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Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be
circumvented in cancers. Cellular senescence is a process, which may play two opposite
roles. On the one hand, this is a natural protection of somatic cells against unlimited
proliferation and malignant transformation. On the other hand, cellular secretion caused by
senescence can stimulate inflammation and proliferation of adjacent cells that may
promote malignancy. The main genes controlling the senescence pathways are also
well known as tumor suppressors. Almost 140 genes regulate both cellular senescence
and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs.
Senescence-associated miRNAs can stimulate cancer progression or act as tumor
suppressors. Here we review the role playing by senescence-associated miRNAs in
development, diagnostics and treatment of pancreatic cancer.
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INTRODUCTION

Replicative senescence is irreversible cell proliferation arrest. Senescent cells stop their divisions, grow in
size and start specific secretory activity. This process often results from somatic cells aging and telomeres
shortening. The same statemay be provoked byDNAdamage, oncogenesis etc. Activity of oncogenes and
pro-proliferative genes may promote expression of TP53 gene, well known as a tumor suppressor, and
induce cellular senescence and/or apoptosis. Most senescent cells also express another tumor suppressor
gene, p16INK4a. Thus, oncogene-induced senescence is a natural barrier for tumorigenesis. On the other
side, senescent cells produce growth factors, proteases and cytokines which are necessary for the tissue
renewal. Deregulated secretion of these factors can provoke malignant transformation after different
premalignant damages and in benign tumors. There is a group of genes, which are necessary for both
cellular senescence and carcinogenesis. The majority of these genes are regulated by microRNAs. These
miRNAs regulating cellular senescence may act as tumor suppressors or stimulators. This review is
focused on the role playing by senescence-associated miRNAs (SA-miRs) in development of pancreatic
cancer, which is one of the most aggressive oncogenic diseases.

CELLULAR SENESCENCE AND CANCER

Almost 60 years ago, Hayflick described cellular senescence as a process blocking replicative potential
and growth of human diploid fibroblasts in culture. As was found, human fibroblasts change their
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morphology and stop to divide after 50–60 rounds of cell
divisions. This phenomenon is known as replicative
senescence, or the Hayflick limit [1]. In contrast with the
normal somatic cells, cancer and embryonic stem cells can
escape the cellular senescence [2–4]. Senescent cells undergo
some morphological changes, for example, they increase in
size, more than twofold and form heterochromatin foci inside
their nucleus. Besides, these cells start specific secretory activity
(senescence-associated secretory phenotype, SASP) [5, 6].

Senescence can be also a cellular response to different
damaging agents, chemical or physical. Many factors may
trigger cellular senescence. The telomere shortening during
replication is particularly important. Extremely short telomeres
as well as DNA damages result in DNA damage response (DDR),
a chain of events starting cellular senescence in G1 phase [6–9].
The molecular basis of this G1 arrest is thought to be due to a
DNA damage response, resulting in accumulation of the cyclin
dependent kinase (CDK) inhibitors p21 and p16 that block the
inactivating phosphorylation of the retinoblastoma tumor
suppressor pRb, thereby preventing DNA replication. Protein
p21 acts downstream of p53 whereas p16 acts upstream of pRB.
As was shown, p21 also mediates permanent DNA damage-
induced cell cycle arrest in G2 (G2 exit) by inhibiting mitotic
CDK complexes and pRb inactivation [10, 11].

Loss of tumor suppressors (ARF, TP53, and PTEN) or active
expression of oncogenes (KRAS, BRAF andMYC) in normal cells
also promotes cellular senescence. This phenomenon is known as
oncogene induced senescence (OIS) [5, 6, 9]. It was first observed
when an oncogenic form of RAS, a cytoplasmic transducer of
mitogenic signals, was expressed in normal human
fibroblasts [12].

Both DDR and OIS activate one of the main pathways for
cellular senescence, INK4a/ARF cascade [9, 13]. INK4a locus
expresses two small proteins: p16INK4a and p19ARF (alternative
reading frame). Cyclin-dependent kinase inhibitor (CDKI)
p16INK4a prevents pRB (retinoblastoma protein)
phosphorylation and inactivation, which leads to cellular
senescence. Another protein, p19ARF, cooperates with p53
bringing about cell cycle arrest and subsequent senescence [9,
13, 14]. All genes of ARF cascade are well known tumor
suppressors blocking cell cycle progression during malignant
transformation. Products of these genes produce a barrier that
prevents carcinogenesis. Accordingly, these genes are often
inactivated by mutations or promoter methylation in different
tumors, such as breast, colon, liver and pancreatic cancer [15–18].

There are several pathways triggering or regulating cellular
senescence, but their deregulation results in tumor development.
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway
constitutes an additional route to the establishment of OIS
since it promotes mTOR-regulated translation and
stabilization of p53 [19, 20]. Loss of tumor suppressor PTEN,
negative regulator of PI3K/Akt pathway, may promote cancer
progression. It is estimated that in at least 50% of all cancer
patients PI3K/Akt signaling pathway is deregulated [20]. Another
pathway, which involves transforming growth factor beta (TGF-
β), blocks cell cycle progress through G1 phase. TGF-β causes
senescence stimulating synthesis of p15 and p21 proteins and

prevents Rb phosphorylation. On the other hand, constant TGF-β
expression is necessary for cancer cell migration and invasion [6,
21, 22]. Nuclear factor kappa light-chain-enhancer of activated
B cells (NF-κB) participates in a senescence-associated cytokine
response and control of SASP components secretion which
suggests a tumor restraining role of NF-κB. On the other
hand, constitutive aberrant activation of NF-κB has been
observed in different kinds of cancer, including lymphoma,
leukemia, breast, colon, liver, pancreas, prostate, and ovarian
cancers [4, 23]. Notch signaling pathway is involved in cell-
contact-dependent juxtacrine senescence, where cells are
characterized by distinct SASP components [24, 25]. In
cancers aberrant NOTCH activation correlates with activation
of NF-κB and PI3K/Akt pathways which enhances tumor growth
and resistance chemotherapy [26].

NF-κB [23, 27], mTOR [6, 28], and Notch [24, 29] pathways
are involved in SASP regulation. Senescent cells secrete up to 80
specific substances including collagen and fibronectin,
interleukins (in particular IL-1, IL-6 and IL-8), growth factors
and metalloproteases. These factors are necessary for tissue
renewal [6, 30, 31]. Cellular senescence can be transmitted to
neighboring cells through secreted SASP factors (including IL-1
and Notch ligands) thus it prevents the malignant
transformation. IL-6 and IL-8 promote inflammation leading
to the recruitment of lymphocytes and macrophages to eliminate
senescent and premalignant cells [32–34]. On the other hand,
deregulated persistent SASP factors secretion produces a chronic
inflammatory microenvironment in tissues and can induce
malignant transformation in neighboring cells. Pro-
inflammatory cytokines IL-6 and IL-8 can stimulate epithelial-
mesenchymal transition (EMT), cell migration and invasion [8,
34]. SASP turns senescent fibroblasts into pro-inflammatory cells
with the ability to promote EMT and tumor progression [35].
Additionally, senescent fibroblasts and mesothelial cells secrete
vascular endothelial growth factor (VEGF) inducing
neovascularization as well as matrix metalloproteinases which
facilitate tumor cell migration and invasion [8, 36, 37]. Thus,
SASP acts in a context dependent manner and has either pro- or
anti- tumorigenic effect.

Therefore, cellular senescence is a process, which may act in
two opposite directions. On the one hand, senescence is a natural
mechanism of somatic cells protection against unlimited
proliferation and malignant transformation. The main genes,
controlling the senescence pathways, are also well known as
the tumor suppressors. Their loss or aberrant expression helps
malignant cells to bypass senescence and promotes cancer
progression. Besides, senescent cells produce secretory factors,
which are necessary for cancer cells elimination and the tissue
renewal. On the other hand, aberrant SASP secretion can
stimulate inflammation and carcinogenesis.

CELLULAR SENESCENCE IN PANCREATIC
CANCER

Senescent pancreatic cells have first been detected in low grade
pancreatic intraepithelial neoplasias (PanINs) in the mouse
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models expressing oncogene KRAS from its endogenous
promoter [38]. More than 90% of pancreatic ductal
adenocarcinomas (PDACs) harbor KRAS activating mutations
[39, 40]. Active KRAS in the pancreas leads to development of
premalignant lesions which display low proliferative activity and
contain cells expressing markers of cellular senescence [41, 42].
Caldwell et al. found that about 10% of cells in mouse PanIN-1
are senescent and express the standard senescence marker SA-β-
gal (senescence-associated β-galactosidase). These cells were
negative for proliferative marker Ki67. The number of
senescent cells in mouse PanINs was decreasing during the
PanIN progression from grade 1 to 3. Senescent cells were also
detected in human PanINs and PDACs but the number of these
cells was much less than in the mouse models [41, 43]. High-
grade mouse PanIN2/3 lesions as well as PDAC were negative for
senescence markers including endogenous senescence-associated
β-galactosidase and expression of the p16INK4a [41, 43].
Moreover, another cell subpopulation (about 10%) expressing
both Ki67 and SA-β-gal was detected in murine PanINs [41].
Deschênes-Simard et al. found that mouse PDAC-derived cell
lines exhibit stem cells properties, while PanIN-derived cell lines
do not. These findings indicate that cancer cells can escape
senescence and reentry in the cell cycle and proliferation
through the reprogramming from senescent to “stem” cell
status [42].

Senescence may also be bypassed by a number of mutations
inactivating most important genes of senescence pathways.
Tumor suppressors TP53 and CDKN2A/INK4 harbor
mutations in 80% and 85% of PDACs correspondently [18].
Deletion of Rb accelerates pancreatic carcinogenesis driven by
oncogenic KRAS expression and impairs senescence in
premalignant lesions [44]. SMAD4, a member of TGF-β
pathway, is deleted in 50% PDACs [18]. In almost 60% of all
PDAC patients the PI3K/Akt signaling pathway is deregulated
[20, 45]. Loss of PTEN (PI3K inhibitor) expression in 25–70% of
PDAC cases correlate with the short-term overall survival [20].

Some of tumor suppressors can also be inactivated by
epigenetic alterations. Altered gene methylation, regulated by
DNA methyltransferases (DNMT) 1, 3a and 3b, contributes to
PDAC development [46]. DNMT1, 3a and 3b were expressed in
46.6%, 23.9%, and 77.3% of PDAC tissues, respectively, but not in
normal pancreas [47]. CDKN2A (INK4a) locus may be
inactivated by hypermethylation in 18% of PDACs [48].
Overexpression of DNMT1 was believed to be responsible for
silencing key tumor suppressor genes including p16 [49]. Histone
deacetylase SIRT1 has been shown to be involved in the
deacetylation of non-histone proteins such as p53, Rb, and
Smad7, allowing cells to bypass senescence and survive DNA
damage [3].

Analysis of all exons and selected introns of 410 cancer-
associated genes was performed in tumor samples from 336
PDAC patients demonstrated frequent gene alterations of
several pathways, including TGF-β, Notch and NF-κB
signaling, which are associated with cellular senescence and
SASP regulation but can stimulate cancer aggressiveness,
chemoresistance and metastasis in PDACs [37, 50]. NF-κB, a
major transcription factor involved in these inflammatory

responses, is found to be activated in KRAS-transformed
epithelial cells. In mouse models it also has been shown that
interaction between NF-κB and Notch signaling pathways is
needed to drive a sustained inflammatory response [51, 52].

Certain pathological stimuli, such as inflammation, also seem
appear to promote tumorigenesis in PDAC by means of a
senescence bypass [4, 43]. Senescent cells secrete interleukins
(in particular IL-1 and IL-6), growth factors and metalloproteases
that stimulate inflammation leading to the recruitment of
lymphocytes and macrophages for elimination of premalignant
cells [3, 4, 53]. On the other hand, persistent or deregulated SASP
activation can promote chronic inflammation and therefore drive
cancer progression [4, 54]. In chronic pancreatitis, the number of
senescent cells significantly correlates with the severity of
inflammation and fibrosis. Both the fibrotic region and
senescence-associated SA-β-gal positive region overlap with
the region densely infiltrated by immune cells [55]. Senescent
cells are also accumulated in tumor microenvironment, including
carcinoma-associated fibroblasts and activated pancreatic stellate
cells [55–57]. Both these cell subpopulations produce SASP
factors which may contribute to cancer development and
metastasis [57, 58]. The role that senescent cells play in
formation of the inflammatory PDAC microenvironment
remains for the most part unknown [3, 4, 56].

Therefore, in chronic pancreatitis or PanIN of low grade
cellular senescence may prevent malignant transformation.
Under conditions of chronic inflammation pancreatic cells
may accumulate mutations inactivating key senescence
pathways and thus start tumor development. However, the
mechanism of senescence bypass in tumors that spontaneously
arise from premalignant lesions remains mostly unclear. SASP
possibly may play a dual role in pancreatic carcinogenesis: at the
beginning it recruits immune cells for elimination of the
malignant cells, but later it provokes persistent inflammation
and supports tumor progression.

SA-MIRS IN PANCREATIC CANCER

According to the data Tacutu et al., more than 262 human genes
are associated with cellular senescence. More than a half of the
senescence-associated genes (138 genes) participate in both
cellular senescence and cancer pathways [59]. Almost two
thirds of these genes (64%) are regulated by microRNAs.
MicroRNAs (miRNAs) are a class of single-stranded RNA
molecules of 15–27 nucleotides in length that regulate gene
expression at the post-transcriptional level. Initially, miRNAs
are transcribed as thousand-base-long primary transcripts by
RNA polymerase II and are called precursor miRNAs.
Precursor miRNAs are exported to the cytoplasm via exportin
5, where they are integrated into DICER and RNA-induced
silencing complex (RISC). MicroRNAs use the RISC complex
on their mRNA targets for translational repression or
degradation [60].

Tacutu et al. detected approximately 40 miRNAs regulating
expression of both senescence-associated and cancer-related
genes [59]. The senescence-associated miRNAs (SA-miRs)
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control cell transition during cell cycle, mainly through the G1/S
or G2/M checkpoints by targeting cyclin-dependent kinases
(CDKs) and cyclin-dependent kinase inhibitors (CDKIs) [61].

More than 25 senescence-associated miRs (SA-miRs) were
identified in pancreatic cancer. Pancreatic tumors demonstrate
very low number of senescent cells, but PDAC cells produce SA-
miRs stimulating processes of carcinogenesis, tumor growth and
survival as well as cancer microenvironment formation [59].
These miRNAs are often packed into exosomes which can
deliver functional SA-miRs to recipient cells. Exosomes are
membrane-bound extracellular vesicles (EV) containing
biological materials (proteins and nucleic acids) and play an
important role in communication among cells. This kind of EVs
originates by the release of intraluminal vesicles (ILVs) after
fusion of multivesicular bodies (MVBs) with plasma membrane.
MVBs move toward the plasma membrane to fuse and release
ILVs that, in extracellular space, become exosomes. Target cells
uptake these miRNAs by endocytosis or pinocytosis then release
them from microvesicles [62, 63]. Exosomal miR-155 and miR-
210 can increase PDAC resistance to chemotherapy. SA-miRs of
miR-200 family stimulate cancer cells migration and invasion.
Highly elevated levels of miR-17-5p and miR-21 stimulating
cancer cells proliferation were detected in serum samples of
pancreatic cancer patients [62, 64].

Cancer cells release extra-cellular miRNAs to recruit
macrophages for the tumor microenvironment formation. One
more function of these EVs is to “educate” the immune system to
spare PDAC cells from active killing [64]. Moreover, exosomes
released by cancer cells can travel to distant organs, such as the
liver and brain, and can modulate the microenvironment to
establish a metastatic niche and subsequent metastasis [65].

EVs are implicated in the transformation of various
precancerous lesions into PDAC and in the progression of
cancer toward more invasive and metastasizing forms. Inside
these lesions cells produce exosomes containing miR-21, miR-
155 and 210 which promote inflammation as well as pancreatic
stellate cells activation [62, 66]. Vicentini et al. located by in situ
hybridization that exosomal SA-miRNAs including miR17-5p
were derived from the epithelial components of the lesions [67].

In contrast with PDAC, anti-oncogenic SA-miRs are
constantly expressed in normal pancreatic tissues. These
miRNAs, such as miR-146a and miR-217, demonstrate high
expression levels not only in the senescent cells [68, 69]. As a
component of SASP, exosomes of the senescent cells can include
two opposite sets of SA-miRs, both senescence-inducing (let-7a,
miR-34 and miR-217) and pro-oncogenic (miR-21, miR-155 and
miR-221) [70, 71].

Accumulating evidences showed that pancreatic tumor cells
communicate with stromal cells in the local environment or even
in the remote organs via secretion of extracellular vesicles packed
with SA-miRs. Stromal cells that lack genomic instabilities uptake
these miRNAs then release frommicrovesicles into the target cells
as messengers to dictate them so as to facilitate tumor progression
and metastasis [72, 73]. Pancreatic cancer-secreted SA-miRs,
such as miR-21, miR-155 or miR-210 implicates in the
conversion from normal fibroblasts to cancer-associated
fibroblasts (CAF) [74, 75]. Also, exosomes containing SA-miRs

can promote EMT as well as convert pancreatic stellate cells and
bone marrow-derived stem cells into the CAF [76]. In turn, CAF
release a variety of circulating SA-microRNAs including miR-21,
miR-210 etc. which stimulate cancer cells proliferation, migration
and invasion as well as support angiogenesis, and recruit
monocytes/macrophages [74]. Senescent CAFs, like other
senescent cells, present a SASP composed of pro-tumorigenic
factors. Senescent cells produce exosomal miR-21, miR-146, miR-
155a, miR-210 and miR-221 stimulating inflammation process aa
well as cancer cells proliferation, migration and invasion [77]. In
addition, the existence of a senescent CAF population in PDAC
endowed with invasion- and metastasis-promoting properties as
well as poor patient prognosis [78].

SA-miRs often display aberrant expression levels in tumors.
Abnormal expression of miRNAs is one of important clinical
markers for PDACs diagnostics and treatment. A list of SA-miRs
[37, 59, 79], deregulated in pancreatic cancers, are presented in
Tables 1, 2.

SA-miRs playing an important role in pancreatic tumors
formation and development can be classified into two major
groups: oncomirs and cancer suppressors. The first group of SA-
miRs stimulates proliferation and migration of cells,
chemotherapy resistance and metastasis (Table 1). The second
group of miRNAs activates genes of cellular senescence and
apoptosis pathways; thereby functioning as tumor suppressors
(Table 2).

ONCOGENIC SA-MIRS PROMOTE
PANCREATIC CANCER

A large number of SA-miRNAs are overexpressed in pancreatic
cancer. Nakata et al and Eun et al. reported that miR-10b, miR-
155, miR-21, miR-221 and miR-222, were aberrantly expressed in
PDAC [80, 81]. MiR-21 is one of the first identified cancer-
promoting oncomirs, which targets almost 30 genes, including
tumor suppressors, such as CDK2AP1, Pdcd4 and BCL2 [82].
PTEN, which suppresses PI3K-AKT-mTOR senescence pathway,
is also a target for miR-21 as well as miR-181a and miR-221 [83,
84]. High expression levels of miR-21 were detected in early
pancreatic ductal adenocarcinoma precursor lesions [85]. MiR-21
stimulates PDAC cell proliferation, invasion, chemoresistance
and prevents apoptosis [83, 85–88]. MiRNA-10b enhances
pancreatic cancer cell invasiveness by suppressing TIP30
expression and promoting EGF and TGF-β effects [80, 89].
MiR-15b degrades SMURF2 transcripts, which is also
participant of TGF-β pathway, and this miRNA expression
was associated with enhanced metastasis in PDACs [90].
MiRNA-17-5p negatively regulates more than 20 genes
involved in the G1/S-phase transition [91, 92]. Overexpression
of this miRNA in pancreatic cancer is associated with intensive
cancer cell proliferation and invasion as well as poor prognosis
[93, 94]. MiR-155 is inhibitor of tumor protein 53-induced
nuclear protein 1 (TP53INP1) and FOXO3a expression,
leading to cell proliferation and malignant transformation [95,
96]. Also miR-155 is associated with the JAK/STAT pathway, it
negatively regulates SOCS1 and accelerates migration and
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invasion of PDAC cells [97]. Mir-210 is necessary for tumor
angiogenesis, cell cycle regulation and cancer survival in hypoxia
conditions [98–101]. MiR-221 and 222 genes are placed in
tandem on the X chromosome. Activity of these miRNAs
stimulates cancer cells proliferation and invasion [102, 103].

The cited works show that SA-miRNAs may control
expression of several groups of tumor-suppressor genes from
various pathways. Most of them act like the inhibitors of main
senescence or apoptosis pathways, such as p53-p16-pRB or
PTEN-PI3K-AKT-mTOR. Thus, SA-oncomirs are necessary
for successful PDAC cell proliferation, chemoresistance,
survival and tumor progression.

SA-MIRNAS MAY ACT AS TUMOR
SUPPRESSORS IN PANCREATIC DUCTAL
ADENOCARCINOMAS
Another group of the SA-miRs are often downregulated in
PDACs by DNA methylation or gene loss. These miRNAs
may inhibit cell proliferation; prevent cancer cells

chemoresistance, migration and invasions besides they induce
cellular senescence and apoptosis. For example, miRNA family
let-7 inhibits cancer cell proliferation, metastasis and
chemoresistance [104–106]. MicroRNA-34a is a tumor
suppressor, like let-7, and a promising candidate for
pancreatic cancer therapy [107]. There are multiple target
genes for miR-34a, such as NOTCH, BCL2, VEGFA, CCND1
and CDK6, regulating cell cycle, p53/p38-MAPK, Notch and
PI3K/Akt pathways [108–112]. Tumor suppressing miR-107
also inhibits CDK6 and stimulates PTEN expression [113,
114]. MiR-24-3p downregulates laminin subunit beta 3
(LAMB), inhibits processes of cancer cells attachment and
migration, modifies their interaction with other extracellular
matrix components [115]. MiR-26b directly inactivates cyclin-
dependent kinase CDK14 in cancers. Expression of CDK14
promotes cancer cell aggressiveness [116]. The data about
miR-29a are controversial. MiR-29a, targeting MUC1 and
LOXL2, inhibits cell proliferation, migration, invasion and
sensitize pancreatic cancer cells to gemcitabine [117, 118]. On
the other hand, miR-29a may stimulate pancreatic cancer growth
by inhibiting the expression of tristetraprolin [119]. MiR-30a

TABLE 1 | Senescence-associated oncomirs in pancreatic tumors.

Oncomirs (upregulated) miRNA targets SA-miR enhances References

miR-10b TIP30 Invasion [80, 89]
miR-15b SMURF2 Metastasis [90]
mir-17-5p RBL2 and up to 20 cell cycle regulators Proliferation, invasion [91–94]
miR-21 CDK2AP1, Pdcd, BCL2, PTEN and almost 30 genes Proliferation, invasion, chemoresistance, tumor survival [81–83]
miR-155 TP53INP1, FOXO3a, and SOCS1 Proliferation, transformation, migration and invasion [95–97]
miR-181a PTEN Proliferation [84]
miR-210 Ephrin-A3, MNT Proliferation, angiogenesis, tumor growth and survival [98–101]
miR-221 TIMP2, PTEN, p27(kip1), p57(kip2), and PUMA Proliferation, invasion [82, 83]
miR-222 TIMP2 Proliferation, invasion [82]

TABLE 2 | Tumor-suppressing SA-miRs in pancreatic cancer.

Tumor
suppressors (downregulated)

miRNA targets SA-miR inhibits References

let-7 family KRAS, HMGA2, CDC25a, CDC34, CDK6, BCL2 Proliferation, aEMT, metastasis, chemoresistance [104–106]
miR-24-3p LAMB Migration, invasion [115]
mir-26b CDK14 Proliferation [116]
miR-29a MUC1 and LOXL2 Proliferation, migration, chemoresistance [117–119]
miR-30a SNAI1 Proliferation, tumor survival, chemoresistance [120]
miR-34a NOTCH, BCL2, VEGFA, CCND1, and CDK6 Proliferation, angiogenesis, EMT, metastasis [107–112]
miR-107 CDK6, PI3K/AKT Proliferation, metastasis [113, 114]
mir-124 IL6R, STAT3, MCT1 Proliferation, tumor growth [110, 111, 124]
miR-126 ADAM9 Invasion, EMT [133]
miR-137 KDM4A Proliferation [122, 123]
miR-141 MAP4K4 EMT, metastasis [125–127]
miR-145 MUC13, NEDD9 Invasion, EMT [134]
miR-146a IRAK-1 Migration, invasion [135, 170]
miR-148a PHLDA2, LPCAT2, and AP1S3 Proliferation, migration, invasion [122]
miR-200 family ZEB1, ZEB2 EMT, migration, invasion [69, 128, 136]
miR-217 KRAS, SIRT1 Proliferation [132]
miR-335 OCT4 Proliferation [129]
miR-494 SDC1 EMT, metastasis

aEMT, epithelial-mesenchymal transitions.
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regulates cancer cell response to chemotherapy through SNAI1/
IRS1/Akt pathway, which is fundamental in mediating multiple
processes, including cell proliferation and survival, angiogenesis
and glucose metabolism [120]. There is a group of SA-miRs,
involved in pancreatic cancer stem cells regulation, inhibition of
epithelial-mesenchymal transitions (EMT) as well as prevention
of cancer cells migration and invasion [121]. This group includes
two miRNA families: let-7 [104, 105] and miR-200 (including
miR-141) [122, 123] as well as miR-34a [111, 121] miR-126 [124],
miR-145 [125–127], mir-217 [128] and miR-494 [129].
Overexpression of miR-124 downregulates IL6-JAK2-STAT3
pathway and inhibits PDAC cells proliferation [130]. Mir-124
also may suppress PDAC growth by regulation of cancer lactate
metabolism [131]. MiR-137 and miR-335 triggers p53, p16 and
KRAS-induced cellular senescence in PDACs [132, 133] MiR-
146a inhibits the invasive capacity of pancreatic cancer cells with
concomitant downregulation of EGFR and the NF-κB regulatory
kinase, interleukin 1 receptor–associated kinase 1 (IRAK-1)
[134]. MiR-148a targets may affect cell cycle and apoptosis
[135]. MiR-217 is significantly downregulated in PDAC tissues
and cell lines. Dual-luciferase reporter assay revealed that KRAS
mRNA is the direct target of miR-217. Overexpression of miR-
217 in a PDAC cell line decreases KRAS mRNA levels, and
inhibits cell proliferation [136]. On the other hand, miR-217 is
usually expressed in normal pancreas [69], and can induce
cellular senescence in fibroblasts [137].

Thus, there are two groups of SA-miRs with opposite functions:
the first one promotes cells proliferation, tumor growth and
metastasis, the second one stimulates cellular senescence and
apoptosis in PDACs. In PDACs the oncomirs are overexpressed
but the tumor-suppressing SA-miRs are downregulated.

SA-MIRS AND PANCREATIC CANCER
DIAGNOSTICS AND PATIENT PROGNOSIS

For the last 20 years aberrant expression was detected in a great
number of SA-miRs. Differential expression of SA-miR profiles
has been well described in PDAC, with miRNAs isolated from
various patient-derived specimens, including the peripheral
blood, pancreatic tissue, and digestive juices [138, 139].
Oncomirs, such as miR-21, may be upregulated up to 6888-
fold in PDACs in comparison with normal tissue. About up to 52-
fold increase for miR-155 was described in PDACs [140]. On the
other hand, tumor-suppressing miR-217, was downregulated up
to 62.5-fold in diagnostic needle aspirates from surgical
pancreatic cancer specimens [141]. Lee et al. have selected a
set of four miRNAs including miR-10b, miR-210, miR-202-3p
and miR-375, and these miRNAs differentiated mucinous cystic
lesions from intraductal papillary mucinous neoplasms and
PDAC with sensitivity of 100% and specificity of 100% [142].
Diagnostic kit detecting aberrant expression of miRNAs was
developed to discriminate malignant tissues from pancreatic
lesions. This kit, miRInform Pancreas (Asuragen, Inc. Austin,
TX), uses miR-217 and miR-196a to differentiate PDAC from
other benign conditions with sensitivity and specificity of 95%
[143]. The clinical trials of this kit have not been completed yet.

Circulating SA-miRs are attractive objects of study because of
their abundance, stability, and easiness of isolation and
amplification with inexpensive and non-invasive techniques
[138, 139]. These miRNAs expression levels are also
deregulated in the blood samples of PDAC patients’. Vila-
Navarro et al. described significant overexpression of let-7,
miR-21, miR-155, miR-181a and miR-210 in PDAC patients
plasma samples [144]. Wei et al. analyzed 27 published studies
involving more than 2000 PDAC patients and found that miR-
10b, miR-21, miR34a, miR-221 and miR-155 were often
upregulated in serum- or plasma samples. Among them, miR-
21 was the most frequently identified dysregulated miRNA [145].
Meta-analysis of 46 studies involving 4326 pancreatic cancer
patients demonstrated that utilization of circulating SA-miRs
such as miR-10b, miR-181a and let-7a distinguished PDAC
patients from non-PDAC controls with sensitivity of more
than 90%. The serum levels of miR-200a identify patients with
PDAC from healthy controls with a sensitivity and specificity of
>80% [146]. A significant difference between PDAC and healthy
groups was observed for the expression of miR-21 andmiR-34a in
serum samples [147]. Serum miR-124 levels were significantly
decreased in patients with PDAC. Serum levels of miR-124
distinguished PDAC from chronic pancreatitis and healthy
control subjects [148].

SA-miRs, whether circulating or isolated from tissue samples
may serve as predictors of PDAC patient outcome. High
expression levels of SA-miRs, including miR-21 [88, 149, 150],
miR-155 [151, 152] and also miR-210 [153, 154] may be used as
predictors for the cancer chemoresistance as well as poor
prognosis. Greither et al. have proposed a prognostic panel
consisting of miR-155, -203, -210, and -222, where their
elevated expression is a predictor of poor outcome [154]. Low
serum levels of miR-124 were significantly associated with lymph
node metastasis, tumor node metastasis (TNM) stage and shorter
survival time after surgery [148]. Yu et al. analyzed plasma levels
of miR-210 with RT-qPCR in a cohort of 31 PDAC patients. High
miR-210 expression was significantly associated with improved
survival [153].

On the other hand, there is still no clinically approved
miRNAs-based PDAC diagnostic system. The possible reasons
for this may be a great variability of PDAC cells as well as the gene
variability within the human population. Expression levels of
miRNAs may vary greatly (sometimes showing opposite results)
among patients even in the same hospital as well as in the
population of different regions or countries.

SA-MIRS AS AGENTS FOR PANCREATIC
CANCER THERAPY

Therapy of PDAC by SA-miRs is based on assumption that
oncomirs should be inhibited whereas tumor suppressors need
to be restored to proper levels. As a result, cancer cells should
enter the state of cellular senescence, stop proliferation and
metastasis. Artificial SA-miRs (so called mimics) are two-
stranded hairpin molecules imitating tumor-suppressor
miRNAs [68, 155], whereas anti-miRs are chemically modified
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antisense strands [oligonucleotides with 2′-sugar modifications
or locked nucleic acids (LNAs)], designed for elimination of
oncomirs in cancer cells [156, 157]. Another possible way to
eliminate oncomirs is miRNA sponge. This “sponge” is a small
vector expressing miRNA target sequence “soaking” oncomirs
and preventing them from association with their targets. These
vectors may carry binding sequences for several different
miRNAs. Expression levels of this vector need to be carefully
calibrated for effective miRNAs elimination [158, 159]. A serious
problem in the miRNAs-based cancer therapy is a proper
miRNAs selection. Because of cancer cells heterogeneity in
PDAC, single miRNA may not suffice for the tumor
elimination [135]. Obviously, it is necessary to select a group
of several miRNAs. On the other hand, each member of this
group may control up to 30 target genes which may increase the
probability of side-effects. Therefore, a lot of bioinformatics
analyses are needed to predict and specify the whole network
of selected miRNAs targets.

Efficient delivery ofmiRNA for therapeutic purposes is also highly
problematic. Low cellular uptake of RNA, degradation in the
bloodstream, and rapid renal clearance are significant obstacles on
the way to the successful delivery of miRNA [160]. There are three
methods for miRNAs delivery into tumors. The first one is based on
lipid nanoparticles. Liposomes are spherical lipid bilayers that mimic
biological membranes. Cationic liposome is positively charged and
the negatively charged DNA binds to it by electrostatic interaction.
Cells uptake lipid nanoparticles by endocytosis [161, 162]. The
second approach make use of different viruses as the delivery
agents [163]. The third method uses cationic polymers or
dendrimers. Cationic polymers such as poly-L-lysine (PLL),
polyethyleneimine (PEI), and oligopeptides can form polyplexes
with miRNAs by means of electrostatic interactions. They can
exist as linear or branched polymers of varying length.
Dendrimers are a type of highly branched synthetic polymers
with a spherical shape [160]. All of these methods have a lack of
tissue and tumor-specific selectivity. SA-miRs delivery into normal
tissues may have destructive consequences. Perhaps using of tissue
specific and tumor specific (telomerase) promoters will help to solve
this problem [164, 165]. Another possible way is to bind lipid particles
or polymers with different ligands for tumor-specific receptors [160].

The first-ever miRNA therapeutic drug called miravirsen for the
treatment of hepatitis C virus (HCV) infection is in phase II of clinical
trials. Miravirsen is a short locked nucleic acid (LNA) antisense
sequence formiR-122 [166].MiR-34amimicking drugMRX34 based
on a lipid nanoparticle delivery system was used in a Phase I clinical

trial to treat solid tumors and hematologic malignancies. This study
was terminated because of the drug’s side effects [155, 167]. The study
of two SA-miRs-based systems for PDAC therapy was started as
preclinical trials. The first system is based on using lipid particles and
mir-34a and miR-143/miR-145 cluster carrying nanovector [161,
168]. The second one employs miR-34a nanovector with special
delivery nanocomplexes [169]. Nevertheless, there has not been
developed any clinically approved miRNAs delivery system yet.

Thus, a lot of obstacles should be overcome to use SA-miRs for
both PDAC diagnostics and miRNAs-based therapy.

CONCLUSION

The SA-miRs may play two opposing roles in PDAC formation:
some of these miRNAs block cellular senescence pathways and
promote pancreatic cancer, whereas other acts like tumor-
suppressors inducing senescence and apoptosis. Both these
groups demonstrate abnormal expression levels which may be
useful for PDAC diagnostics and patients prognosis. SA-miRs
seem to have a great therapeutic potential as an instrument of
decreasing chemoresistance of PDACs and preventing cancer
cells proliferation, migration and invasion. But for the present
there has not been established any clinically approved SA-miRs-
based systems for diagnostics or therapy. Thus, future
investigations are needed to resolve these problems.
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