Drobniak, 
&	Cichoń,	2010).	For	example,	differences	in	offspring	performance	
may result from nongenetic maternal effects (Martyka, Rutkowska, 
&	Cichoń,	2011).	However,	 from	our	 correlational	 study	we	cannot	
draw conclusions about which mechanism could explain the observed 
relationship between parental genetic similarity and offspring immu‐
nocompetence. It cannot be excluded that both genetic and maternal 
effects might interact together in this case.

In conclusion, this is one of a few studies on natural populations 
of birds showing negative effects of genetic similarity between pair 

members on offspring performance. More importantly, our data 
indicate that the effects of parental genetic similarity on offspring 
performance‐related traits are not limited to embryonic stage but 
are also important during later life stages. However, we failed to find 
any evidence that experimentally altered environmental conditions 
affect the relationship between parental genetic similarity and off‐
spring fitness. Detailed studies are still needed to further test under 
which environmental conditions we may expect the relationship be‐
tween the genetic similarity of mates and offspring fitness to vary.
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