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A B S T R A C T

Background: T cells play a key role in the pathogenesis of multiple sclerosis (MS), a chronic, inflammatory,
demyelinating disease of the central nervous system (CNS). Although several studies recently investigated
the T-cell receptor (TCR) repertoire in cerebrospinal fluid (CSF) of MS patients by high-throughput sequenc-
ing (HTS), a deep analysis on repertoire similarities and differences among compartments is still missing.
Methods: We performed comprehensive bioinformatics on high-dimensional TCR Vb sequencing data from
published and unpublished MS and healthy donors (HD) studies. We evaluated repertoire polarization, clone
distribution, shared CDR3 amino acid sequences (CDR3s-a.a.) across repertoires, clone overlap with public
databases, and TCR similarity architecture.
Findings: CSF repertoires showed a significantly higher public clones percentage and sequence similarity
compared to peripheral blood (PB). On the other hand, we failed to reject the null hypothesis that the reper-
toire polarization is the same between CSF and PB. One Primary-Progressive MS (PPMS) CSF repertoire dif-
fered from the others in terms of TCR similarity architecture. Cluster analysis splits MS from HD.
Interpretation: In MS patients, the presence of a physiological barrier, the blood-brain barrier, does not impact
clone prevalence and distribution, but impacts public clones, indicating CSF as a more private site. We
reported a high Vb sequence similarity in the CSF-TCR architecture in one PPMS. If confirmed it may be an
interesting insight into MS progressive inflammatory mechanisms. The clustering of MS repertoires from HD
suggests that disease shapes the TCR Vb clonal profile.
Funding: This study was partly financially supported by the Italian Multiple Sclerosis Foundation (FISM), that
contributed to Ballerini-DB data collection (grant #2015 R02).
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Multiple Sclerosis (MS), the most widespread neurological disease
among young adults [1], is an inflammatory and autoimmune
disorder characterized by the disruption of myelin in the central ner-
vous system (CNS). Despite the establishment of several risk factors
including genetics, environment and infections, MS etiology remains
unknown [2]. MS can manifest mainly in two forms: the most com-
mon (85% of all patients) is Relapsing-Remitting MS (RRMS), which
progresses with relapses interspersed with periods of partial or com-
plete recovery. The other forms are progressive, including Primary-
(PPMS) and Secondary-Progressive MS (SPMS) [3].
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Research in Context

Evidence before this study

The cerebrospinal fluid in Multiple Sclerosis, an immune-medi-
ated demyelinating, inflammatory, chronic disease of the cen-
tral nervous system, has been deeply investigated as a precious
source of information about brain tissue and disease inflamma-
tory status. T lymphocytes are usually present in Multiple Scle-
rosis cerebrospinal fluid, and a still unanswered question is
whether the central nervous system T-cell receptor repertoire
quantitatively and qualitatively differs from the periphery and
whether these differences correlate with the pathogenic mech-
anism. The study of the T-cell receptor repertoire has incredibly
improved after the advent of modern techniques of sequencing,
and T-cell receptor diversity has been addressed with numer-
ous bioinformatics approaches.

Added value of this study

Concerning T-cell receptor repertoire investigation, the use of
different bioinformatics approaches and the small sample size of
studies performed so far in Multiple Sclerosis cerebrospinal fluid,
have hampered the identification of relevant information that
may bridge molecular data and disease pathological mecha-
nisms. We overcome these limits by performing a statistical
analysis on pooled sequences carefully checked for quality. We
found that clone distribution and prevalence were similar
between Multiple Sclerosis cerebrospinal fluid and peripheral
blood, but distinguished the T-cell receptor repertoire of Multi-
ple Sclerosis patients and healthy donors. We found that cere-
brospinal fluid shows more public clones across repertoires,
whereas peripheral blood repertoires show higher overlap with
public T-cell receptor databases (McPAS-TCR and VDJdb).
Through network analysis to evaluate T-cell receptor similarity
architecture, we detected a different repertoire structure in one
active progressive Multiple Sclerosis patient, characterized by a
high sequence similarity: in the future, it would be worthwhile
to deepen this finding in progressive Multiple Sclerosis patients.

Implications of all the available evidence

Our analysis allowed us to detect, with an acceptable approxi-
mation, repertoire similarities and differences characterizing
Multiple Sclerosis and Multiple Sclerosis compartments (cere-
brospinal fluid, and peripheral blood). We believe that our
approach will support advances in the future analysis of the T-
cell receptor repertoire in Multiple Sclerosis.
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MS pathogenesis is complex and heterogeneous and it is in part
mediated by autoreactive T lymphocytes that migrate from the periph-
ery to the CNS across the blood-brain barrier (BBB) and attach myelin.
In their path to the CNS, T cells recirculate through the cerebrospinal
fluid (CSF), which is a compartment of choice for MS diagnosis (e.g.,
detection of oligoclonal bands) and biomarkers investigation [4,5]. The
abnormal presence of T cell repertoire within the CSF of MS patients
was first reported in studies mainly performed by spectratyping tech-
nology and/or flow cytometry [6,7], and in recent times thanks to the
advent of high-throughput sequencing (HTS), that revolutionized the
study of the TCR [8] The latest investigations confirmed the presence
of a compartmentalized enrichment of T cells in the CSF of MS patients
[9], and showed that some T-cell clones seem to be selectively shared
only among MS patients when compared to patients affected with
other neurological disorders [10,11]. The comparison of in vitro
expanded CSF-derived T-cell clones with other compartments such as
peripheral blood and brain lesions of MS patients showed that some of
these clones are shared with memory CD4+ T cells in the peripheral
blood and in brain lesions [12].

Despite these interesting results, the investigation of the TCR rep-
ertoire by HTS in heterogeneous diseases such as MS remains a young
field and the scientific community still lacks common criteria for the
bioinformatics analysis of results that may underlie differences and
similarities between compartments in MS patients. Furthermore, HTS
analysis provides an enormous amount of TCR sequencing data that
may be challenging to understand and to be linked with the clinical
and biological aspects of the disease [13]

For these reasons, we decided to investigate the MS TCR reper-
toire, performing a statistical analysis on HTS-TCR sequencing data
previously obtained by other groups [9�11], together with a newly
collected database (Ballerini database). TCR data were derived from
CSF and peripheral blood (PB) of MS patients. Our aimwas to pool dif-
ferent MS databases increasing the statistical power of the analysis, to
identify common features and differences in the TCR repertoire of CSF
and PB of MS patients.

2. Methods

2.1. Selection of T-cell receptor databases

In the present work, we selected the most recent TCR Vb sequenc-
ing studies performed by HTS from MS patients starting from 2014,
when the HTS technology was used for the first time to investigate
CSF T cells. For finding studies, we adopted the following keywords:
TCR repertoire, MS, HTS/NGS, CSF. The included researches are
reported among references and encompass TCR Vb sequencing data
from PB, CSF and brain lesions [9�11]. All non-HTS studies were
excluded from this analysis [6,14,15] We also excluded a recent study
[12] that reports TCR Vb sequencing data only fromMS brain lesions.

We added to the analysis our unpublished TCR Vb sequences,
termed hereafter Ballerini database (Ballerini-DB), according to inclu-
sion criteria.

2.2. Ballerini database: patient enrollment and ethics statement

CSF samples were obtained from incoming patients undergoing
the diagnostic lumbar puncture and enrolled at Neurological Clinic
(University of Florence, Italy). All patients signed informed consent
and Local Ethical Committee authorized the study (#2014/003,601).
Patients characteristics are summarized in Table 2. Final MS diagnosis
was performed according to McDonald criteria.4 Recruited patients
had the following characteristics: age between 18 and 55 years; no
immunomodulatory therapy since at least six months; no immune-
suppressive therapy since at least 12 months; no corticosteroid
administration in the previous month. Exclusion criteria: cognitive
decline preventing informed consent release; concomitant diseases
that may interact with disease course or with sample processing (e.g.
neoplasms or infections as hepatitis or Human Immunodeficiency
Virus [HIV]) or induce any risk for the patient; pregnancy or breast-
feeding. Recruited patients were clinically assessed every six months.
All patient material was encoded to avoid identification of the indi-
vidual's name or identity during material processing.

2.3. Ballerini database: peripheral blood and cerebrospinal fluid
collection

Whole PB was collected in heparin-containing tubes. Peripheral
blood mononuclear cells (PBMCs) were collected by density gradient
centrifugation using Pancoll (density: 1.077 g/mL; PAN-Biotech, Ger-
many) at 1500 rpm, RT, for 30 min within six hours from blood col-
lection. PBMCs were cryopreserved in 10% dimethyl sulfoxide
(DMSO) in aliquots containing 20 £ 106 cells and stored in a liquid
nitrogen freezer until used.
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We collected, as routine, 12 mL of CSF from each patient by lum-
bar puncture. The spinal tap was carried out using a Sprotte type 19
or 20 G conical elliptic shaped spinal atraumatic needle (Pajuk, Ger-
many), inserted through a four cm long, cutting tip needle as intruder
needle. CSF samples were analyzed immediately after lumbar punc-
ture for cell counts, quantitative (IgM and IgG indices) and qualitative
(oligoclonal bands) analysis of intrathecal Ig synthesis, and albumin
quotient as an indicator of the BBB status using standard methods.
We included CSF samples (12 mL each) with >0.8 cell/ml, in order to
achieve a total of 10,000 cells and to avoid a sample bias that may
have affected the TCR repertoire profile.[16] Cells were isolated by
centrifuge at 800 rpm for 15 min, RT, and destined to RNA isolation,
as described below.

2.4. Ballerini database: T-cell isolation and sorting, RNA extraction and
TCR Vb sequencing

CD3+ cells were isolated from PBMCs of patients. PBMCs were
thawed in defrosting medium (10% Fetal Bovine Serum in Dulbecco's
phosphate-buffered saline), centrifuged at 1300 rpm, for 10 min, RT,
then counted and destined to CD3+ cells isolation by negative immu-
nomagnetic depletion using the Pan T Cell Isolation Kit human (Milte-
nyi Biotec, Germany), following manufacturer’s protocol. CD3+ cells
fraction was eluted through the LS column placed on a suitable MACS
separator (Miltenyi Biotec, Germany).

From CD3+ purified cells, we sorted EM and CM CD4 and CD8 T
cell subpopulations. CD3+ cells were washed once in MACS buffer
(PBS 1X with 0.5% bovine serum albumin and 2 mM ethylenediami-
netetraacetic acid) at 1500 rpm, RT, for 5 min, and then resuspended
in RPMI 1640 medium and counted. To identify EM and CM CD4 and
CD8 T cells, CD3+ cells were divided in two tubes and labelled for
20 min, RT, in the dark, with the following human fluorescent anti-
bodies: one tube with anti-CD4 APC (clone: OKT4), anti-CD45RA FITC
(clone: HI100), anti-CCR7 PE (clone: 3D12); the other tube with anti-
CD8 PE Cy7 (clone: RPA-T8), anti-CD45RA FITC (clone: HI100), anti-
CCR7 PE (clone: 3D12). All the antibodies are from eBioscence, USA.
Memory T-cell subpopulations were sorted by FACSAria II flow
cytometer (BD Bioscences, USA).

From CSF cells and paired peripheral EM and CM CD4 and CD8 T
cells, RNA was extracted immediately after sorting by the RNeasy
Plus Micro Kit (Qiagen, Netherlands), according to the manufacturer's
protocol. RNA purity was assessed by NanoDrop ND-1000 spectro-
photometer (EuroClone, Italy) evaluating the 260/280 nm absor-
bance. RNA concentration (pg/mL), rRNA ratio [28S/18S], and RNA
Integrity Number (RIN) were evaluated using the RNA 6000 Pico Kit
(Agilent, USA) and the Agilent BioAnalyzer 2100, according to the
manufacturer's protocols.

RNA was destined to TCR Vb sequencing. TCR Vb libraries genera-
tion and HTS were performed by iRepertoire Inc. (Huntsville, AL,
USA). TCR Vb libraries were prepared by the patented tem-PCR (for
target enriched multiplex PCR technology; iRepertoire Inc.). After
purification, amplified TCR Vb chain libraries were sequenced by
MiSeq Illumina platform, using 250 PER (paired-end read) primers,
which cover framework 1 to C-region.

3. Data statement

The TCR Vb sequencing data will be deposited upon publication
and made available by the authors, without undue reservation, to
any qualified researcher.

3.1. Data visualization

Statistical analysis of TCR Vb sequencing data was performed
using the programming environment R [17]. Graphics were gener-
ated using the R packages ggplot2 [18], ggpubr [19] igraph [20] and
ComplexHeatmap [21]. Hierarchical clustering of evenness profiles
was performed based on correlation-based distance and visualized
by heatmaps using the NMF R package; [22] according to NMF pack-
age default, average linkage clustering was used. Repertoire architec-
ture networks were visualized using Cytoscape [23].

3.2. Statistics

In order to compare two compartments (CSF and PB), we evalu-
ated a set of statistics for each TCR Vb repertoire — Shannon-Even-
ness (see below), public clones percentage, public databases overlap,
connected clones percentage.

To adjust for database differences, we performed mean-centering
normalization within each database, similar to Nygaard et al. [24].
Briefly, we subtracted the mean value of the statistics in one database
from all statistics in that database. After the normalization, we com-
pared the statistics between two compartments (CSF and PB) using a
two-sample Mann�Whitney test.

For public databases overlap analysis, we performed one-tailed
Fisher’s exact test for each disease category (see Supplementary Fig.
3 for details). The p-values were adjusted for multiple testing using
the Bonferroni correction.

Statistical significance was considered when adjusted p-val-
ue<0.05.

3.3. Shannon-Evenness and clonal expansion profiles

Shannon�Evenness (S-E) is defined as the quotient of the expo-
nential of the Shannon entropy and species richness (SR: number of
unique CDR3s in a given TCR database) [25,26].

Shannon-Entropy = �S fi log fi, where fi is the frequency of the ith
clone in a given TCR database.

Shannon-Evenness = expð�S fi log fiÞ=SR
Shannon�Evenness is one if all clones in a repertoire have the

same frequency (an “even” repertoire), or it converges to zero if very
few clones dominate in the repertoire (a “polarized” repertoire), that
is, if very few clones have very high frequency and a lot of clones
have a very low frequency.

Clonal expansion profiles (also called Evenness profiles) represent
Hill diversity profiles scaled by the repertoire SR. Hill diversity pro-
files are defined as:

qD ¼
XSR
i¼1

f qi

 ! 1
1�q

;

where fi is the frequency of the ith clone in a given TCR database.
Clonal expansion profiles are then defined as qD/SR, where q ranges
from zero to ten with a step size of 0.2. The parameter q determines
the importance of high-frequency clones in the determination of the
q-parameterized evenness; the higher q, the more high-frequency
clones are weighted [26].

4. Definition of private and public Vb clones

A TCR Vb clone (V-J-CDRb3 a.a.) was considered private when
present in the repertoires of only one individual and public when
shared across repertoires of at least two individuals or shared with T
cell Vb clones present in one of the public databases below [25].

5. Clone network analysis

Networks of TCR Vb repertoires were constructed as follows:
Briefly, for each repertoire, a network was drawn using the R package
igraph [20] based on the top 10,000 (or less if fewer clones were
found in a patient's repertoire) CDR3s-a.a. (top 10,000 represented
for all repertoires with more than 90% of sequencing reads). Within
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each network, each node is a CDR3-a.a., and links between nodes are
drawn if the internode Levenshtein distance (LD) is maximally one
(=one a.a. sequence change) [27�29]
6. Publicly available T-cell receptor Vb databases used

Our TCR Vb data were compared with other databases briefly
described in the following. The McPAS-TCR database is manually
curated and stores TCR Vb sequences associated with various pathol-
ogies and antigens based on published literature [30]. The McPAS-
TCR data here analyzed were downloaded on February 3, 2020.

VDJdb is a database that stores and aggregates the results of pub-
lished T-cell specificity assays coupling antigen specificities with TCR
Vb sequences [31]. The VDJdb data here analyzed were downloaded
on June 20, 2019.

Soto-DB is a recently published TCR Vb database of PB repertoire
from healthy donors (HD) [32]. The database is publicly available and
was downloaded on September 1, 2020.
7. Role of funding source

This study was partly financially supported by the Italian Multiple
Sclerosis Foundation (FISM), that contributed to Ballerini-DB data col-
lection (grant #2015 R02).
8. Results

8.1. Database characterization

According to study selection criteria (see Methods), we col-
lected TCR Vb sequencing data from Lossius-DB [9], Laplaud-DB
[10] and Muraro-DB, [11] upon authorization by the authors. The
characteristics of selected studies are summarized in Table 1. Raw
data were used for all the analyses and included sample ID, CDR3
amino acid Vb sequences (CDR3s-a.a.) with paired reads number.
In Table 2, we reported patient characteristics of the included data-
bases.

To assess TCR Vb sequencing data quality, we first investigated
whether the number of reads (#Reads), which is the total number of
CDR3 amino acid Vb sequences (CDR3s-a.a.) in a TCR repertoire, ade-
quately reflected the clonal distribution by calculating the Pearson
correlation coefficient (r) between Shannon-Evenness (S-E; see
Methods) and #Reads for repertoires within each database (Fig. 1a)
in CSF and PB compartments (Fig. 1b).

We found the Pearson correlation coefficients to be negative in all
databases (rBallerini-DB=�0.27; rLossius-DB=�0.35; rMuraro-DB=�0.21; rLa-
plaud-DB=�0.61) (Fig. 1a) and in both CSF and PB compartments
(rCSF=0.27; rPB=�0.11) (Fig. 1b), thereby showing sufficient sequenc-
ing depth. [25] The number of reads for each analyzed database is
reported in Supplementary Fig 1.
Table 1
Examined TCR Vb databases.

Database Year Disease N. of patients Source

Ballerini-DBA � MS 4 CSF, PB
Laplaud-DB [10] 2015 MS 3 brain lesions, CSF, P
Lossius-DB [9] 2014 MS 10 CSF, PB
Muraro-DB [11] 2016 MS 5 CSF, PB
A unpublished data.
8.2. T-cell receptor repertoire diversity in cerebrospinal fluid and
peripheral blood of Multiple Sclerosis patients

In order to describe the TCR repertoire diversity and clonality in
terms of Vb clone frequency and polarization, we compared normal-
ized (see Methods) S�E values across repertoires of different com-
partments (Fig. 1c). Results suggest that CSF does not significantly
differ from PB, in terms of repertoire polarization.

TCR Vb clones are named “public” when shared in at least two
repertoires (see Methods). In Fig. 1d we show that CSF-TCR reper-
toires have a higher normalized percentage of public clones com-
pared to PB (p-value=0.002; two-sample Mann�Whitney test)
(Fig. 1d).
8.3. Sequence overlap with publicly available T-cell receptor databases

To gain insight into the possible diversity of antigen-driven TCR
repertoires among CSF and PB, we compared our repertoires for the
overlap with two public TCR sequences databases: McPAS-TCR, that
collects Vb CDR3s-a.a. from literature by disease type [30], and VDJdb
[31], that collects Vb CDR3s-a.a. by antigen species (the two data-
bases are characterized in Supplementary Fig. 2a and 2b).

McPAS-TCR classifies sequences by diseases, e.g. autoimmune dis-
eases, and infections, e.g. cytomegalovirus (CMV) and Epstein-Barr
virus (EBV). We first applied one-tailed Fisher's exact test (see Meth-
ods and Supplementary Fig. 3) to test for overrepresented disease-
associated CDR3s-a.a. from McPAS-TCR database. We also calculated
standardized Pearson residual (reported in Fig. 2a) for disease-associ-
ated CDR3s-a.a. detected in our MS data. The p-values were corrected
for multiple testing using the Bonferroni correction. Five diseases
showed significant overrepresentation in our MS data: Celiac disease
(CD) (adjusted p-value=2.75�13), Influenza (adjusted p-val-
ue=2.61�14), M. tuberculosis (adjusted p-value=0.0004), and Yellow
Fever virus (YFV) (adjusted p-value=7.86�11). Then, for each signifi-
cant disease, we compared CSF and PB compartments using two-
sample Mann-Whitney test and mean-normalization (Fig. 2a). The p-
values were corrected for multiple testing using the Bonferroni cor-
rection. Compartment comparison within these categories showed
that the overlap is significantly higher in PB compared to CSF for CD
(adjusted p-value=0.001) and YFV (adjusted p-value=0.004).

VDJdb classifies sequences by antigen species. Using the same
method as above, we compared compartments CSF and PB in diseases
with overrepresented disease-associated CDR3s-a.a. (Fig. 2b) — Den-
gue virus (DENV) type 1 (adjusted p-value=2.80�06) and 3/4 (adjusted
p-value=4.50�05), and YFV (adjusted p-value=1.10�05). In all these
diseases, the sequence overlap is significantly higher in PB compared
to CSF (adjusted p-valueDENV1=0.027; adjusted p-valueDENV3/
4 = 0.019; adjusted p-valueYFV=0.04).

In order to focus on mutual interactions between CSF and brain,
we narrowed the analysis to those CDR3s-a.a. Vb sequences shared
between MS-CSF TCR repertoires and brain TCR repertoires, available
Tot n. of CDR3 Vb amino
acid sequences

Average n. of CDR3 Vb amino acid
sequences per patient

4 395 408 219 770,4
B 159 723 129 794 343,9

46 406 403 7 780 137,9
29 251 026 2 925 102,6



Table 2
MS patients characteristics.

Database Patient Sex Diagnosis Age (years) Treatments Disease duration
(months)

OCBA CSF cells count/ml HLA-DR BBBB damage IgG index alteration

Ballerini-DB CSF2 M PPMS 51 none 60 positive 4 DRB1*03:01 no yes
CSF3 F RRMS 45 none 60 positive 2 DRB1*13:01 no yes
CSF4 M RRMS 25 none 72 positive 2 DRB1*15:01 no yes
CSF5 F RRMS 37 none 48 negative 6 DRB1*15:01 no yes

Database Patient Sex Diagnosis Age (years) Treatments Disease duration
(months)

OCBA CSF cells count/ml HLA-DR

Lossius-DB MS-1 F RRMS 31 none 2 positive 25 HLA-DRB1*07,08
MS-2 F RRMS 38 none 1 positive 7 HLA-DRB1*15
MS-3 M RRMS 39 none 8 positive 15 HLA-DRB1*13,15
MS-4 F RRMS 20 none 11 positive 2 HLA-DRB1*04,13
MS-5 F CISC 45 none 9 positive 7 HLA-DRB1*15
MS-6 F RRMS 29 none 16 positive 12 HLA-DRB1*15
MS-7 M RRMS 37 none 6 positive 15 HLA-DRB1*11
MS-8 M RRMS 29 none 4 positive 11 HLA-DRB1*03,15
MS-9 F RRMS 33 none 12 positive 5 HLA-DRB1*07,15
MS-10 F RRMS 32 none 60 positive 10 HLA-DRB1*04,15

Database Patient Sex Diagnosis Age (years) Treatments Disease duration
(months)

Last treatment-sampling
interval

CSF, brain and blood
collection

HLA-DR Death-sampling
interval

Cause of death

Laplaud-DB MS-1 M SPMS 45 Azathioprine-
Cyclophosphamide
Mitoxantrone-
Interferon
Methotrexate

12 24 months postmortem DRB1*0102/1501 12 h Lung cancer

MS-2 F PPMS 66 none 10 treatment naïve postmortem DRB1*1101/1302 6 h Pulmonary infection
MS-3 F PPMS 54 Mitoxantrone 23 120 months postmortem DRB1*0301(0350)/ 1301 8 h Pulmonary infection

Database Patient Sex Diagnosis Age (years) Treatments CSF IgG OCB WBCD in CSF CSF volume (mL)
Muraro-DB MS-1 M RRMS 25 none negative 2.2 £ 105 11

MS-2 F RRMS 29 none positive 2 £ 105 11
MS-3 F RRMS 33 none positive 1.3 £ 105 10
MS-4 F RRMS 28 none positive 1.3 £ 105 11
MS-5 M RRMS 41 none positive 1 £ 105 10

A OCB: oligoclonal bands.
B BBB: blood-brain barrier.
C Clinically isolated syndrome.
D White blood cells.
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Fig. 1. TCR Vb sequencing data quality assessment. (a) Pearson correlation (r) between Shannon-Evenness and #Reads (number of total amino acid CDR3 Vb sequences, CDR3s-a.a.) in TCR
repertoires reported by a database (from left to right: Ballerini-DB, Lossius-DB, Muraro-DB and Laplaud-DB). The correlation coefficient value is reported on the upper right within each
graph. Each dot represents a patient TCR repertoire and is colored by compartment (cerebrospinal fluid [CSF] and peripheral blood [PB]). (b) Pearson correlation (r) between Shannon-
Evenness and #Reads in TCR repertoires reported by compartment (CSF, left plot; PB, right plot). The correlation coefficient value is reported on the upper right within each graph. Each
dot represents a patient TCR repertoire and is colored by database. (c) Repertoire statistics of normalized Shannon-Evenness (S-E) of the analyzed databases reported by compartment
(CSF and PB). Each dot represents a TCR repertoire and is colored based on the database. (d) Public clones normalized percentage (%) across databases, reported by compartments. Two-
sampleMann-Whitney test was used (**p<0.01).
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Fig. 2. CDR3 Vb amino acid sequences overlap between the analyzed TCR databases and the public databases McPAS-TCR and VDJdb. (a) Graph reports the normalized CDR3s-a.a.
overlap (absolute number) between the analyzed TCR database compartments (CSF and PB; x-axis) and McPAS-TCR by disease category. (b) Normalized CDR3s-a.a. overlap (absolute
number) between the analyzed TCR database compartments (CSF and PB; x-axis) and VDJdb by antigen species. The standardized Pearson residual for disease-associated CDR3s-a.a.
detected in the MS data for each disease category is reported on the right side of both (a) and (b) graphs. One-tailed Fisher’s exact test with Bonferroni correction and two-sample
Mann-Whitney test for CSF and PB comparison were used (*p<0.05; **p<0.01; ***p<0.001) (CD=Celiac disease; CMV=Cytomegalovirus; EBV=Epstein Barr virus; HCV=Hepatitis C
virus; HIV=Human Immunodeficiency virus; MS=Multiple Sclerosis; RA=Rheumatoid arthritis; T1D=Type 1 Diabetes; YFV=Yellow Fever virus; DENV=Dengue virus).
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only in Laplaud-DB. In our sample, CSF and brain repertoires share a
total of 7150 CDR3s-a.a. (Fig. 3a). Therefore, we tested for overrepre-
sented disease-associated CDR3s-a.a. from public databases as per-
formed for Fig. 2, and p-values were corrected for multiple testing
using the Bonferroni correction. We found significant overlap with
the following categories: CD and MS from McPAS-TCR (adjusted p-
valueCD=1.12�05; adjusted p-valueMS=4.36�35) (Fig. 3b) and DENV-1
from VDJdb (adjusted p-value=0.0012) (Fig. 3c).
8.4. Sequence overlap with publicly available healthy donor T-cell
receptor databases

In order to evaluate the sequence overlap between MS and
healthy donors (HD) TCR repertoire, we utilized a recently published
database [32] reporting HD TCR repertoire (Soto-DB) derived from
peripheral T cells (Fig. 4a). Soto-DB is characterized in Supplementary
Fig. 2c.

We found that PB shares more CDR3s-a.a. with HD TCR repertoires
compared to CSF (p-value=0.007; two-sample Mann-Whitney test)
(Fig. 4a).
Cluster analysis of clonal expansion across repertoires gives the
possibility to link similarity of TCR repertoire polarization by the use
of established Hill-based evenness profiles [25,26]. The heatmap in
Fig. 4b reports the hierarchical clustering of clonal polarization com-
paring MS group with HD from Soto-DB, independently from the
compartment. This result suggests we may differentiate MS from HD
on the basis of homogeneity of clonal polarization values.

8.5. T-cell receptor sequence similarity is higher in cerebrospinal fluid
compared to peripheral blood

We next analyzed the TCR repertoire architecture using Vb clonal
networks (see Methods). Repertoire architecture directly reflects
antigen recognition breadth, based on sequence similarity within a
TCR repertoire: degree of similarity is in indirect proportion with
antigen recognition breadth [25,28,29]. For each patient, we deter-
mined the Vb CDR3s-a.a. similarity at one a.a. level (Fig. 5a�d).

We found that CSF repertoires of MS patients share a similar clone
architecture and connectivity (Fig. 5a, left network in 5b and 5c),
whereas in one PPMS CSF (CSF2, Ballerini-DB) TCR Vb clones are in
most part (98%) connected (Fig. 5b, right network). Of note, the other



Fig. 3. Shared CDR3 Vb amino acid sequences between CSF and brain repertoires and overlap with public databases by disease category and antigen species. (a) Venn diagram
shows the absolute number of shared CDR3s-a.a. (N = 7150) between CSF (295,157 CDR3s-a.a.) and brain (11,618 CDR3s-a.a.) TCR repertoires. (b, c) CDR3s-a.a. overlap (absolute
number) between selected CSF-brain shared CDR3s-a.a. and McPAS-TCR (b) or VDJdb (c) by disease category or by antigen species, respectively. The exact number of shared CDR3s-
a.a. for each category is reported over bars. The standardized Pearson residual for disease-associated CDR3s-a.a. detected in the MS data for each disease category is reported below
each (b) and (c) graphs. One-tailed Fisher’s exact test and Bonferroni correction were used (CMV=Cytomegalovirus; EBV=Epstein Barr virus; HIV=Human Immunodeficiency virus;
MS=Multiple Sclerosis; RA=Rheumatoid arthritis; T1D=Type 1 Diabetes; YFV=Yellow Fever virus; DENV=Dengue virus; HCV=Hepatitis C virus).
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PPMS patient (Laplaud-DB) (Fig. 5d) is more similar, in terms of TCR
architecture, to RRMS patients rather than the PPMS patient from
Ballerini-DB.

In order to quantify the clone sequence similarity architecture
similarity, in Fig. 5E we reported the percentage of connected clones.
This percentage is significantly higher in CSF repertoires compared
to PB (p-value=0.0001; two-sample Mann-Whitney test). We, there-
fore, conclude that broad antigen recognition breadth is a repertoire
quality that differs among compartments, distinguishing CSF from
PB.



Fig. 4. CDR3 Vb amino acid sequence overlap between the TCR databases and healthy donors and TCR clonal expansion across Multiple Sclerosis and healthy donors’ repertoires. (a) Nor-
malized CDR3s-a.a. overlap percentage (%) between the analyzed TCR databases reported by compartment (CSF and PB) and healthy donors (HD) TCR database (Soto-DB). Two-sample
Mann-Whitney test was used (**p<0.01). (b) Heatmap reports the pairwise Pearson correlation between Shannon-Evenness profiles (or “evenness profiles”) of TCR repertoires across MS
and HD (Soto-DB) databases. Pearson correlation values range from �0.5 (blue) to �1 (red). Color bars on the top of the heatmap indicate compartment (different shades of pink for CSF
and PB), database (each database is reported in a different color) and disease group (dark green for HD and light green for MS). Hierarchical clustering of evenness profiles was performed
using correlation-based distance. Average linkage clusteringwas used by default. The x- and y-axis of the heatmap report the complete list of all TCR repertoires.
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Fig. 5. TCR repertoire architecture represented as clonal networks and statistics. Figure shows five representative TCR repertoires displayed as clonal networks: (a) CSF-TCR reper-
toire of one Relapsing-Remitting MS (RRMS) patient from Lossius-DB; (b) CSF-TCR repertoire of two MS patients from Ballerini-DB, one diagnosed with RRMS (left network) and the
other diagnosed with Primary Progressive MS (PPMS) (right network); (c) PB-TCR repertoire of a patient with RRMS from Lossius-DB; (d) PPMS patient CSF-TCR repertoire from Lap-
laud-DB. In all clonal networks, each dot represents a clone (a single CDR3-a.a. sequence) and connections are made between clones that differ for only 1 a.a. (Levenshtein distance
[LD] = 1). Private clones are blue and public clones are yellow. Dots size depends on clone frequency logarithm. (e) Normalized connected clones percentage (%) in TCR repertoires
from the databases visualized by compartment (CSF and PB). Two-sample Mann-Whitney test was used (***p<0.001).
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9. Discussion

We have recently developed a multidimensional, statistical analy-
sis of TCR Vb sequencing data that allowed us to identify differences
among peripheral repertoire in MS patients under two successful
treatments [25] Our primary aim in the present work was to apply
the same method to investigate the TCR repertoire in different com-
partments (CSF and PB) in MS patients, in order to establish whether
there is a detectable molecular signature due to the combination of
disease/compartment. To this end, we collected and pooled TCR rep-
ertoire Vb sequences obtained by HTS methods derived from three
independent studies performed on CSF and PB in MS patients [9�11].
We also included a recently developed TCR repertoire database from
healthy donors (HD) [32]. Among the few studies performed by HTS
on MS, we included those with comparable patient characteristics
(age, gender ratio, HLA type, treatments, etc.), in order to obtain a
homogeneous cohort of patients. We excluded a study on TCR reper-
toire (performed by HTS) investigating MS and pregnancy [33], as the
included population was different from the others. By our strategy,
we collected a total of 239 775 966 CDR3-a.a. Vb sequences from a
cohort of 22 MS patients. Our methodological approach is based on
pooling TCR Vb sequences together [34], if the quality of the data is
satisfactory. Therefore, after we assessed that data quality was good
(Fig. 1a, 1b), we proceeded with the statistics.

First, we did not find any significant difference between CSF and
PB in S-E, reflecting TCR Vb clonal distribution and prevalence
(Fig. 1c). This result may point out that taking into account exclu-
sively the clonal expansion parameter to track repertoire polariza-
tion, as it has been done in previous studies [11,35], may be a
misleading approach, promoting the idea that CSF and PB in MS could
be different in terms of clonal expansion, which is not exact.

We then described the presence of public clones within patients
in the two compartments (Fig. 1d). Indeed, one striking result of the
human TCR repertoires deep-sequencing approaches is the detection
of public TCR Vb clones, with a rate of sharing around an average of
15% between two individuals [36]. This unexpected reduction of the
inter-individual TCR Vb diversity allows speculating about the role of
public clones in immunity, suggesting that these sequences may pre-
dominate in the response against relevant pathogens. We compared
the percentage of shared Vb sequences (“public clones”) within our
samples and, interestingly, results showed that CSF repertoires are
more public compared to PB repertoires (Fig. 1d). This may indicate
that, in MS patients, CSF-TCR repertoire shares the same TCR Vb
chain more frequently than it happens in the periphery. Whether this
is linked to a specific role in the disease pathology of these Vb clones,
or it is due to the specific compartment, should be investigated com-
paring brain repertoires derived from other neurological diseases,
inflammatory and not. Of note, whether the presence of public clones
indicates common antigen specificities is still under debate. Further-
more, the increase of shared sequences in CSF may depend on many
different reasons [37], and could be enriched by bystander inflamma-
tory mechanisms or by the state of the BBB, independently from the
recognition of an antigen. It is worth mentioning that our calculation
of public clones among repertoires was performed on the total of
CDR3-a.a. Vb sequences from each repertoire, without any sub-selec-
tion of sequencing data based on clonal expansion or clonal fre-
quency degree: we believe that investigating a disease of unknown
etiology, such as MS, does not allow to prioritize a Vb clone rather
than another because, as far as we know, each clone may carry the
same weight in terms of biological meaning and link to the disease
pathogenesis. Furthermore, we acknowledge that further investiga-
tions into approaches to comparing samples of diversity and T-cell
subpopulation structure are necessary [38].

Although predicting antigen binding from the receptor sequence
is challenging [39,40], the recent development and public availability
of TCR Vb sequence databases such as VDJdb and McPAS-TCR [30,31]
allowed us to check for the presence of antigen/disease-associated
TCR Vb sequences (Fig. 2). First, we used a Fisher’s test approach to
compare expected and observed sequence data between the data-
bases and our MS repertoires. Six sequence categories were found to
be significantly enriched in our MS repertoires: three viruses-associ-
ated ones (DENV, Influenza and YFV), M. tuberculosis, and two dis-
ease-associated (CD and MS). Indeed, there is no previous report on a
possible association among DENV, YFV in the MS European popula-
tion: this is probably due to the possibility to have shared sequences
in our TCR repertoire that are not necessarily associated with one
exclusive antigen specificity. We have to underline that YFV reper-
toires are missing in two of our MS databases, this may impact signif-
icance. Interestingly, in a Taiwan cohort of MS patients, DENV has
been associated with autoimmune and neurological diseases [41] and
DENV infections have been suggested to lead to various diseases in
humans [42]. On the other hand, finding sequences associated with
CD is in agreement with the idea that MS shares the genetic basis
with other complex diseases (e.g., rheumatoid arthritis, diabetes, CD),
involving coincidence of variants involved in the immune response
[43,44]. Furthermore, a recent report investigated bacterial infec-
tions, e.g.M. tuberculosis, as a component of a “multiple-hit”model of
neurodegeneration in several diseases, MS included [45]. Of note,
also MS-associated sequences are not randomly distributed in our
database: this underlines the importance to increase, in the future,
our knowledge on MS-associated and shared sequences, in order to
detect common antigen-driven pathogenic responses. Second, we
compared these sequences between CSF and PB repertoires, although
the absence of some of them in CSF Ballerini-DB and CSF Muraro-DB
may impact significance. The overlap of CD, YFV, DENV-1 and
DENV3/4-associated sequences was increased in PB compared to CSF.
Overall, our interpretation is that the two compartment repertoires
are not exactly mirroring each other for several aspects, including the
presence of shared sequences associated with antigenic responses.
Focusing on shared sequences between CSF and brain lesion TCR rep-
ertoires (the last from Laplaud-DB) (Fig. 3), we identified the pres-
ence of sequences associated with autoimmune diseases (MS and CD)
(Fig. 3b) and with DENV-1 (Fig. 3c). This finding is intriguing: the
presence of these sequences in white matter brain lesions, an hall-
mark of MS disease, stresses the fact that at least a part of the antigen
driven repertoire during an autoimmune reaction is public, as it was
observed in the immune response directed against certain pathogens
[46]. In the future, sharing TCR Vb sequences with the scientific com-
munity will be a valid approach to furtherly increase the number of
sequences available for a comprehensive analysis.

Leveraging a recent publication [32], we had the chance to com-
pare our data with the TCR repertoire of HD (characterized in Sup-
plementary Fig. 2c). We exploited this freely available database to
check the CDR3-a.a. Vb sequences overlap between HD and MS
compartments (Fig. 4a). As we reported for the overlap analysis
with McPAS-TCR and VDJdb databases, CSF-TCR repertoire overlap
with HD is lower compared to PB. This finding may depend on the
compartment itself, on the disease, or both. Previously, the TCR rep-
ertoire of HD has been compared to MS by hierarchical cluster anal-
ysis [34], distinguishing HD from MS in terms of Vb clone overlap
and frequencies. Here, we performed hierarchical clustering analy-
sis by correlating S-E values across repertoires (Fig. 4b). We showed
that the TCR Vb clone distribution and polarization across MS reper-
toires may be distinguished from HD on the basis of the disease, and
not on the compartment. It would be of interest to widen this analy-
sis and to check whether treatments, that successfully induce TCR
repertoire reconstitution [47] (e.g., autologous hematopoietic stem
cell transplantation, anti-CD52 monoclonal antibody, cladribine),
impact MS patients clustering. Furthermore, it would be interesting
to study whether other autoimmune diseases, that do not involve
the CNS, behave in a similar way or whether this is a MS-specific
feature.
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Finally, we analyzed the TCR repertoire similarity architecture.
This analysis allows investigating the TCR repertoire’s antigen recog-
nition breadth (Fig. 5), since similar Vb clones are suggested to recog-
nize the same antigens.25,28,29 We found that the CSF-TCR similarity
architecture of one PPMS patient’s repertoire (patient CSF2 from Bal-
lerini-DB; Fig. 5b, right network) differs from other CSF-TCR reper-
toires, including another PPMS from Laplaud-DB (Fig. 5d) and RRMS
patients (Fig. 5a and left network in Fig. 5b). The PPMS patient CSF2
is characterized by higher Vb clone connectivity (about 98% of all his
Vb clones are connected, thus similar) and a low number (41) of
unique CDR3s-a.a. The other PPMS patient (Laplaud-DB, Fig. 5d) does
not show the same TCR similarity architecture: this may be due to a
different HLA haplotype, disease duration, or timing of CSF sampling
(at diagnosis or post-mortem) (see Table 2). Furthermore, the PPMS
patient CSF2 experienced a clinical relapse after the lumbar puncture,
and may therefore be defined “active”. It would be worthwhile to
verify whether a similar TCR architecture may be found in other
PPMS patients. As previously shown [10,11], CSF and CNS paren-
chyma share TCR Vb sequences. However, we did not find any Vb
sequence overlap between CSF and paired PB of the patient CSF2.

In conclusion, our comprehensive analysis allowed us to identify
those characteristics of the TCR repertoire that may be shaped by MS
and by the anatomical compartment within MS cohorts. We stress
the fact that a consensus in TCR repertoire analysis is needed, in order
to ensure scientific discussion on a common basis [48,49].

Contributors

R.A.: data analysis, data interpretation, figures, and writing; M.C.:
data analysis, statistical methods, manuscript revision; V.G.: data
analysis and manuscript revision; A.C.: data analysis; L.M.: clinical
data collection; A.B.: clinical data collection; A.M.R.: clinical data col-
lection; T.B.: data collection and analysis; A.A.: cell sorting; P.A.M.:
data collection; D.L.: data collection; A.L.: study conceptualization
and data collection; C.B.: study conceptualization, data interpretation,
and writing.

Data sharing statement

The R scripts used for the statistical analysis and data visualisation
are stored in the following Github repository: https://github.com/rob
erta91/TCR_MS_diversity. Ballerini-DB TCR sequencing data was
deposited under the following doi: https://doi.org/10.5281/zen
odo.3703311. [25] Other raw data is available upon request.

Declaration of Competing Interest

A.L. reports grants from Sanofi Genzyme, outside the submitted
work. D.L. reports grants from EDMUS Foundation, from ARSEP Foun-
dation and from ANR, and personal fees from Biogen, BMS, Alexion,
Merck, Sanofi and Roche, outside the submitted work. P.A.M. reports
personal fees from Jasper Therapeutics and from Magenta Therapeu-
tics, outside the submitted work. V.G. declares advisory board posi-
tions in aiNET GmbH and Enpicom B.V.

Acknowledgments

We acknowledge the Italian Multiple Sclerosis Foundation (FISM)
that financially supported Ballerini-DB data collection (grant #2015
R02).

Supplementary materials

Supplementary material associated with this article can be found
in the online version at doi:10.1016/j.ebiom.2021.103429.
References

[1] Atlas of MS 2013: Mapping Multiple Sclerosis Around the World. London: Multi-
ple Sclerosis international federation; 2013. MS International Federation.

[2] Compston A, Coles A. Multiple sclerosis - ScienceDirect. Mult Scler
2008;372:1502–17.

[3] Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environ-
ment. Autoimmun Rev 2010;9:A387–94.

[4] Carroll WM. McDonald MS diagnostic criteria: evidence-based revisions. Mult
Scler J 2017;24:92–5 2018.

[5] Magliozzi R, Marastoni D, Rossi S, Castellaro M, Mazziotti V, Pitteri M, Gajofatto A,
Monaco S, Benedetti MD, Calabrese M. Increase of CSF inflammatory profile in a
case of highly active multiple sclerosis. BMC Neurol 2019;19:231.

[6] Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohl-
feld R, Goebels N. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as
clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci
2004;101:2428–33.

[7] Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH,
Sommer N, Hemmer B. Oligoclonal expansion of memory CD8+ T cells in cerebro-
spinal fluid frommultiple sclerosis patients. Brain 2002;125:538–50.

[8] Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of
methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 2017;17
(1):61.

[9] Lossius A, Johansen JN, Vartdal F, Robins H, Jurat _e �Saltyt _e B, Holmøy T, Olweus J.
High-throughput sequencing of TCR repertoires in multiple sclerosis reveals
intrathecal enrichment of EBV-reactive CD8 + T cells. Clin Immunol Eur J Immunol
2014;44:3439–52.

[10] Salou M, Garcia A, Michel L, Gainche-Salmon A, Loussouarn D, Nicol B, Guillot F,
Hulin P, Nedellec S, Baron D, et al. Expanded CD8 T-cell sharing between periph-
ery and CNS in multiple sclerosis. Ann Clin Trans Neurol 2015;2:609–22.

[11] Sousa A, Johnson KR, Nicholas R, Darko S, Price DA, Douek DC, Jacobson S, Muraro
PA. Intrathecal T-cell clonal expansions in patients with multiple sclerosis. Ann
Clin Transl Neurol 2016;3:422–33.

[12] Planas R, Metz I, Martin R, Sospedra M. Detailed characterization of T cell receptor
repertoires in Multiple Sclerosis brain lesions. Front Immunol 2018;9:509.

[13] Brown AJ, Snapkov I, Akbar R, Pavlovi�c M, Miho E, Sandve GK, Greiff V. Augment-
ing adaptive immunity: progress and challenges in the quantitative engineering
and analysis of adaptive immune receptor repertoires. Mol Syst Des Eng
2019;4:701–36.

[14] Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohl-
feld R, Dornmair K. Multiple Sclerosis: T-cell receptor expression in distinct brain
regions. Brain 2007;130(Pt 11):2789–99.

[15] van Nierop GP, van Luijn MM, Michels SS, Melief MJ, Janssen M, Langerak AW,
Ouwendijk WJD, Hintzen RQ, Verjans GMGM. Phenotypic and functional charac-
terization of T cells in white matter lesions of multiple sclerosis patients. Acta
Neuropathol 2017;134(3):383–401.

[16] Kaplinsky J, Arnaout R. Robust estimates of overall immune-repertoire diversity
from high-throughput measurements on samples. Nat Commun 2016;7:11881.

[17] Core Team R. R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing; 2018. Available at https://www.
r-project.org/.

[18] Hadley W. ggplot2: elegant graphics for data analysis. New York, NY: Springer-
Verlag New York; 2016.

[19] Kassambara A. ggpubr: “ggplot2” based publication ready plots. Available at
https://rpkgs.datanovia.com/ggpubr/index.html.

[20] Csardi G, Nepusz T. The igraph software package for complex network research.
Interjournal Complex Syst 2006;1695 Available at http://igraph.org.

[21] Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
multidimensional genomic data. Bioinformatics 2016;32:2847–9.

[22] Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization.
BMC Bioinform 2010;11:367.

[23] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikow-
ski B, Ideker T. Cytoscape: a software environment for integrated models of bio-
molecular interaction networks. Genome Res 2003;13:2498–504.

[24] Nygaard V, Rødland EA, Hovig E. Methods that remove batch effects while retain-
ing group differences may lead to exaggerated confidence in downstream analy-
ses. Biostatistics 2016;17(1):29–39.

[25] Amoriello R, Greiff V, Aldinucci A, Bonechi E, Carnasciali A, Peruzzi B, Repice AM,
Mariottini A, Saccardi R, Mazzanti B, Massacesi L, Ballerini C. The TCR repertoire
reconstitution in Multiple Sclerosis: comparing one-shot and continuous immu-
nosuppressive therapies. Front Immunol 2020;11:559.

[26] Greiff V, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST. A bioinformatic frame-
work for immune repertoire diversity profiling enables detection of immunologi-
cal status. Genome Med 2015;7:49.

[27] Greiff V, Miho E, Menzel U, Reddy ST. Bioinformatic and statistical analysis of
adaptive immune repertoires. Trends Immunol 2015;36:738–49.

[28] Miho E, Ro�skar R, Greiff V, Reddy ST. Large-scale network analysis reveals the
sequence space architecture of antibody repertoires. Nat Commun 2019;10:1321.

[29] Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, Arnon T, Lae-
them FV, Singer A, Lu J, et al. T cell receptor repertoires of mice and humans are
clustered in similarity networks around conserved public CDR3 sequences. Elife
2017;6:e22057.

[30] Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually
curated catalogue of pathology-associated T cell receptor sequences. Bioinformat-
ics 2017;33:2924–9.

https://github.com/roberta91/TCR_MS_diversity
https://github.com/roberta91/TCR_MS_diversity
https://doi.org/10.5281/zenodo.3703311
https://doi.org/10.5281/zenodo.3703311
https://doi.org/10.1016/j.ebiom.2021.103429
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0002
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0002
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0003
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0003
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0004
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0004
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0005
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0005
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0005
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0008
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0008
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0008
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0012
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0012
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0016
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0016
https://www.r-project.org/
https://www.r-project.org/
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0018
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0018
https://rpkgs.datanovia.com/ggpubr/index.html
http://igraph.org
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0021
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0021
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0022
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0022
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0027
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0027
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0030
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0030
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0030


R. Amoriello et al. / EBioMedicine 68 (2021) 103429 13
[31] Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech
EA, Sycheva AL, Koneva AE, Egorov ES, et al. VDJdb: a curated database of T-cell
receptor sequences with known antigen specificity. Nucleic Acids Res 2018;46:
D419–27.

[32] Soto C, Bombardi RG, Kozhevnikov M, Sinkovits RS, Chen EC, Branchizio A,
Kose N, Day SB, Pilkinton M, Gujral M, Mallal S, Crowe Jr. JE. High frequency
of shared clonotypes in human T cell receptor repertoires. Cell Rep 2020;32
(2):107882.

[33] Ramien C, Yusko EC, Engler JB, Gamradt S, Patas K, Schweingruber N, Willing A,
Rosenkranz SC, Diemert A, Harrison A, Vignali M, Sanders C, Robins HS, Tolosa E,
Heesen C, Arck PC, Scheffold A, Chan K, Emerson RO, Friese MA, Gold SM. T cell
repertoire dynamics during pregnancy in Multiple Sclerosis. Cell Rep 2019;29
(4):810–5 e4.

[34] Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV,
Pogorelyy MV, Nazarov VI, Zvyagin IV, Kirgizova VI, Kirgizov KI, Skorobogatova
EV, Chudakov DM. VDJtools: unifying post-analysis of T cell receptor repertoires.
PLoS Comput Biol 2015;11(11):e1004503.

[35] Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, de Paula
Alves, Sousa A, Griffith LM, Lim N, Nash RA, Turka LA. T cell repertoire following
autologous stem cell transplantation for multiple sclerosis. J Clin Invest 2014;124
(3):1168–72.

[36] Elhanati Y, Sethna Z, Callan Jr CG, Mora T, Walczak AM. Predicting the spectrum of
TCR repertoire sharing with a data-driven model of recombination. Immunol Rev
2018;284(1):167–79.

[37] Thomas PG, Crawford JC. Selected before selection: a case for inherent antigen
bias in the T-cell receptor repertoire. Curr Opin Syst Biol 2019;18:36–43.

[38] Rempala GA, Seweryn M, Ignatowicz L. Model for comparative analysis of antigen
receptor repertoires. J Theor Biol 2011;269(1):1–15.

[39] Bradley P, Thomas PG. Using T cell receptor repertoires to understand the princi-
ples of adaptive immune recognition. Annu Rev Immunol 2019;37:547–70.
[40] Greiff V, Yaari G, Cowell L. Mining adaptive immune receptor repertoires for bio-
logical and clinical information using machine learning. Curr Opin Syst Biol
2020;24:109–19.

[41] Li HM, Huang YK, Su YC, Kao CH. Increased risk of autoimmune diseases in dengue
patients: a population-based cohort study. J Infect 2018;77(3):212–9.

[42] Dey L, Mukhopadhyay A. A graph-based approach for finding the dengue infec-
tion pathways in humans using protein-protein interactions. J Comput Biol
2020;27(5):755–68.

[43] Baranzini SE, Oksenberg JR. The genetics of Multiple Sclerosis: from 0 to 200 in 50
Years. Trends Genet 2017;33(12):960–70.

[44] Orr�u V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, et al. Complex genetic sig-
natures in immune cells underlie autoimmunity and inform therapy. Nat Genet
2020;52(10):1036–45.

[45] Patrick KL, Bell SL, Weindel CG, Watson RO. Exploring the ''Multiple-Hit Hypothe-
sis'' of neurodegenerative disease: bacterial infection comes up to bat. Front Cell
Infect Microbiol 2019;9:138.

[46] Cassotta A, Goldstein JD, Durini G, Jarrossay D, Baggi Menozzi F, Venditti M, Russo
A, Falcone M, Lanzavecchia A, Gagliardi MC, Latorre D, Sallusto F. Broadly reactive
human CD4+ T cells against Enterobacteriaceae are found in the naïve repertoire
and are clonally expanded in the memory repertoire. Eur J Immunol 2021;51
(3):648–61.

[47] L€unemann JD, Ruck T, Muraro PA, Bar-Or A, Wiendl H. Immune reconstitution
therapies: concepts for durable remission in multiple sclerosis. Nat Rev Neurol
2020;16:56–62.

[48] Arnaout RA, Luning Prak ET, Schwab N, Rubelt F, The adaptive immune receptor
repertoire community. The future of blood testing is the immunome. Front
Immunol 2021;12:228.

[49] Pavlovi�c M., Scheffer L., Motwani K., Kanduri C., Kompova R., Vazov N. et al. immu-
neML: an ecosystem for machine learning analysis of adaptive immune receptor rep-
ertoires. bioRxiv 2021.03.08.433891; https://doi.org/10.1101/2021.03.08.433891.

http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0036
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0036
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0036
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0037
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0037
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0038
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0038
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0039
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0039
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0040
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0040
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0040
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0041
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0041
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0043
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0043
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0044
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0044
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0044
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0044
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0045
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0045
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0045
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0048
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0048
http://refhub.elsevier.com/S2352-3964(21)00222-X/sbref0048
https://doi.org/10.1101/2021.03.08.433891

	TCR repertoire diversity in Multiple Sclerosis: High-dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid and peripheral blood
	1. Introduction
	2. Methods
	2.1. Selection of T-cell receptor databases
	2.2. Ballerini database: patient enrollment and ethics statement
	2.3. Ballerini database: peripheral blood and cerebrospinal fluid collection
	2.4. Ballerini database: T-cell isolation and sorting, RNA extraction and TCR Vβ sequencing

	3. Data statement
	3.1. Data visualization
	3.2. Statistics
	3.3. Shannon-Evenness and clonal expansion profiles

	4. Definition of private and public Vβ clones
	5. Clone network analysis
	6. Publicly available T-cell receptor Vβ databases used
	7. Role of funding source
	8. Results
	8.1. Database characterization
	8.2. T-cell receptor repertoire diversity in cerebrospinal fluid and peripheral blood of Multiple Sclerosis patients
	8.3. Sequence overlap with publicly available T-cell receptor databases
	8.4. Sequence overlap with publicly available healthy donor T-cell receptor databases
	8.5. T-cell receptor sequence similarity is higher in cerebrospinal fluid compared to peripheral blood

	9. Discussion
	Contributors
	Data sharing statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References



