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Abstract Fine particulate matter 2.5 (PM2.5) is a widely studied pollutant with substantial health impacts,
yet little is known about the urban‐rural differences across the United States. Trends of PM2.5 in urban and rural
census tracts between 2010 and 2019 were assessed alongside sociodemographic characteristics including race/
ethnicity, poverty, and age. For 2010, we identified 13,474 rural tracts and 59,065 urban tracts. In 2019, 13,462
were rural and 59,055 urban. Urban tracts had significantly higher PM2.5 concentrations than rural tracts during
this period. Levels of PM2.5 were lower in rural tracts compared to urban and fell more rapidly in rural than
urban. Rural tract annual means for 2010 and 2019 were 8.51 [2.24] μg/m3 and 6.41 [1.29] μg/m3, respectively.
Urban tract annual means for 2010 and 2019 were 9.56 [2.04] μg/m3 and 7.51 [1.40] μg/m3, respectively. Rural
and urban majority Black communities had significantly higher PM2.5 pollution levels (10.19 [1.64] μg/m3 and
9.79 [1.10] μg/m3 respectively), in 2010. In 2019, they were: 7.75 [1.1] μg/m3 and 7.09 [0.78] μg/m3,
respectively. Majority Hispanic communities had higher PM2.5 levels and were the highest urban concentration
among all races/ethnicities (8.01 [1.73] μg/m3), however they were not the highest rural concentration among all
races/ethnicities (6.22 [1.60] μg/m3) in 2019. Associations with higher levels of PM2.5 were found with
communities in the poorest quartile and with higher proportions of residents age<15 years old. These findings
suggest greater protections for those disproportionately exposed to PM2.5 are needed, such as, increasing the
availability of low‐cost air quality monitors.

Plain Language Summary PM2.5 is a well‐known air pollutant that impacts human health. However,
little is known about how it differs between urban and rural areas in the United States (U.S). This study
investigated these differences between 2010 and 2019 at a level that had not been assessed before across the
United States. Rural areas generally had lower PM2.5 levels compared to urban areas and the pollution decreased
faster in rural areas during this time. Both rural and urban areas with higher proportions of residents that are
Black, Hispanic, and in poverty had higher PM2.5 levels. There were no consistent patterns between the age
distribution of urban or rural census tracts and PM2.5 levels.

1. Introduction
1.1. PM2.5 and Public Health

Fine particulate matter, also known as Particulate Matter 2.5, or PM2.5, is made of inhalable products measured at
2.5 μm or smaller. This is a size‐based definition alone and does not pertain to its chemical makeup. PM2.5 is an air
pollutant consisting of particles that can penetrate deep into the lungs and even into the bloodstream, and is
associated with serious health problems (Particle Pollution|Air|CDC, 2023). Particulate matter results from
emissions from power plants, industrial sites, cars/vehicles, wildfires, sources linked to agriculture and con-
struction, among others (Tucker, 2000). Exposure to PM2.5 has been linked to a wide range of adverse health
outcomes, including respiratory and cardiovascular diseases (Chalbot et al., 2014; Xi et al., 2022), stroke (Bai
et al., 2022), adverse birth outcomes (Payne‐Sturges et al., 2022), and even premature death (Chalbot et al., 2014).
Specifically, it is estimated that 100,000 to 200,000 excess deaths occur annually in the United States are
associated with air pollution exposures (Burnett et al., 2018). Despite the well‐documented health risks by PM2.5,
according to the American Lung Association (ALA), 119.6 million of United States residents (almost 36%) are
exposed to levels of PM2.5 or ozone on a daily basis that are deemed unhealthy and score a failing grade on the
ALA's State of the Air Report (American Lung Association, 2023). Currently, the United States Environmental
Protection Agency (EPA) defines the primary standard for PM2.5 at 9.0 μg/m3 (annual average) and 24‐hr
standard at a level of 35 μg/m3. As a result of state and federal regulations and technological advancements to
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limit PM2.5 emissions and subsequent exposure (e.g., smokestack scrubbers, idle‐reduction technology, preva-
lence of gas‐electric hybrid vehicles, etc.) (US EPA, 2015), ambient air quality has improved significantly in the
past three decades (Lim et al., 2020). However, the extent to which PM2.5 exposures vary across location and time
remains uncertain.

1.2. Rural‐Urban Disparities in PM2.5‐Related Health Outcomes

Few studies have examined variation in PM2.5 by urban‐rural location, with many studies conducted in urban
areas and few in rural areas (Garcia et al., 2016). Factors such as local industries, land use patterns, and population
mobility differ between urban and rural settings (US EPA, 2017). In rural areas, PM2.5 has been found to be
associated with all‐cause mortality, while there were only mild associations with urban areas (Garcia et al., 2016).
Understanding the specific dynamics of PM2.5 pollution in rural and urban United States is essential for tailoring
effective mitigation strategies and policies to address the unique challenges faced by each community.

1.3. Rural‐Urban PM2.5 Statistics and Potential Factors for Differences

Land use patterns and socioeconomic factors significantly influence PM2.5 exposure types across rural‐urban
areas, where the rural poor appear to be disproportionately burdened (Hendryx et al., 2010; Rogalsky
et al., 2014). Typically referred to as household air pollution (HAP), rural PM2.5 exposure in low and middle
income countries has traditionally been linked to biomass burning for cooking and heating (Siddharthan
et al., 2018). Similarly, PM2.5 exposures in rural areas in the United States have been linked to wood and coal
burning for residential heating (Rogalsky et al., 2014). Hendryx et al. (2010) found that rural areas contain fewer
sources of air pollution such as power plants per county compared to urban areas, however they still contain
thousands of both air and water pollution sources. For example, they observed 931 fossil fuel burning sites in the
U.S, 16,574 Toxic Release Inventory sites, 14,276 Aerometric Information Retrieval System sites, and 34,214
Permit Compliance System sites, totaling 65,055 EPA‐designated pollution sites in the rural context. Additional
sources of PM2.5 in the rural United States are linked to ambient sources, including coal mining and agricultural
production (Hendryx et al., 2010). As mentioned above, PM2.5 sources in the urban context are often linked to
fossil fuel combustion from power generation, industry, and transportation‐related sources (Cohen et al., 2004)
and have received significant attention in the literature.

The current study investigated the ambient air concentrations of PM2.5 at the census tract level from 2010 through
2019 across the United States The focus of this study was to assess rural and urban differences and trends with
ambient PM2.5 during this period and to compare these by community sociodemographic characteristics. This
study will fill the evidence gap on the national urban‐rural and community‐level air quality differences and trends
in concentration. Recent advances in modeled data for PM2.5 enabled this study, providing valid PM2.5 estimates
at a meaningful geographic granularity (Hammer et al., 2020; van Donkelaar et al., 2019).

2. Methods
2.1. Data Sources

The data used was sourced from the Agency for Healthcare Research and Quality (AHRQ)'s database on Social
Determinants of Health (SDOH) (Agency for Healthcare Research and Quality, Rockville, MD, 2023), created
from multiple data sources from various domains as a means to facilitate health research and analysis. The
specific SDOH database columns and their respective descriptions utilized for the analysis and mapping are listed
in the Supplemental Information, Table 1. Additionally, estimates for census tract levels of PM2.5 were accessed
from the AHRQ SDOH Database, using the Washington University Saint Louis—Atmospheric Composition
Analysis Group's (WUSTL) modeled estimates of PM2.5 (Hammer et al., 2020; van Donkelaar et al., 2019).

2.2. Measurement

Annual mean concentrations of PM2.5 for each census tract in the contiguous United States from 2010 to 2019
were downloaded from the AHRQ database. The focus of our study was air quality surveillance in urban and rural
areas, which was determined based on census tracts. The levels of rurality were established using the United
States Department of Agriculture's 2010 Rural‐Urban Commuting Area (RUCA) codes. For the purposes of this
investigation, RUCA codes were categorized into two groups: urban (RUCA 1–3: various types metropolitan
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areas) and rural (RUCA 4–10: various types of micropolitan, small town, and rural areas). Each census tract was
coded according to its RUCA allocation. The covariates used included race/ethnicity, poverty level, age groups,
and a variable combining socially disadvantaged population segments (defined below).

2.3. Analysis

PM2.5 concentrations in urban versus rural census tracts were compared for each year from 2010 to 2019 using t‐
tests. Trends in PM2.5 concentrations between 2010 and 2019 in urban versus rural areas were assessed with a
Bayesian spatial model. This model assumes that conditional on the model parameters, the PM2.5 concentration in
tract s and year t independently follow a normal distribution with mean

μst = β0 + β1rs + β2t + β3rst + ϕs

and variance σ2. Equivalently, the PM2.5 concentration in tract s and year t, yst = μst + ϵst, where the ϵst terms
independently follow a normal (0, σ2) distribution. Here￼, where S is the number of census tracts and t = 2010,
2011,…,2019. Here rs is equal to 1 if tract s is rural and

ϕ = (ϕ1, ϕ2,…, ϕS)′

Table 1
Variations in PM2.5 Concentration (μg/m

3) by Community Characteristics in Urban and Rural Census Tracts, 2010 and 2019

2010 2019 Annual change from 2010 to 2019

Community characteristics Urban Rural Urban Rural Urban Rural P values for differential trends

Number of Census Tracts 59,065 13,474 59,055 13,462

Annual mean (SD) of
PM2.5 concentration

(μg/m3)

Annual mean (SD) of
PM2.5 concentration

(μg/m3)

National 9.56 (2.04) 8.51 (2.24) 7.51 (1.40) 6.41 (1.29) − 2.01 − 2.08 <0.0001

Top Quartile Communities by Race/Ethnicity

Black (≥14.75%) 10.19 (1.64) 9.79 (1.1) 7.75 (1.09) 7.09 (0.78) − 2.41 − 2.71 <0.0001

Hispanic (≥17.76%) 9.6 (2.22) 7.25 (2.29) 8.01 (1.73) 6.22 (1.60) − 1.59 − 1.06 <0.0001

American Indian and Alaska Native (≥0.59%) 9.06 (2.24) 7.42 (2.21) 7.46 (1.6) 5.93 (1.29) − 1.64 − 1.47 <0.0001

Other Race (≥13.62%) 9.51 (2.13) 7.95 (2.18) 7.71 (1.53) 6.38 (1.27) − 1.78 − 1.59 <0.0001

Quartile of Poverty Rates

Quartile 1 (≤5.87%) 9.3 (1.96) 8.13 (2.29) 7.23 (1.3) 6.14 (1.35) − 2.04 − 1.95 0.01

Quartile 2 (5.88%–11.48%) 9.4 (2.08) 8.18 (2.28) 7.4 (1.37) 6.18 (1.3) − 2.01 − 1.98 0.16

Quartile 3 (11.49%–20.19%) 9.6 (2.07) 8.41 (2.25) 7.59 (1.44) 6.37 (1.23) − 2.05 − 2.07 0.24

Quartile 4 (20.20%–100.0%) 10 (2.01) 9.01 (2.12) 7.88 (1.4) 6.71 (1.22) − 2.12 − 2.32 <0.0001

Quartile of % Residents Age<15

Quartile 1 (≤15.99%) 9.42 (2.02) 7.94 (2.28) 7.41 (1.37) 6.06 (1.26) − 1.99 − 1.88 <0.0001

Quartile 2 (16.00%–19.49%) 9.5 (2.02) 8.63 (2.16) 7.37 (1.34) 6.42 (1.18) − 2.12 − 2.22 <0.0001

Quartile 3 (19.50%–23.12%) 9.55 (2.01) 8.85 (2.12) 7.49 (1.37) 6.57 (1.19) − 2.12 − 2.28 <0.0001

Quartile 4 (23.13%–78.95%) 9.76 (2.1) 8.5 (2.41) 7.75 (1.46) 6.54 (1.45) − 1.98 − 1.94 0.08

Quartile of % Residents Age>65

Quartile 1 (≤8.60%) 9.74 (2.09) 7.94 (2.56) 7.85 (1.48) 6.41 (1.58) − 1.95 − 1.7 <0.0001

Quartile 2 (8.61%–12.47%) 9.53 (2.05) 8.7 (2.31) 7.54 (1.38) 6.65 (1.35) − 2.06 − 2.14 0.002

Quartile 3 (12.48%–16.57%) 9.52 (1.99) 8.81 (2.15) 7.32 (1.3) 6.58 (1.17) − 2.16 − 2.29 <0.0001

Quartile 4 (16.58%–100.0%) 9.39 (2.01) 8.28 (2.2) 7.22 (1.30) 6.16 (1.22) − 2.05 − 2.02 0.07
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is a vector of spatial random effects having a conditional autoregressive (CAR) prior, which is included to account
for the spatial dependence in PM2.5 concentrations between tracts. The model was fitting using integrated nested
LaPlace approximation using the R‐INLA package. All other model parameters were assumed to follow the
default prior distributions in the R‐INLA package.

Herein, socially disadvantaged was defined as those segments of the population including racial minorities
(Black, Hispanic, American Indian/Alaska Native and Other Race), an income to poverty ratio under 1.00, the
percent of the population less than 15 years of age, and the percent of the population greater than 65 years of age.
We used the American Community Survey variables to define race, which do not incorporate and combine
ethnicity categories for Hispanic, Latino, or Spanish with other races. Other Race included Asian, Native Ha-
waiian and Other Pacific Islander, and some other race. Additionally, the term Hispanic included people who
identified with at least one of the Hispanic or Latino categories, for example, Mexican, Chicano, Puerto Rican,
Cuban, etc. Therefore, the Black category used in the analysis included non‐Hispanic Black and Hispanic‐Black.
To compare PM2.5 concentrations between socially disadvantaged rural versus socially disadvantaged urban
tracts, a stratified analysis was performed. Comparisons between rural and urban tracts within strata were made
using t‐tests for 2010 and 2019. We defined four strata consisting of tracts with a high percentage of residents
identifying as Black, Hispanic, American Indian/Alaska Native and Other Race. Each of these four strata con-
sisted of tracts whose percent population in the given racial/ethnic category exceeded the 75th percentile taken
across all tracts in the contiguous United States. Quartiles of the percent poverty level taken across all tracts in the
contiguous United States were used to define four poverty strata. Quartiles of the percent of the population less
than 15 years of age and quartiles of the percent of the population greater than 65 years of age were used to define
eight age‐distribution strata.

A trends analysis was performed using these strata. To control the different tracts that fell into each stratum in
2010 and 2019, the trends analysis was restricted to tracts which fell into each stratum in 2010. A linear mixed
model was fitted to the PM2.5 data from 2010 to 2019 for each stratum. Data from the intermediate years was not
included in the model. The PM2.5 concentration in tract s and year t was assumed to follow a normal distribution
with mean

μst = β0 + β1rs + β2 yt + β3rs yt + ψs

and variance σ2; equivalently yst= μst+ ϵst, where the ϵst terms independently follow a normal (0, σ2) distribution.
Here yt is equal to 1 if t = 2019 and 0 if t = 2010, and ψ = (ψ1, ψ2,…, ψS′) is a vector of independently and
identically normally distributed tract‐level random effects, where S’ denotes the number of tracts in the given
strata in 2010. We can therefore interpret β2 as average change in PM2.5 concentration in the strata's urban tracts
between 2010 and 2019 and β2 + β3 as the average change for rural tracts. Note that as the model did not include
data from 2011 to 2018; these coefficients should not be interpreted as the average rate of change between 2010
and 2019, but rather as the average total change between 2010 and 2019.

3. Results
3.1. Rural‐Urban Differences in PM2.5 Exposures and Trend Over Time

Over 2010–2019, PM2.5 pollution levels were consistently lower in rural communities than in urban communities
and decreased more rapidly in rural versus urban communities. In urban communities, PM2.5 concentration
declined from 9.56 μg/m3 in 2010 to 7.51 μg/m3 in 2019, while in rural communities it declined from 8.51 μg/m3

to 6.41 μg/m3 (Figure 1). This represents an overall relative decline of 21.4% in urban communities and 24.7% in
rural communities between 2010 and 2019. Specifically, posterior mean slope (95% credible intervals) for urban
communities was − 0.235 (− 0.236, − 0.235) and it was − 0.243 (− 0.245, − 0.241) for rural communities. Notably,
both rural and urban communities experienced decreasing trends in PM2.5 concentration until 2016, with a slightly
flatter trend observed in 2016–2018 compared to 2010–2016. However, the decline continued in 2019.

Urban (blue) census tracts had significantly higher PM2.5 concentrations than rural census tracts in every year,
based on t‐tests. Trends assumed linearity of PM2.5 over time and have been adjusted for spatial correlations
between census tracts, as explained in the text. We used 95% credible intervals and a significance level of
p < 0.05. Detailed data points are available in Table S2 in Supporting Information S1.
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3.2. Geographic Distributions of PM2.5 Pollution

Maps were created using the census tract areas in combination with the corresponding year and annual mean
PM2.5 concentration levels (Figure S1 for 2010 and Figure S2 for 2019 in Supporting Information S1). Figure S3
(2019) in Supporting Information S1 shows both urban and rural census tracts using the same color scale to relate
that air quality follows a broad regional pattern covering both urban and rural areas influenced by both geography
and industry. The national trend shown between the 2010 and 2019 maps indicates that PM2.5 concentration levels
have decreased, indicating better air quality with reference to PM2.5 over this decade. Figure 2a depicts this
decreasing trend by showing the percent difference for PM2.5 concentrations across census tracts from 2010 to
2019. Figures 2b and 2c show percent change of rural tracts only and urban tracts only, respectively. Note the
predominant improvements east of the Mississippi River with several areas of increasing PM2.5 concentrations in
the Pacific Northwest and Southwest. Despite showing an increasing trend, these latter areas were still within the
threshold below the national air quality standard for PM2.5.

3.3. Differential Annual Trends by Community Characteristics in Rural and Urban Census Tracts

In 2010, high Black communities (high percentage was defined as those census tracts whose percent population in
the Black racial/ethnic category exceeded the 75th percentile taken across all tracts in the contiguous United
States), in both rural and urban census tracts, had significantly higher PM2.5 pollution levels (mean [SD] 10.19 μg/
m3 [1.64] and 9.79 μg/m3 [1.1] respectively (see Table 1)); than the national levels. Between 2010 and 2019,
PM2.5 pollution declined more rapidly in high Black communities than in other communities, particularly in rural,
high Black communities (annual change of − 2.71 μg/m3, p < 0.0001). High percentage Hispanic populations had
higher PM2.5 levels and were the highest urban concentration among all races/ethnicities (8.01 [1.73] μg/m3),
however they were not the highest rural concentration among all races/ethnicities (6.22 [1.60] μg/m3) in 2019. By
poverty level (defined as those census tracts with an income to poverty ratio under 1.00), communities in the
poorest quartile had the highest levels of PM2.5 pollution, with the greatest rural‐urban differences in the pollution
levels (Urban 2010: 10 [2.01] μg/m3, Urban 2019: 7.88 [1.4] μg/m3), (Rural 2010: 9.01 [2.12] μg/m3, Rural 2019:
6.71 [1.22] μg/m3). The p‐value for the differential trend between 2010 and 2019 was <0.0001. The lowest PM2.5

concentrations among the four poverty strata were in the least poor (quartile 1) rural communities (2010: 8.13
[2.29] μg/m3, 2019: 6.14 [0.35] μg/m3). Rural‐urban differences in PM2.5 pollution levels were similar across
communities by the proportions of residents age<15 years old, with rural communities consistently experiencing
less pollution by PM2.5 than urban communities, regardless of the mix of age.

Figure 1. Rural‐urban differences in the trends of the Particulate Matter (PM2.5) concentration (μg/m3).
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Figure 2. (a) Percent difference of PM2.5 concentrations in United States Census Tracts, 2010–2019. (b) Percent difference of
Rural PM2.5 concentrations in United States Census Tracts, 2010–2019. Urban tracts are hidden. (c) Percent difference of
Urban PM2.5 concentrations in United States Census Tracts, 2010–2019. Rural tracts are hidden.
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4. Discussion
4.1. Summary

This investigation compared the urban‐rural differences in ambient PM2.5 levels across the census tracts of the
United States between 2010 and 2019. Overall, rural communities in the United States had consistently lower
PM2.5 levels throughout the period of 2010–2019. Continual declining PM2.5 across the United States was
observed between 2010 and 2019, more rapidly in rural areas than urban areas. PM2.5 levels vary substantially
across communities by share of race/ethnicity and poverty level. For example, high Black communities, in both
rural and urban census tracts, had significantly higher PM2.5 pollution levels. Although the current findings are
consistent with global concentrations declining in developed countries, disparities related to air pollution
exposure persist along racial and poverty lines.

4.2. Comparisons With Prior Evidence

Our findings on differences in PM2.5 concentrations between urban and rural settings were similar to the historical
patterns found in the literature (Li et al., 2009; Lin et al., 2018; Liu et al., 2023). International sources were
included here due to the lack of urban‐rural comparisons of PM2.5 found in the United States. Reductions in PM2.5

levels between 2010 through 2019 were consistent with other findings and consistent with in‐between year
variations, particularly from 2016 to 2018 (Clay et al., 2021). Lim et al. (2020) report concentrations of PM2.5

between 1998 and 2016 decreased in North America. Additionally, they found an increase in population was
correlated with PM2.5 concentrations, however developed countries were able to successfully increase economic
and national growth while at the same time mitigate PM2.5 increases. This was less evident in low‐ and middle‐
income countries (LMICs) during this same period. Additionally, the increases between 2016 and 2018 that we
observed is consistent with other findings; reasons put forth for these interval increases by Clay et al. (2021)
include increases in wildfires, additional economic activity, and reductions in the enforcement of the Clean
Air Act.

4.3. Effect of PM2.5 on Racial Minority, and Socially Disadvantaged Communities

PM2.5 exposure has been shown to disproportionately affect the health of minority and socially disadvantaged
communities in both urban and rural contexts (Miranda et al., 2011; Raju et al., 2019). In particular, Raju
et al. (2019) observed rural residence was a risk factor for Chronic Obstructive Pulmonary Disease (COPD), as
well as poverty and the use of coal for heating, which is a main source of indoor PM exposure. Yang et al. (2021)
report that outdoor PM2.5 accounted for 19.3% of global COPD disability‐adjusted life years (DALYs) in 2017.
This was more than the DALYs attributable to indoor PM, however the fact remains that any PM exposure is
harmful to respiratory health whether indoor, outdoor, rural, or urban. Additionally, Miranda et al. (2011) found
that non‐Hispanic Black populations were more likely to reside in communities with the worst air quality.
Furthermore, rural areas were traditionally underrepresented within air quality monitoring networks, creating a
gap in the information for significant portions of the population (Miranda et al., 2011). However, even in areas
where monitoring data are available, racial minorities and socially disadvantaged communities experienced
higher air pollution levels (Miranda et al., 2011). In this study, modeled data provided estimates for all census
tracts in the contiguous United States where this data was unavailable previously (from a national perspective)
and it investigated the associations of these estimates on minority and socially disadvantaged communities. Thus,
such air quality disparities have persisted over the years, as our study found the same patterns ‐ communities with
the highest poverty rates and highest proportion of Black and Hispanic residents experienced the worst air quality
measured by PM2.5 concentration. Table 1 indicates the highest concentrations observed in 2019 were in Urban
Hispanic communities (with Urban Black communities a close second) and the highest quartile of poverty had
higher concentrations as well.

Collins et al. (2022) had similar findings to ours in their investigation of the impact of PM2.5 on communities of
color. They found higher concentrations of short and long‐term exposures among Hispanic and Black populations
compared to their White counterparts. It is important to highlight that Metropolitan Hispanic populations were
those with the highest PM2.5 exposures, both short and long‐term, as our investigation revealed the similar results
(for annual mean exposures alone). They compared their findings to 28 other environmental justice (EJ) studies in
the United States that investigated race/ethnicity disparities in PM2.5 exposures and arrived at four conclusions:
(a) There were disparities of exposure based on people of color (POC) including Black and Hispanic populations;
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(b) While overall PM2.5 exposures have decreased across the United States between White people and POC,
disparities still exist for PM2.5 exposures of POC; (c) Low socioeconomic status was associated with higher PM2.5

exposure; and (d) More investigation is warranted for short‐term PM2.5 exposure disparities as there is a gap in the
number of studies that have investigated this. This is true for the present investigation, as annual mean con-
centrations were used alone. Finally, this review suggests that structural racism and classism have persisted to
influence exposure disparities of POC and low socioeconomic status, respectively. Furthermore, more attention
should be devoted to Hispanic populations as this population appears to have the highest PM2.5 exposures.

4.4. The Differences Between Rural and Urban Communities in Terms of Sources of PM2.5

Our findings that rural residents experienced lower PM2.5 concentrations and where concentrations decreased
faster over time, are encouraging given the higher existing COPD and pulmonary diseases in these communities.
However, the sources for urban PM2.5 and rural PM2.5 can vary. For example, domestic fuel burning has been
identified as a significant source of PM2.5 exposure (Salvi & Barnes, 2009). Raju et al. (2019) observed the use of
coal for heating was a risk factor for COPD (a known source of PM and HAP), while adjusting for smoking status.
Thus, PM2.5 sources and exposures are likely to differ in urban and rural areas for both indoor and outdoor air
pollution, especially where solid fuel combustion from coal and wood are routine activities (Raju et al., 2019).

Zhao et al. (2021) summarize several ways PM2.5 exposure can be reduced according to its source. These include
reducing fossil fuel combustion from coal burning sources (Thurston et al., 2016), improvements in city planning
for construction and transportation to reduce particulates like road dust and ensuring residential areas are not
constructed near power plants (Chen et al., 2019; Ruiz‐Rudolph et al., 2016), and increasing vegetation coverage
in areas with low economic activity (de Keijzer et al., 2017).

Wildfire has been observed as a significant source of PM2.5 in the United States, accounting for approximately
25% of primary PM2.5 across the nation (O’Dell et al., 2019). Its toxicity has been observed to be significant; Xu
et al. (2020) report wildfire PM2.5 is more toxic than urban sources of PM2.5 due to its relative smaller particle
size, chemical makeup, and its typical connection with high temperatures. Recent seasonal trends in PM2.5

concentrations have been observed due to wildfire increases in the summertime, particularly in the western United
States (O’Dell et al., 2019). Furthermore, Masri et al. (2021) found a disproportionate impact of wildfires in
California on the elderly and low‐income residents between 2000 and 2020. Additionally, the role of climate
change on wildfire and subsequent PM2.5 exposures must be considered to protect populations disproportionately
burdened by these events who have greater susceptibility for adverse health outcomes. For example, Burke
et al. (2021) observed that climate change‐induced wildfire smoke has the potential to reach similar levels to the
projected increases in temperature‐related mortality from climate change. Thus, a greater focus of resources,
policies, and public health surveillance is warranted, especially for rural low‐income communities and other sub‐
populations susceptible to the adverse effects of PM2.5 and wildfires, for example, the elderly, asthmatics, those
with COPD and other cardio‐pulmonary comorbidities, etc.

Finally, another reason for greater rural PM2.5 decline could be the result of population growth and migration
toward urban areas. More investigation is needed to explore this trend and verify the associated or causal factors.

4.5. New Policies and Programs Driving the Declining Trends

The evidence for the disproportionate burden of PM2.5 on minority and socially disadvantaged communities in
both urban and rural settings warrants greater scrutiny on current air quality guidelines. Additionally, recent
efforts to review the national air quality guidelines for PM2.5, otherwise known as the National Ambient Air
Quality Standards (NAAQS) for PM2.5, were proposed to be lowered in January 2023 by the EPA and its in-
dependent scientific advisors. In January 2024, the EPA approved the reduction of this standard. The previous
primary annual average standard for PM2.5 set in 2012 was 12.0 μg/m3 and was lowered to 9.0 μg/m3. However,
what was not specifically addressed with the lowering of the PM2.5 standard, was the availability of data for the
communities and populations disproportionately affected by PM2.5. Enforcement of the new standard is an area
that should be closely monitored as well as evaluated to prove PM2.5 reductions are being observed and main-
tained. Additionally, this monitoring and evaluation is needed in areas where susceptible populations to poor air
quality reside, however often times this data is not being collected. Alongside the overall attempts to lower the
national standard for PM2.5, increased coverage of air quality monitors is needed to assess levels where pop-
ulations are most susceptible to the adverse effects of poor air quality. Once granular and specific air quality data
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is readily available for such communities, for example, those who identify as EJ communities, both evaluation and
subsequent improvements to the standard and other policies can be made to protect members of the public that are
more geographically proximate and susceptible, for example, persons with asthma, those with COPD, older
persons, etc.

4.6. Strengths and Limitations

A limitation of this study was the overall impact of PM2.5 is potentially underestimated in rural areas as it did not
assess the added contribution of PM2.5 from domestic fuel burning for HAP. The findings from prior research, for
example, Hendryx et al. (2010) and Rogalsky et al. (2014) support this. Other air pollutants related to HAP
beyond PM2.5 and ozone, such as, polycyclic aromatic hydrocarbons, were not assessed. Additionally, agricul-
tural sources, for example, ammonia (NH3) from livestock waste and fertilized fields, were also not assessed.
Further investigation to quantify the above sources (among others) with similar urban‐rural comparisons to ac-
quire state‐level estimates is needed for future research. Furthermore, given the urban‐rural variability of states, a
national comparison of air pollution outside of PM2.5 and ozone may not be relevant as inter‐state pollution
sources can be comparatively complex. Regional investigations or investigations using other shared ecology, land
use practices, topography, etc. should be explored in addition to state comparisons. In addition to the un-
derestimates from potential sources of HAP in rural settings mentioned above, another limitation is the PM2.5

estimates that were used are likely more uncertain in rural areas than urban areas. Ground truthing modeled
estimates of PM2.5 concentrations in rural settings can be more resource intensive as air quality monitors are likely
near population centers, however this has been evolving recently as more low‐cost sensors become more widely
available (deSouza & Kinney, 2021). Finally, short term exposures were not investigated in this study, which can
have potentially more acute health impacts (i.e., heart attacks and asthma exacerbations), a specificity often
beyond what annual concentration assessments can identify (Collins et al., 2022).

The strengths of this investigation were related to its data comparisons using both spatial and temporal factors.
The investigation assessed census tract estimates of PM2.5 and ozone across the United States between 2010 and
2019 and investigated urban and rural differences in the pollution estimates themselves, as well as socio‐
demographic characteristics. To our knowledge, no other studies or investigations have compared urban and
rural differences across the United States at this level of geographic granularity (census tracts), over this period,
for these air pollution estimates and socio‐demographic characteristics. PM2.5 and ozone are relevant for both
urban and rural contexts (given their wide array of sources) and have the most salient public health impacts. This
investigation and its findings are significant given the availability and salience of the data using these spatial and
temporal factors.

5. Conclusion
This decade‐long national study uncovered persistent geographic variations in PM2.5 concentrations across the
years assessed. Rural areas had lower PM2.5 concentrations compared to urban areas, and rural areas showed a
more rapid decline of PM2.5 concentrations between 2010 and 2019. On top of these differences, PM2.5 con-
centrations varied among communities by race‐ethnicity and poverty levels. Efforts should be made for public
health and environmental health programs in both urban and rural settings to provide greater protections for
minority and socially disadvantaged communities. One of the primary means for greater protection would be to
address the availability of air quality monitors, data, and information for populations who are most susceptible to
the adverse health impacts of poor air quality.
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Open Source GIS, n.d.). They can be found at the following respective urls: https://cran.r‐project.org/bin/win-
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