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Abstract
The coral is a holobiont formed by the close interaction between the coral animal and 
a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, 
fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness 
but are also highly sensitive to changes in the environment. In this study, we used 16S 
ribosomal RNA (rRNA) sequencing to examine the response of the microbial commu-
nity associated with the coral, Acropora digitifera, to elevated temperature. The  
A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) 
affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic 
community in the coral tissue is distinct from that of the mucus and the surrounding 
seawater. Remarkably, the overall microbial community structure of A. digitifera re-
mained stable for 10 days of continuous exptosure at 32°C compared to corals main-
tained at 27°C. However, the elevated temperature regime resulted in a decrease in 
the abundance of OTUs affiliated with certain groups of bacteria, such as order 
Rhodobacterales. On the other hand, some OTUs affiliated with the orders 
Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with dis-
eased and stressed corals, increased in abundance. Thus, while the A. digitifera bacte-
rial community structure appears resilient to higher temperature, prolonged exposure 
and intensified stress results in changes in the abundance of specific microbial com-
munity members that may affect the overall metabolic state and health of the coral 
holobiont.
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1  | INTRODUCTION

Coral reefs are among the most diverse and economically important 
ecosystems on the planet. A healthy coral is crucial to the productivity 
and sustainability of reef ecosystems and their surrounding communi-
ties (Riegl, Bruckner, Coles, Renaud, & Dodge, 2009). Corals serve as a 
habitat for a diverse community of symbionts, including dinoflagellates 
(Symbiodinium), fungi, bacteria, archaea and viruses. These symbionts 

have emerged as critical players in coral nutrition and health. Thus, 
maintaining symbiotic interactions is crucial for the functioning of 
the holobiont and its ability to adapt to environmental perturba-
tion (Ainsworth & Gates, 2016; Bourne, Morrow, & Webster, 2016; 
Thompson, Rivera, Closek, & Medina, 2014). Understanding how each 
member of the holobiont contributes to the resilience of the organ-
ism is paramount in light of the rapidly changing ocean conditions 
brought about by global warming and anthropogenic impacts. These 

www.MicrobiologyOpen.com
http://orcid.org/0000-0001-9888-3718
http://creativecommons.org/licenses/by/4.0/
mailto:cconaco@msi.upd.edu.ph


2 of 11  |     ﻿GAJIGAN﻿ et  al

disturbances lead to coral bleaching events that consequently result 
in a decline in coral cover and loss of biodiversity (Hoegh-Guldberg, 
1999; Palumbi, Barshis, Traylor-Knowles, & Bay, 2014).

A key to the survival of corals to the changing climate is their abil-
ity to adapt to environmental perturbation. Interestingly, certain cor-
als are found in areas that are normally exposed to warmer or more 
variable temperatures. These corals have evolved mechanisms that 
provide greater tolerance to temperature stress (Guest et al., 2012; 
Thompson & van Woesik, 2009), such as the abundant expression of 
protective proteins (Barshis et al., 2013) and association with ther-
mally tolerant Symbiodinium clades (Hume et al., 2015; Keshavmurthy 
et al., 2014). These corals may similarly be expected to maintain a 
thermally tolerant microbiome consisting of microorganisms that 
can support coral holobiont health even at elevated temperatures. 
However, it is important to note that although elevated temperature 
is a recognized stressor for corals, this might not be the case for me-
sophilic coral-associated microbes that normally thrive under these 
temperatures.

Microbiome studies have revealed the diversity of bacteria associ-
ated with different coral host species (Dinsdale et al., 2008; Littman, 
Willis, Pfeffer, & Bourne, 2009; Morrow, Moss, Chadwick, & Liles, 
2012; Rohwer, Breitbart, Jara, Azam, & Knowlton, 2001; Sunagawa, 
Woodley, & Medina, 2010). Here, we refer to the microbiome as the 
prokaryotic microorganisms (bacteria and archaea) associated with the 
coral host. Coral-associated microorganisms are niche-partitioned in 
the coral mucopolysaccharide layer, tissues, gastric cavity, and skel-
eton (Ainsworth et al., 2015; Rohwer, Seguritan, Azam, & Knowlton, 
2002). The coral mucus layer, which forms a permeable barrier be-
tween the coral tissue and seawater, is the first line of defense against 
biofouling, pathogen invasion, and sedimentation (Brown & Bythell, 
2005; Ritchie, 2006). Mucus is colonized by distinct microbial com-
munities (Brown & Bythell, 2005) and may serve as a trap for nutrient-
bearing particles that can be ingested by the coral (Krediet, Ritchie, 
Paul, & Teplitski, 2013; Wild et al., 2004). The mucus layer, together 
with the coral immune response (van de Water et al., 2015), can pre-
vent colonization of coral surfaces. However, the suppression of host 
defenses and induction of coral pathogen motility under conditions of 
stress may allow invasion of coral tissues (Garren, Son, Tout, Seymour, 
& Stocker, 2015).

While the full functional complexity of the coral-associated micro-
biota is not yet well-established, it has been shown that the stable 
association of the coral with Symbiodinium and bacteria provides ac-
cess to nutrients and metabolic products and contributes to the en-
ergy budget of the host (Ainsworth, Fine, Blackall, & Hoegh-Guldberg, 
2006; Dobretsov & Qian, 2004; Lema, Willis, & Bourne, 2012; Lesser, 
Bythell, Gates, Johnstone, & Hoegh-Guldberg, 2007). In the oligotro-
phic environment of the reef, the presence of multiple pathways for 
efficient assimilation of essential nutrients, such as carbon and ni-
trogen, provides an advantage. Microbes associated with corals are 
able to utilize organic carbon and fix inorganic nitrogen to support 
the metabolic requirements of the coral and Symbiodinium (Brown & 
Bythell, 2005; Cardini et al., 2015; Ceh, van Keulen, & Bourne, 2013; 
Lema et al., 2012). In addition, coral-associated bacteria may play a 

role in controlling the growth of other microorganisms or preventing 
corals from being infected by pathogens (Bourne et al., 2016; Raina, 
Tapiolas, Willis, & Bourne, 2009; Rosenberg, Koren, Reshef, Efrony, 
& Zilber-Rosenberg, 2007). Furthermore, bacteria have also been 
demonstrated to have the ability to regulate settlement and meta-
morphosis of corals (Hadfield, 2011; Negri, Webster, Hill, & Heyward, 
2001; Webster et al., 2004).

The coral-associated bacteria community is relatively resilient to 
fluctuations in the environment. However, perturbations will likely af-
fect members of the community in different ways. For example, the 
microbial community in Acropora millepora was found to remain con-
sistent during different times of the year but bleaching of the coral 
resulted in the appearance of Vibrio-affiliated sequences (Bourne, Iida, 
Uthicke, & Smith-Keune, 2008; Littman et al., 2009). Acropora aspera 
and Stylophora pistillata similarly exhibited variation in their microbial 
communities following coral bleaching (Ainsworth & Hoegh-Guldberg, 
2009). Interestingly, the bacterial community of Acropora tenuis asso-
ciated with a thermotolerant clade of Symbiodinium was more sensi-
tive to thermal perturbation compared to the bacterial community in 
A. tenuis hosting Symbiodinium from a different clade (Littman, Bourne, 
& Willis, 2010). This is most likely explained by the enhanced suscep-
tibility of corals to opportunistic pathogens when Symbiodinium-host 
interactions are sub-optimal. This further suggests that, aside from the 
microbial community associated with coral tissue and mucus, the bac-
teria associated with Symbiodinium, particularly those with the ability 
to fix nitrogen (Lema et al., 2012), may also influence the resilience of 
corals to thermal stress. In Acropora hemprichii and Mussismilia hart-
tii, the nitrogen-fixing bacteria community increased in abundance 
or exhibited greater activity at elevated temperatures (Cardini et al., 
2016; Santos et al., 2014). Thus, in order to better understand the in-
fluence of prokaryotic symbionts on coral physiology and health, it is 
important to elucidate the phylogenetic and functional diversity of the 
coral-associated microbial community and its dynamic responses to 
the environment.

In this study, we demonstrate the effects of an elevated tempera-
ture regime on the association of prokaryotes with the common Indo-
Pacific scleractinian coral, Acropora digitifera. A. digitifera is a common 
Indo-Pacific coral that is found in areas where temperatures can reach 
close to the upper limit of the thermal optimum for coral growth 
(Hoegh-Guldberg, 1999; Veron, 2000). We reveal how shifts in the 
abundance of certain bacterial families may be linked to a decline in 
coral health and the enhancement of opportunistic bacteria associated 
with coral disease.

2  | MATERIALS AND METHODS

2.1 | Coral collection and maintenance

Three colonies of Acropora digitifera were collected from Bolinao, 
Pangasinan, Philippines (16° 17′ 28.6′’ N, 120° 00′ 44.2′’ E) at 2–4 m 
depth in February 2015. Collections were conducted with permission 
from the Philippines Department of Agriculture Bureau of Fisheries 
and Aquatic Resources (DA-BFAR GP-0102-15). Coral colonies were 
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fragmented into 2-inch long nubbins (20 fragments per colony) and 
attached to reef plugs using epoxy. Reef plugs were labeled to en-
able tracking of the source colony of each fragment. The fragments 
were allowed to recover for a period of about 7 weeks in a tank with 
flowing seawater maintained at a temperature of 27 ± 1°C, average 
salinity of 33.6 PSU, pH of 8.11, and a 12-hr light-dark cycle with 
irradiance of 14 μmol m−2 s−1.

2.2 | Thermal stress exposure

Thermal stress experiments were conducted in 40L tanks contain-
ing constantly aerated, flowing, sand-filtered seawater and a 12 hr 
light-dark cycle with irradiance of 14 μmol m−2 s−1. Seawater tem-
perature was manipulated using submersible thermostat heaters. 
Tanks were monitored using temperature probes (Vernier Labquest 
2) and submersible HOBO pendant temperature and light loggers 
(Onset). A low irradiance was used to reduce the potential contribu-
tion of high light intensity to the coral stress response (Downs et al., 
2013). Following acclimatization, five fragments from each of the 
three colonies were transferred into two control and two treatment 
tanks (15 fragments per tank). Treatment tanks were maintained at 
5°C above ambient (32 ± 1°C). Control tanks were maintained at 
27 ± 1°C, representing the average temperature during the coldest 
months of the year (December to February) based on regular moni-
toring by the Bolinao Marine Laboratory. Throughout the course of 
the experiment, the state of the photosynthetic apparatus of the 
coral fragments was monitored, using a diving pulse-amplitude-
modulated (PAM) fluorometer (Walz). PAM readings were taken 
from all coral fragments in experimental and control tanks. Coral 
and tissue fractions from fragments from each of two colonies from 
the same control or treatment tank were subjected to 16S rRNA 
sequencing after 10 days of exposure.

2.3 | DNA extraction

Individual coral fragments were rinsed in membrane-filtered sea-
water (FSW) then sealed in a 50 ml tube for 3 min to collect mucus 
secretions (Koren & Rosenberg, 2006; Meron et al., 2010). 400 μl 
of mucus was used for DNA extraction. After mucus collection, the 
coral fragments were rinsed several times in FSW to remove excess 
mucus. Coral tissues were then collected by dispersal into FSW using 
a WaterPik. Fifty ml of the tissue homogenate was spun at 664 x g 
for 15 min at 25°C to collect the tissue fraction. 1 L of seawater was 
also sampled from each experimental tank and the microbial frac-
tion was collected by filtration through a 0.2 μm polycarbonate filter. 
DNA was extracted from mucus, tissue, and seawater samples using a 
modified CTAB method (Winnepenninckx, Backeljau, & De Wachter, 
1993). Briefly, samples were mixed with CTAB extraction buffer 
(100 mmol/L TrisCl, pH 8.0, 20 mmol/L EDTA, 2% CTAB, 1.4M NaCl, 
2.5 mg/ml lysozyme) and incubated at 37°C for 40 min. After addi-
tion of 0.2% β-mercaptoethanol and 0.1 mg/ml proteinase K, samples 
were incubated at 60°C for 1 hr followed by chloroform fractionation 
and isopropanol precipitation. The DNA pellet was washed with 70% 

ethanol and dried at room temperature. The DNA was dissolved in 1x 
TE buffer and stored at −20°C.

2.4 | 16S ribosomal RNA (rRNA) sequencing and 
data analysis

Bacterial 16S rRNA was amplified, using barcoded primers 
(515F/806R) targeting the V4 hypervariable region (Caporaso 
et al., 2010). Paired-end sequencing (250 bp) was performed on an 
Illumina MiSeq (BGI, Hongkong) following the dual-index sequenc-
ing strategy (Kozich, Westcott, Baxter, Highlander, & Schloss, 2013). 
Briefly, 30 ng of genomic DNA was used for the PCR library prepara-
tion and sequencing. V4 dual-index fusion PCR primer cocktail and 
PCR master mix (NEB Phusion High-Fidelity PCR Master Mix) were 
used at a melting temperature of 56°C and 30 PCR cycles. The PCR 
products were then purified with AmpureXP beads (AGENCOURT) 
to remove unspecified products. The average molecule length was 
determined using Agilent 2100 Bioanalyzer and quantified using 
quantitative PCR. Sequence data is available on NCBI as project 
number PRJNA341929. Operational taxonomic unit (OTU) analysis 
of sequences was done, using the mothur v1.36.1 (Schloss et al., 
2009). Size and quality filtering of reads were conducted as follows. 
Forward and reverse reads were merged to form a contig. Contigs 
with ambiguous bases and those that are >275 bp in length were 
removed. The assembled contigs were aligned to the SILVA data-
base (release 102) (Quast et al., 2013). Chimeric sequences were 
checked and subsequently removed using the Uchime algorithm 
(Edgar, Haas, Clemente, Quince, & Knight, 2011). Sequences match-
ing to chloroplast, eukaryotes, and mitochondria were also removed. 
Representative sequences were assigned taxonomic ranks using the 
Ribosomal Database Project (RDP) training set 16 with copy number 
adjustment (Wang, Garrity, Tiedje, & Cole, 2007). The extent of simi-
larity between samples was assessed by weighted Unifrac analysis 
with a p-value cutoff of 0.05 (Lozupone & Knight, 2005). The similar-
ity of community structure between control and treated samples was 
assessed using ʃ-Libshuff, analysis of molecular variance (AMOVA) 
and homogeneity of molecular variance (HOMOVA) (Schloss, 2008; 
Singleton, Furlong, Rathbun, & Whitman, 2001). Libraries were con-
sidered significantly different if the p-value was <0.05 for AMOVA 
and HOMOVA or if either of the two p-values generated for an 
individual pairwise comparison was <0.025 (ʃ-Libshuff). Metastats 
was used to detect differentially abundant features (p-value <0.05) 
in the sequence libraries (White, Nagarajan, & Pop, 2009). LEfSe, 
implemented in mothur, was used to detect bacterial groups that 
most likely explain differences between coral compartments (mucus 
and tissue) and seawater using an alpha value of 0.05 for both the 
Wilcoxon and Kruskal Wallis ANOVA tests and an LDA score thresh-
old of 2.0 (Segata et al., 2011). Calculation of Chao1 and inverse 
Simpson diversity indices, as well as the LEfSe and Metastats analy-
ses, were conducted using subsampled libraries to keep the num-
ber of sequences the same across samples. Subsampling was done 
by random selection of sequences based on the size of the smallest 
library.
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3  | RESULTS

3.1 | Diversity of the coral-associated microbial 
community

To understand how the coral-associated microbial community responds 
to sustained exposure to elevated temperature, the V4 hypervariable re-
gion of the 16S rRNA gene was sequenced using Illumina Miseq. Duplicate 
samples of tissue and mucus from corals exposed to 27°C and 32°C, as 
well as seawater samples from experimental tanks, were included in the 
analysis. At an average sequencing depth of 69,107 reads per sample, the 
rarefaction curve for coral tissue reached saturation, whereas the curves 
for coral mucus and seawater communities did not, indicating that the 
latter samples were composed of more complex communities (Figure S1). 
A total of 13,286 operational taxonomic units (OTUs) were identified at 
a 97% sequence identity cutoff. About 2,468 and 2,498 OTUs were de-
tected in the control and treated mucus samples, respectively, while only 
1,220 and 1,166 OTUs were found in control and treated tissue samples, 
respectively (Figure S2). Coral OTUs were grouped into approximately 
33 phyla, 57 classes, and 83 different bacterial and archaeal orders. It is 
important to note, however, that in silico evaluation of 525F/806R V4 
primers using SILVA TestPrime (Klindworth et al., 2013) reveals that only 
52.6% archaea and 86.2% bacteria will be amplified. In addition to the 
primer coverage limitation, this primer set results in underrepresenta-
tion of the SAR11 clade (Apprill, McNally, Parsons, & Weber, 2015) and 
Thaumarchaeota (Parada, Needham, & Fuhrman, 2016) and limits detec-
tion of phyla under candidate phyla radiation (CPR) (Brown et al., 2015). 
Hence, we speculate that utilization of other primer sets will detect an 
even greater number of OTUs.

The bacterial community in the tissues and mucus layer of A. dig-
itifera is distinct from the bacteria found in surrounding seawater 
(Figure 1a). Water and mucus samples exhibited higher species rich-
ness compared to coral tissues. In contrast, tissue and water samples 
exhibited higher diversity compared to the mucus (Figure 1b).

Similar to previous observations in other corals (Bayer et al., 2013; 
Blackall, Wilson, & van Oppen, 2015; Bourne et al., 2016; Li et al., 
2014; Littman et al., 2009), the majority of the identified OTUs in 
A. digitifera belong to the Proteobacteria phylum and is dominated by 
the Gammaproteobacteria and Alphaproteobacteria classes (Figure S3). 
The Gammaproteobacteria make up 13% of the community in coral 
tissue, 45% in mucus, and 21% in seawater. Gammaproteobacteria 
orders that are found at higher proportion in coral mucus include 
Alteromonadales, Oceanospirillales, and Vibrionales (Figure 2a). Class 
Alphaproteobacteria makes up 24% of the tissue community, 12% of 
mucus, and 18% of seawater. Alphaproteobacteria orders that are found 
at higher proportion in coral tissue include Rhizobiales, Rhodobacterales, 
and Spingomonadales. Order Actinomycetales and Flavobacteriales are 
also found at higher proportion in coral tissue. The Endozoicomonas 
genus of Gammaproteobacteria, which can constitute up to 90% of the 
bacterial community of certain corals (Bayer et al., 2013; Morrow et al., 
2012; Rodriguez-Lanetty, Granados-Cifuentes, Barberan, Bellantuono, & 
Bastidas, 2013), only makes up 1.2–15.1% of the Gammaproteobacteria 
in A. digitifera. LEfSe analysis further revealed bacterial groups that dis-
tinguish between seawater, coral tissue, and coral mucus (Figure 2b). 
Seawater has a greater abundance of OTUs affiliated with Nitrospinales, 
Oceanospirillales (genus Litoricola), Flavobacteriales, and SAR11. OTUs 
belonging to Planctomycetales, Pseudomonadales, Oceanospirillales (genus 
Endozoicomonas), Alteromonadales (genus Shewanella), Desulfobacterales, 
Rhodobacterales, Rhizobiales, Bacteroidales, Bacillales, and Actinomycetales, 
are enriched in coral tissue. OTUs belonging to order Alteromonadales 
(genus Psychrosphaera) and Vibrionales (genus Vibrio) are enriched in coral 
mucus.

3. 2 | Response of the coral-associated microbial 
community to elevated temperature

Sustained exposure of A. digitifera fragments to elevated tempera-
ture did not result in obvious bleaching. However, on the tenth day of 

F IGURE  1 Comparison of bacterial communities in coral tissue, mucus, and seawater. (a) Principal component analysis based on the Yue & 
Clayton dissimilarity measure reveals that tissue, mucus, and seawater samples can be distinguished by their microbial community composition 
based on 16S rRNA phylotypes (mucus 27°C, MC; mucus 32°C, MT; tissue 27°C, TC; tissue 32°C, TT; seawater 27°C, WC; seawater 32°C, WT). 
Numbers indicate the colony source for mucus and tissues samples. The percent of total variation explained by each component is shown in 
parentheses. (b) Seawater communities have the highest species richness, followed by coral mucus and tissue. Richness is based on the Chao1 
index. On the other hand, seawater and coral tissues have higher species diversity compared to mucus communities. Diversity is based on the 
Inverse Simpson index

(a) (b)
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exposure, we observed a slight but significant decline in photosynthetic 
efficiency (Fv/Fm) from 0.82 ± 0.04 to 0.70 ± 0.05 (Student’s t-test, 
p < 0.001) in the coral fragments at 32°C relative to the controls main-
tained at 27°C (Figure S4). This indicates some level of deterioration of 
the cellular integrity of photosynthetic dinoflagellate symbionts within 
the coral tissues. It is likely that continued exposure to elevated tem-
perature would eventually result in breakdown of the coral-algal sym-
biosis (Brown, 1997; Kvitt, Rosenfeld, Zandbank, & Tchernov, 2011).

Prolonged exposure to 32°C did not appear to cause any large-
scale changes in coral bacterial community structure compared to 
controls at 27°C based on OTU composition analysis using ʃ-Libshuff, 
HOMOVA, and AMOVA (Table S1 and S2). Coral communities re-
mained dominated by Proteobacterial classes. While the total number 
of OTUs detected in coral samples exposed to elevated temperatures 
was similar to samples that were maintained at 27°C, shifts in the 

relative frequency of specific OTUs were detected (weighted UniFrac, 
p < 0.05). Sustained exposure to elevated temperature resulted in sig-
nificant changes in the abundance of 209 unique OTUs in coral tissue 
and mucus (Metastats, p < 0.05) (Table S3). The majority of differen-
tially abundant OTUs in coral tissues showed an increase in relative 
abundance (74%, 125 of 168 OTUs). In contrast, a larger proportion 
of differentially abundant OTUs in coral mucus decreased (71%, 32 of 
45 OTUs) (Table S3).

3.3 | Bacterial groups affected by elevated 
temperature exposure

Exposure to elevated temperature resulted in a change in the fre-
quency of several bacterial groups associated with the tissue and 
mucus of A. digitifera (Figure 3; Table S3). Most OTUs belonging to 

F IGURE  2 Bacterial community 
composition of coral tissue, mucus, and 
seawater. (a) Relative abundance of 
bacterial taxa classified to order level 
and corrected for copy number. The 
dendrogram is based on the Yue & Clayton 
measure of dissimilarity. (b) Bacterial taxa 
that distinguish between coral tissue, 
mucus, and seawater communities based 
on LEfSe analysis (LDA>2, alpha < 0.05)
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order Rhodobacterales (class Alphaproteobacteria) exhibited a sig-
nificant decrease in abundance in both coral mucus and tissue. On 
the other hand, most OTUs belonging to order Rhizobiales (class 
Alphaproteobacteria) increased in coral tissue. In coral mucus, some 
OTUs belonging to order Vibrionales (class Gammaproteobacteria) 
increased while some decreased in abundance. OTUs belonging 
to order Alteromonadales (class Gammaproteobacteria) increased in 
coral tissue. Deltaproteobacteria OTUs, which include the sulfate-
reducing Desulfobacterales and Desulfovibrionales, also increased in 
abundance in coral mucus and tissue. Other notable groups that ex-
hibited a significant increase in abundance in coral tissues exposed 
to elevated temperatures include OTUs affiliated with Actinobacteria 
and Epsilonproteobacteria, specifically the genus Arcobacter. Most 
Planctomycetia OTUs decreased in abundance in coral tissue.

4  | DISCUSSION

4.1 | Coral-associated microbiota

The coral microbial community described here includes members of 
the bacterial groups reported to represent the coral core microbiome 

(Ainsworth et al., 2015; Bourne et al., 2016), as well as groups that 
have been previously detected in other corals. Among the commonly 
reported coral bacteria are members of order Rhodobacterales (class 
Alphaproteobacteria), order Actinomycetales (class Actinobacteria), and 
genus Endozoicomonas (class Gammaproteobacteria). Some bacterial 
groups found in the A. digitifera microbiome, including Oceanospirillales, 
Alteromonadales, and Vibrionales, have been implicated in the metabo-
lism of dimethylsulfoniopropionate (DMSP) that is produced by pho-
tosymbionts, as well as in the fixation of nitrogen (Bourne et al., 2013; 
Raina et al., 2009). Moreover, the order Oceanospirillales, which is 
dominant in the coral mucus, has been reported to be vertically trans-
mitted within coral larvae and has a symbiotic role in coral develop-
ment (Bayer et al., 2013; Speck & Donachie, 2012). The characteristic 
functional properties of these different bacterial groups may shape 
their symbiotic relationship with the host coral.

4.2 | Distinct microbial communities in coral 
compartments exhibit varying responses

There are distinct differences in the association of bacterial groups 
with different coral compartments, which may reflect variable 

F IGURE  3 Thermal stress results in 
changes in the abundance of specific 
bacterial groups. Plot representing the 
relative abundance (log2 fold change) 
of OTUs in coral mucus (a) or tissue (b) 
that are significantly different between 
samples exposed to 32°C or 27°C based 
on Metastats analysis (p < 0.05). Red 
circles represent OTUs that increased in 
frequency while blue circles represent 
OTUs that decreased in frequency
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conditions within each micro-niche. For instance, excretion of broadly 
active compounds in the mucus allows the host to effectively control 
the microbiota and to detect pathogenic microorganisms or trigger 
defense responses by exclusion of undesirable community members 
or selection of symbionts (Krediet, Ritchie, Paul et al., 2013). Chemical 
cues or nutrients in the mucus may also attract microorganisms with 
potentially beneficial functions, or attract and maintain keystone mi-
crobes that would in turn shape the microbiota to be resistant to in-
vasion by potential pathogens. Alternatively, it is possible that some 
members of the bacterial community can alter their physiology to take 
advantage of the warmer environment. In fact, the bacteria may them-
selves initiate their release from the coral surface through a change 
in their lifestyle or motility properties, perhaps enhancing their abil-
ity to invade other niches (Garren & Azam, 2011; Garren et al., 2015; 
Ritchie & Smith, 2004).

We found that mucus samples exhibit lower diversity than tissue. 
Because diversity indices take into account both species richness and 
evenness, the lower diversity index of mucus samples may reflect 
greater number of rare OTUs. The presence of rare bacterial groups 
in the mucus communities is expected given the potential for micro-
bial exchange at this interface between the coral and the surrounding 
seawater (Lema et al., 2012). Exposure to thermal stress resulted in a 
decrease in microbial diversity in coral tissue although species rich-
ness remained almost the same, signaling a change in the abundance 
of various bacteria within this compartment. Also, it is observed that 
more OTUs significantly increased in proportion in the tissue, which 
may be due to migration or proliferation of bacteria in coral tissues. 
More OTUs in the mucus decreased in proportion, which is likely due 
to the shedding of the mucus layer, changes in mucus composition, 
or depletion of mucus reserves, which can directly affect carbon cy-
cling within the mucus microniche (Garren & Azam, 2011; Lee, Davy, 
Tang, & Kench, 2016). The release of mucus is part of the mechanism 
by which the coral-associated bacterial population may be controlled, 
as has been previously described in the coral Acropora eurystoma ex-
posed to varying pH levels (Meron et al., 2010) and corals exposed to 
organic enrichment (Garren & Azam, 2011).

4.3 | Response of coral-associated microbes 
to thermal stress

Interestingly, few bacterial groups associated with A. digitifera ex-
hibited a significant response to elevated temperature exposure. 
Nevertheless, some of these taxa are potentially important in terms 
of their effects on holobiont metabolism or host health. For example, 
Alteromonadales and Vibrionales, which changed in abundance in coral 
tissue and mucus under elevated temperature conditions, have previ-
ously been linked to coral stress and disease (Bourne, Iida, Uthicke, & 
Smith-Keune, 2007; Garren & Azam, 2011; Garren, Raymundo, Guest, 
Harvell, & Azam, 2009; Krediet, Ritchie, Paul, et al., 2013). Although 
not all Vibrio are pathogenic, some species have been reported to be 
responsible for certain coral diseases associated with increased sea 
surface water temperatures (Ben-Haim et al., 2003; Kimes et al., 
2012). Members of the genera Alteromonas and Vibrio are common 

marine bacteria that possess a diverse metabolic repertoire allowing 
them to exploit the nutrient rich micro-niches of corals (Lopez-Perez 
et al., 2012; Thompson, Iida, & Swings, 2004). Both Alteromonadales 
and Vibrionales have been recovered from the coral surface mucus 
layer where the microbiota interacts with potential pathogens and 
environmental organisms (Littman et al., 2010). However, the bacte-
ria may also be able to migrate between the mucus and tissue com-
partments (Garren et al., 2015; Lee, Davy, Tang, Fan, & Kench, 2015). 
Interestingly, isolates of these bacteria taken from various corals ex-
hibit antimicrobial properties (Shnit-Orland & Kushmaro, 2009) that 
may confer a competitive advantage against other members of the 
microbial community.

In contrast to observations from thermal stress experiments 
in the coral Acropora muricata (Lee et al., 2015), where total 
Gammaproteobacteria decreased while Verrucomicrobiaceae and 
total Alphaproteobacteria increased, we observed a general decrease 
in the relative abundance of Alphaproteobacteria OTUs and an in-
crease in total Gammaproteobacteria OTUs in A. digitifera. Members 
of Alphaproteobacteria, specifically order Rhodobacterales, are ubiq-
uitous in coral reef ecosystems (Lawler et al., 2016) and comprise 
one of the dominant orders of bacteria in corals (Kemp et al., 2015) 
while order Rhizobiales are potentially Symbiodinium-associated taxa 
(Ainsworth et al., 2015). It has been shown that Alphaproteobacteria 
are typically associated with reefs that have higher coral cover while 
Gammaproteobacteria and Flavobacteriales are abundant in more de-
graded algae-dominated reefs (Kelly et al., 2014). The dominance 
of Gammaproteobacteria in the mucus microbiome of corals at the 
Bolinao reef complex may partly reflect the long-term influence of 
multiple stressors, including highly variable temperature (Peñaflor, 
Skirving, Strong, Heron, & David, 2009) and high nutrient input from 
fish farming activities in the area (Garren et al., 2009). Differences in 
host specificity and geographic variability may also contribute to the 
observed differences in the response of the microbial community of 
A. digitifera and A. muricata to elevated temperature (Hester, Barott, 
Nulton, Vermeij, & Rohwer, 2016; McKew et al., 2012; Morrow et al., 
2012; Neave et al., 2017).

The Deltaproteobacteria, which include the sulfate-reducing bac-
teria Desulfobacterales and Desulfovibrionales, increased in abundance 
in treated relative to the control samples. Sulfate-reducing bacteria 
are present in healthy corals but have also been implicated as part of 
the microbial consortium that induces Black Band Disease (Arboleda 
& Reichardt, 2008; Meron et al., 2010). We speculate that depletion 
of oxygen as the temperature rises triggers an increase in the abun-
dance of sulfate reducers. Furthermore, the genus Arcobacter of 
Epsilonproteobacteria increased in corals under stress. Members of 
this group are closely related to human and animal pathogens (Miller 
et al., 2007) but have also been isolated from diverse marine environ-
ments (Kim, Hwang, & Cho, 2009; Wirsen et al., 2002). Most OTUs 
under the Bacteroidetes group, specifically order Flavobacteriales, in-
creased in tissue fractions of corals exposed to higher temperature. 
Flavobacteriales have been detected in the corals Orbicella faveolata 
(Sunagawa et al., 2009) and Oculina patagonica (Koren & Rosenberg, 
2006) and are associated with White Band Disease in Acropora 
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cervicornis (Gignoux-Wolfsohn & Vollmer, 2015), Black Band Disease, 
and other stress conditions of scleractinian corals (Frias-Lopez, Zerkle, 
Bonheyo, & Fouke, 2002; Meron et al., 2010; Sekar, Kaczmarsky, & 
Richardson, 2008; Thurber et al., 2009).

Actinobacteria were also found to increase in A. digitifera tissues 
under stress. Members of this group are known to produce com-
pounds with antibacterial activities. Thus, their increased abundance 
during stress may be key to controlling the coral bacterial population 
and preventing the invasion of potential pathogens (Krediet, Ritchie, 
Alagely, & Teplitski, 2013; Ritchie, 2006). Diverse Actinobacteria com-
munities have been reported in many corals, including A. digitifera 
from the Gulf of Mannar (Nithyanand, Indhumathi, Ravi, & Pandian, 
2011), Porites lutea from the South China Sea (Kuang, Li, Zhang, & 
Long, 2015), and other corals from the thermally stressed reefs of the 
Arabian Gulf (Mahmoud & Kalendar, 2016). In addition, the decrease 
in abundance of most Planctomycetia OTUs, which are associated to 
nitrogen fixation or degradation of sulfated polymers (Glockner et al., 
2003; Zehr, Mellon, & Zani, 1998), may contribute to the reduction in 
these metabolic capacities within the holobiont.

The shift in microbial community under elevated temperature con-
ditions suggests that the coral-associated bacteria have differing sen-
sitivities to thermal stress. The diversity of the microbial community in 
corals provides functional redundancy as various members have the 
potential to access alternative metabolic pathways for survival that 
may be critical for adaptability of the holobiont during conditions of 
stress. Although some groups represented within the coral have been 
previously associated with disease states, it remains unclear whether 
the bacterial types that significantly change in abundance under con-
ditions of elevated temperature represent pathogens driving diseased 
states or are merely opportunists taking advantage of the shift in bac-
terial assemblage or of host physiology.

5  | CONCLUSIONS

The importance of the microbial symbionts for the survival of A. digitif-
era is underscored by the finding that the genome of this coral lacks 
a key enzyme for the synthesis of the amino acid cysteine, which is 
crucial for proper folding of protein structures and is often involved 
in enzymatic reactions (Shinzato et al., 2011). This coral is thus likely 
dependent on its symbionts for the provision of cysteine and the pre-
cursors for its synthesis. Our findings, however, show that A. digitifera 
and its associated microbiota can respond dynamically to the envi-
ronment as an essential mechanism of coping with stress. Although 
specific members of the coral bacterial community may have greater 
sensitivity, the maintenance of the general community structure even 
after prolonged exposure to elevated temperature underscores the 
resilience of this community to higher temperatures. The key to the 
stability of the bacterial community of A. digitifera may lie in its di-
versity and functional redundancy, with multiple species contributing 
to the metabolic demands of the host through their ability to access 
alternative metabolic pathways that may be critical for adaptability of 
the holobiont during conditions of stress.

However, despite the ability of the bacterial community to adapt 
to local conditions through the selection of advantageous metabolic 
genes (Kelly et al., 2014), sustained environmental stress will impact 
nutrient cycling and have lasting effects on the holobiont defense 
systems with the loss of community-mediated growth control mech-
anisms. This emphasizes the importance of maintaining the structure 
of the community, as disturbances that disrupt the natural abundance 
of certain bacteria may allow opportunistic members to proliferate or 
pathogenic bacteria to invade coral tissues (Krediet, Ritchie, Alagely, 
et al., 2013; Lee et al., 2016). The ability of the coral-associated bacte-
rial community to rapidly shift in response to external conditions can 
either exacerbate the effects of stress or support the rapid adaptation 
of corals to the changing environment (Reshef, Koren, Loya, Zilber-
Rosenberg, & Rosenberg, 2006).

Changes in the microbial community could directly reflect shifts 
in environmental parameters and could be used to detect changes in 
coral fitness in response to the environment. Understanding the con-
nections between certain bacterial groups with nutrient cycling po-
tential or pathogenic effects will contribute further insights into the 
role of the microbiome in the resilience of corals to stress and disease.
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