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Abstract

The mammalian immune system implements a remarkably effective set of mechanisms for 

fighting pathogens1. Its main components are hematopoietic immune cells, including myeloid cells 

that control innate immunity and lymphoid cells that constitute adaptive immunity2. However, 

immune functions are not unique to hematopoietic cells, and many other cell types display basic 

mechanisms of pathogen defence3–5. To advance our understanding of immunology outside the 

haematopoietic system, here we systematically investigate the regulation of immune genes in the 

three major types of structural cells: epithelium, endothelium, and fibroblasts. We characterize 

these cell types across twelve organs in mice, using cellular phenotyping, transcriptome 

sequencing, chromatin-accessibility profiling, and epigenome mapping. This comprehensive 

dataset revealed complex immune gene activity and regulation in structural cells. The observed 

patterns were highly organ-specific and seem to modulate the extensive interactions between 

structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically 

encoded immune potential in structural cells under tissue homeostasis, which was triggered in 

response to systemic viral infection. This study highlights the prevalence and organ-specific 

complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence and requests for materials should be addressed to C.B. (cbock@cemm.oeaw.ac.at).
†Current addresses: Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany 
(L.C.S.); Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany (C.S.)

Author contributions: 
T.K. designed the project, performed experiments, analyzed data, and cowrote the manuscript. N.F designed and performed the 
bioinformatic analysis and cowrote the manuscript. V.F.-G., M.S., L.C.S., and A.N. contributed to sample collection and sequencing 
library preparation. A.L. contributed to the experimental design and performed in vivo experiments (LCMV infections; cytokine 
treatments). A.F.R. contributed bioinformatic software. A.B. contributed to the experimental design and supervised the in vivo 
experiments. C.B. supervised the project and cowrote the manuscript. All authors read, contributed to, and approved the final 
manuscript.

Additional information: 
Competing interests: The authors declare no competing financial interests
Supplementary Information is available for this paper.

Europe PMC Funders Group
Author Manuscript
Nature. Author manuscript; available in PMC 2021 March 15.

Published in final edited form as:
Nature. 2020 July 01; 583(7815): 296–302. doi:10.1038/s41586-020-2424-4.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms


resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural 

cells in the mouse.

The structure of most tissues and organs in the mammalian body is shaped by epithelial cells 

(epithelium), which create internal and external surfaces and barriers; endothelial cells 

(endothelium), which form the lining of blood vessels; and fibroblasts, which provide 

essential connective tissue (stroma)6. These three cell types, which we refer to as “structural 

cells”, have been shown to contribute in important ways to mammalian immunity7–11. 

However, there has been little systematic investigation across organs, in part because 

structural cells are difficult to study by genetic ablation due to their essential structural roles 

in most organs. Multi-omics profiling has emerged as a promising approach to dissecting 

immune regulation in a systematic, genome-wide manner, as illustrated by recent work on 

the systems immunology of hematopoietic immune cells12, 13.

In this study, we used multi-omics profiling and integrative bioinformatics to establish a 

high-resolution atlas of structural cells and of non-hematopoietic immune regulation in the 

mouse. We observed widespread expression of immune regulators and cytokine signaling 

molecules in structural cells, organ-specific adaptation to the tissue environment, and 

unexpectedly diverse capabilities for interacting with hematopoietic cells. These cell-type-

specific and organ-specific differences in immune gene activity were reflected by 

characteristic patterns of chromatin regulation. Most notably, we found evidence of an 

epigenetically encoded immune potential under homeostatic conditions, and the affected 

genes were preferentially upregulated in response to an immunological challenge induced by 

systemic viral infection. We validated and functionally dissected this epigenetic potential of 

structural cells by further in vivo experiments with recombinant cytokines.

In summary, our study uncovered widespread immune gene regulation in structural cells of 

the mouse, and it established a multi-organ atlas of the underlying epigenetic and 

transcription-regulatory programs.

Results

Mapping structural cells across organs

To investigate the regulation of immune genes in structural cells, we performed multi-omics 

profiling of endothelium, epithelium and fibroblasts from 12 mouse organs (brain, caecum, 

heart, kidney, large intestine, liver, lung, lymph node, skin, small intestine, spleen and 

thymus). Single-cell suspensions were analysed by flow cytometry, and sort-purified cell 

populations were profiled with three genome-wide assays (Fig. 1a): (i) gene expression 

profiling by low-input RNA sequencing (RNA-seq)14; (ii) chromatin accessibility profiling 

with the assay for transposase-accessible chromatin using sequencing (ATAC-seq)15; and 

(iii) epigenome profiling by ChIPmentation16 with an antibody against the promoter and 

enhancer-linked histone H3K4me2 mark17. All assays produced high-quality data 

(Supplementary Table 1). This multi-omics dataset is provided as an online resource for 

interactive browsing and download at http://structural-immunity.computational-

epigenetics.org.
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To maximize comparability across organs, we developed a standardized workflow for tissue 

dissociation and cell purification (Fig. 1a). Structural cells were purified with an organ-

independent sorting scheme that comprised the endothelium marker CD31 (encoded by 

Pecam1), the epithelium marker EpCAM (Epcam), and the fibroblast marker GP38 (encoded 

by Pdpn, also known as podoplanin) (Extended Data Fig. 1a, b). All three types of structural 

cells were detectable in all 12 organs, with strong differences in their relative frequencies 

(Fig. 1b, Extended Data Fig. 1c). Our standardized tissue dissociation did not cause major 

technical biases (Extended Data Fig. 1d).

We validated and phenotypically characterized structural cell populations by flow cytometry 

for additional markers (Fig. 1c, Extended Data Fig. 2). Purification of CD31+GP38− 

endothelial cells specifically enriched for blood endothelium while excluding the less 

prevalent CD31+GP38+ cells of lymphatic endothelium, which facilitates the comparison 

across organs. Alternative endothelial markers such as CD144 (VE-cadherin), MAdCAM1 

and VCAM1 (used to assess baseline activation of endothelium under homeostatic 

conditions) did not improve the identification of blood endothelial cells in our analysis. 

Similarly, sorting of fibroblasts as GP38+CD31− cells did not miss any major cell 

populations identified by the alternative markers CD90.2 (Thy-1.2), LTβR or PDGFRα. 

Finally, E-cadherin could not enhance or replace our sorting of epithelium as EpCAM+ 

cells.

The cellular identity of the sorted endothelium, epithelium and fibroblasts was further 

confirmed by RNA-seq data analysis, which showed the expected organ-specific (Extended 

Data Fig. 3a) and cell-type-specific (Extended Data Fig. 3b) patterns of gene expression 

compared to published multi-tissue expression profiles18, 19. We also observed the expected 

expression patterns for various cell-type-specific marker genes, but with a high degree of 

transcriptional heterogeneity across organs (Extended Data Fig. 3c, Supplementary Table 2). 

Notably, the expression profiles of structural cells within the same organ were globally more 

similar to each other than structural cells of the same type across organs (Fig. 1d, e, 

Extended Data Fig. 3d), which suggests that the tissue and organ environment has a major 

effect on the transcriptomes of structural cells. Our multi-omics profiles for endothelium, 

epithelium and fibroblasts across 12 mouse organs thus uncover a marked degree of organ-

specific differences among structural cells.

Immune gene activity in structural cells

On the basis of our RNA-seq dataset, we investigated the immune gene activity in structural 

cells. First, we assessed the ability of structural cells to communicate with haematopoietic 

immune cells, by inferring a network of potential cell–cell interactions based on known 

receptor–ligand pairs. The resulting cell–cell interaction network (Fig. 2a, Supplementary 

Table 3) predicted frequent crosstalk between structural cells and haematopoietic cells under 

homeostasis (Fig. 2a, Extended Data Fig. 4a). Differences across cell types and organs were 

driven by the characteristic expression patterns of cell-surface proteins and secreted factors 

in structural cells (Fig. 2b). For example, strong expression of collagens (Col4a3, Col4a4, 

Col5a1, Col6a1, Col12a1) and of complement component 3 (C3) in fibroblasts is expected 

to enhance their ability to interact with hematopoietic cells; high levels of Muc2 and Arg2 in 
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the digestive tract fosters interactions with macrophages and NK cells; and Ccl25 expression 

in thymus epithelium contributes to the maturation of T cells. Shared across all types of 

structural cells, we observed high expression of the inflammatory mediators Apoe, S100a8, 

and S100a9.

Second, we quantified the aggregated activity of various immune gene modules, which were 

manually curated to capture important components of the immune system (Extended Data 

Fig. 4b; Supplementary Table 4). We observed widespread activity of these immune gene 

modules in structural cells, with highly cell-type-specific and organ-specific patterns (Fig. 

2c). We sought to validate the unexpectedly strong and diverse immune gene activity of 

structural cells in a second dataset. To that end, we obtained single-cell transcriptome 

profiles of mouse tissues from the Tabula Muris resource20, and we identified endothelium, 

epithelium, and fibroblasts bioinformatically based on marker gene expression. While 

structural cells were not well covered in this dataset (Extended Data Fig. 5a; Supplementary 

Table 5), these profiles were sufficient to independently confirm strong and organ-specific 

activity of immune genes in structural cells (Extended Data Fig. 5b-d). Together, these data 

reveal widespread activity of immune genes and regulatory modules in structural cells, 

which are expected to mediate cell-type-specific and organ-specific interactions with 

haematopoietic immune cells.

Regulatory networks in structural cells

To uncover the regulatory basis of immune gene activity in structural cells, we combined our 

RNA-seq data with ATAC-seq profiles of chromatin accessibility and ChIPmentation maps 

for the promoter and enhancer-linked H3K4me2 mark, and we compared gene-regulatory 

networks across cell types and organs (Fig. 3a).

We observed extensive cell-type-specific and organ-specific chromatin regulation at immune 

gene loci (Fig. 3b). For example, the immune-regulatory transcription factors Stat5a and 

Stat5b showed characteristic patterns of chromatin accessibility; Tlr9 and Osm were 

characterized by organ-specific heterogeneity in promoter and enhancer regions; and the 

promoter of the renal cell adhesion molecule Cdh16 was exclusively open in kidney. By 

contrast, a subset of crucial immune genes (exemplified by Ifngr1) showed high chromatin 

accessibility in most samples, indicative of a shared core of immune regulation in structural 

cells. Consistent with our RNA-seq analysis, the chromatin profiles were globally more 

similar between different types of structural cells in one organ than among the same cell type 

across organs (Extended Data Fig. 6a, b).

We inferred a gene-regulatory network of structural cells by connecting transcription factors 

to their target genes, based on predicted binding sites with open chromatin in the respective 

cells (Extended Data Fig. 6c). Many key regulators of transcription in structural cells 

showed cell-type-specific and organ-specific activity (Fig. 3c, Extended Data Fig. 6d, 

Supplementary Table 6). For example, ATF, ELK, ETS and JUND were most active in lung 

endothelium; KLF and CDX in digestive tract epithelium; and HNF in kidney fibroblasts 

and in epithelium of caecum, large intestine, and small intestine. We also identified groups 

of transcription factors that were ubiquitously active in structural cells, such as ELF1, ELF3, 

ETS1, FLI1 and GATA2 (Extended Data Fig. 6e), which may constitute a shared regulatory 
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basis of immune gene activity in structural cells. Our inferred gene-regulatory networks 

support a model in which constitutively active regulators establish a shared core of immune 

functions, while additional factors contribute cell-type-specific and organ-specific adaptions.

Epigenetic potential for gene activation

To assess the epigenetically encoded immune potential of structural cells, we quantified the 

chromatin accessibility of each gene promoter and compared it to the expression level of the 

corresponding gene. We then scanned for genes with low expression but high promoter 

accessibility, indicative of an unrealized potential for increased expression (Fig. 3d, e, 

Extended Data Fig. 7a). For example, chromatin accessibility at the Ifngr2 promoter was 

high in liver endothelium whereas gene expression was low, which suggests that Ifngr2 has 

unrealized potential for upregulation without the need to increase promoter accessibility. By 

contrast, accessibility of the Ifngr2 promoter in liver epithelium was highly consistent with 

its gene expression, thus constituting a case of realized potential.

The genes with unrealized epigenetic potential in structural cells were enriched for immune 

functions (Fig. 3f, Extended Data Fig. 7b, Supplementary Tables 7 and 8), consistent with 

our initial hypothesis. In total, we identified 1,665 genes that fulfilled our definition of 

unrealized epigenetic potential, of which 335 genes were annotated with at least one 

immunological term (odds ratio 1.37, P < 10−5, Fisher’s exact test).

To quantify and compare the epigenetic potential across cell types and organs (Fig. 3g), we 

exploited that genes with strong unrealized potential are outliers when plotting gene 

expression against promoter accessibility, which results in a reduced correlation between the 

two data types (Extended Data Fig. 7a). The highest correlation between gene expression 

and promoter accessibility was observed in brain, caecum, heart, kidney, large intestine and 

skin, leaving comparatively less room for unrealized epigenetic potential. By contrast, the 

correlation was notably lower in liver, lymph node, spleen and thymus, which suggests that 

structural cells in these organs harbour a more pronounced epigenetic potential for gene 

activation in response to various stimuli.

Our integrative analysis of chromatin accessibility and gene expression thus identified an 

epigenetically encoded potential for immune gene activation in structural cells. This 

epigenetic potential is expected to facilitate the rapid response to immunological challenges 

in a cell-type-specific and organ-specific manner.

Immune genes induced by viral infection

We functionally evaluated the epigenetic potential for immune gene activation by 

challenging mice with a systemic viral infection model. We infected mice with lymphocytic 

choriomeningitis virus (LCMV) and collected samples from 12 organs on day 8 after 

infection (Fig. 4a). We characterized these samples by flow cytometry (Extended Data Fig. 

8a, b) and by RNA-seq analysis of sort-purified structural cells (Supplementary Table 1).

LCMV infection resulted in changes of structural cell composition in most organs (Extended 

Data Fig. 8c), and we observed differential gene expression in a cell-type-specific and organ-

specific manner (Extended Data Fig. 9a, Supplementary Table 9). The transcriptional 
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response was globally more similar among structural cells of all three types within the same 

organ than between structural cells of a given type across organs (Extended Data Fig. 9b), 

consistent with the patterns of similarity that we observed under homeostatic conditions.

We compared the differential gene expression after LCMV infection with the corresponding 

epigenetic potential of the genes under homeostatic conditions, and genes with unrealized 

potential were indeed overrepresented among the LCMV-induced genes (Fig. 4b, left). To 

quantify how well the epigenetic potential predicts LCMV-induced gene activation, we 

plotted the percentage of genes with realized potential against the percentage of genes that 

underwent de novo activation (Fig. 4b, centre), in analogy with receiver operating 

characteristic (ROC) curves. We detected the strongest association in liver, lung and spleen 

(Fig. 4b, right). These organ-specific differences showed no clear correlation with 

differences in viral load (Extended Data Fig. 9c) and appear to constitute intrinsic regulatory 

differences between cell types and organs (Extended Data Fig. 9d).

The genes that were upregulated in response to systemic LCMV infection showed strong 

enrichment for immune functions (Fig. 4c), including ‘positive regulation of immune 

response’, ‘defence response to virus’, ‘cellular response to IFNγ’, and ‘antigen processing 

and presentation’. We also observed widespread upregulation of interferon-induced as well 

as interferon-stimulated genes and of key transcriptional regulators in the interferon 

pathway, which indicates a strong interferon response to LCMV infection in structural cells 

(Supplementary Table 9).

Finally, we inferred receptor–ligand interactions between structural cells and haematopoietic 

immune cells, using the transcriptome data of structural cells upon LCMV infection 

(Extended Data Fig. 9e, f, Supplementary Table 10). We observed an increase in the strength 

and scope of predicted cell–cell interactions after LCMV infection as compared to 

homeostatic conditions, largely driven by upregulated gene expression levels for receptors 

and ligands in structural cells, including B2m, Cd74, Cd47, Cxcl10, Sdc1, Sdc4, Tnfrsf1a 
and Vcam1.

Systemic LCMV infection thus triggered widespread activation of immune genes that were 

lowly expressed but epigenetically poised under homeostatic conditions. These results 

support our model of an epigenetically encoded potential for immune gene activation in 

structural cells in the context of viral infection.

Cytokine response of structural cells

To characterize the effects of individual cytokines that may contribute to the response to 

LCMV infection, we administered six recombinant cytokines in mice (IFN-α, IFN-γ, IL-3, 

IL-6, TGF-β, TNF). These cytokines were selected based on our dataset and published 

results22, while IL-3 was included as a control with no known role in LCMV infection. To 

focus on the immediate effects of cytokine signaling, structural cells were sort-purified two 

hours after injection and subjected to RNA-seq profiling (Fig. 5a; Supplementary Table 1). 

Four organs that responded strongly to LCMV infection were included in the analysis (large 

intestine, liver, lung, spleen).
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We compared the structural cell transcriptomes between cytokine-treated animals and mock-

treated controls, which uncovered various cytokine-induced transcriptional changes. IFN-α 
treatment had the strongest effect, inducing known interferon target genes and several genes 

associated with antiviral immunity (Fig. 5b, Extended Data Fig. 10; Supplementary Table 

11). We further observed widespread cell-type-specific and organ-specific differences, which 

were not solely due to differential expression of individual cell surface receptors (Extended 

Data Fig. 11b), but appear to reflect more general differences in immune gene regulation.

In spleen endothelium (highlighted here because of its strong transcriptional response to 

LCMV infection), treatment with IFNγ and IL-6 explained a sizable proportion of the 

LCMV-induced changes (Fig. 5c, top left). The cytokine-induced genes included known 

interferon target genes, transcriptional regulators such as Nmi and Inpp5d (which encodes 

SHIP1), and the pro-inflammatory gene Piezo1 (Fig. 5c, right, Supplementary Table 11). For 

five of the six cytokines (not including IL-3), the upregulated genes showed significant 

overlap with the genes that carried unrealized epigenetic potential under homeostatic 

conditions (Fig. 5c, bottom left). These cytokines thus triggered similar aspects of the 

epigenetic potential in spleen endothelium as observed for systemic LCMV infection.

The results were qualitatively different in liver fibroblasts. We observed little overlap 

between the transcriptional response to the cytokines and to LCMV infection (Fig. 5d, top 

left), while there was still a strong association with the epigenetic potential (Fig. 5d, bottom 

left). Cytokine administration induced genes involved in metabolic processes (Cmpk2, 

Pofut2) as well as regulators of vesicle or membrane trafficking and antigen presentation 

(Bloc1s6, H2-Eb1, Rabac1 and Sar1a) (Fig. 5d, right, Supplementary Table 11). Thus, the 

administration of cytokines triggered different aspects of the epigenetic potential in liver 

fibroblasts compared with LCMV infection.

In summary, structural cells responded in cell-type-specific and organ-specific ways to in 

vivo stimulation with individual cytokines, which allowed us to functionally dissect the 

effects of systemic LCMV infection and provides further validation of the observed 

epigenetic potential for immune gene activity in structural cells.

Discussion

Structural cells, including endothelium, epithelium and fibroblasts, are important yet 

underappreciated contributors to mammalian immune responses. Here, we systematically 

investigated immune gene regulation in these non-haematopoietic cell types, applying multi-

omics profiling and integrative bioinformatic analysis to three types of structural cells 

purified from twelve different organs of the mouse. We observed unexpectedly strong and 

densely regulated expression of immune genes, both under homeostatic conditions and in 

response to immunological challenges (systemic viral infection with LCMV, in vivo 
cytokine treatment).

Immunologists tend to consider structural cells mainly for their barrier function (epithelium, 

endothelium) and their role as connective tissue (fibroblasts), although important research 

has identified much more complex roles of structural cells in mammalian immunity23–31. 
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However, comparative multi-organ investigations of structural cells have been lacking. We 

sought to close this gap in our understanding of mammalian immunity by evaluating the 

immune regulation of structural cells in a systematic, genome-wide and organism-scale way. 

We identified three main lines of evidence that highlight the immune-regulatory potential of 

structural cells.

First, we observed extensive cell-type-specific and organ-specific regulation of genes that 

influence the capabilities of structural cells to engage in predicted interactions with 

haematopoietic immune cells. On the basis of our transcriptome data, we inferred an initial 

network of potential cell–cell interactions between structural cells and haematopoietic cells. 

It will be an important future goal to dissect these cell–cell interactions and to untangle the 

precise chain of command in the immunological communication of structural cells and 

haematopoietic cells.

Second, our genome-wide analysis of chromatin accessibility in structural cells uncovered 

not only a regulatory basis of their immune functions, but also an initial assessment of the 

transcriptional regulators that confer cellular identity to endothelial cells, epithelial cells and 

fibroblasts across 12 organs. Future studies could pursue genetic manipulation of these 

candidate regulators in a cell-type-specific and organ-specific way, investigating the effect 

on immune-regulatory functions, epigenetic landscapes and cellular identity.

Third, our integrative analysis of gene expression and chromatin accessibility identified an 

epigenetically encoded immune potential in structural cells, constituted by genes that were 

lowly expressed under homeostatic conditions but epigenetically poised for much higher 

expression. These genes were enriched for immune functions, and they were preferentially 

upregulated in response to LCMV infection and cytokine administration in vivo. We thus 

conclude that structural cells are epigenetically pre-programmed for a swift response to a 

variety of immunological challenges. It will be interesting to explore how the epigenetic 

potential of structural cells responds to other stimuli and whether it can be modulated for 

therapeutic purposes, for example in the context of autoimmune diseases or the tumour 

microenvironment.

In conclusion, our study provides a comprehensive characterization of immune gene 

regulation in structural cells, and an initial step towards the systematic, organism-scale 

dissection of immune functions beyond haematopoietic cells. To emphasize the importance 

of structural cells for mammalian immunity, we tentatively propose the term ‘structural 

immunity’ for the study of immune functions in the non-haematopoietic, structural cell 

populations of the body. We see our study and large-scale dataset as a starting point, 

reference atlas, and a collection of hypotheses for systematic as well as mechanistic 

explorations in this emerging area of research.

Methods

Mice

C57BL/6J mice were bred and maintained under specific pathogen free conditions at the 

Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences in 
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Vienna (Austria). In vivo experiments (systemic viral infection, cytokine treatments) were 

performed under specific pathogen free conditions at the Anna Spiegel Research Building of 

the Medical University of Vienna (Austria). Age-matched male mice (8 to 13 weeks old) 

were used in all experiments. For the characterization of structural cells under homeostatic 

conditions, mice were sacrificed without any prior treatment. For the systemic viral infection 

experiments, mice were intravenously infected with 2x106 focus-forming units of 

lymphocytic choriomeningitis virus (LCMV) strain Clone 13 32, 33 and killed on day 8 after 

infection. For the cytokine treatment experiments, mice were intravenously injected with 

100 μg/kg of the following recombinant cytokines: IFN-α, IFN-γ, IL-3, IL-6, TGF-β or 

TNF (all from BioLegend) and sacrificed 2 hours after cytokine injection. All mouse 

experiments were performed in individually ventilated cages according to the respective 

animal experiment licenses (BMWFW-66.009/0199-WF/V/3v/2015 and 

BMWFW-66.009/0361-WF/V/3b/2017) approved by the institutional ethical committees and 

the institutional guidelines at the Department for Biomedical Research of the Medical 

University of Vienna. Samples numbers are listed in the figure legends. No statistical 

methods were used to predetermine sample size. The experiments were not randomized, and 

investigators were not blinded to treatment status during experiments and outcome 

assessment.

Standardized sample collection and organ dissociation

Different surface markers and sorting schemes were previously used to purify endothelium, 

epithelium, and fibroblasts in individual organs, whereas our systematic comparison study 

required standardized cell purification across organs. We therefore tested multiple surface 

markers across organs and optimized a sorting scheme that produced consistent results for 

all 12 investigated organs, while excluding cell types that were detectable only in one or a 

few tissues (most notably lymphatic endothelial cells). The experimental workflow followed 

the recommendations of the Immunological Genome Project34 regarding sample collection 

schedule, antibody staining, and sample pooling. At least three same-sex littermate mice 

were pooled for each biological replicates for homeostatic conditions and for LCMV 

infection. For the in vivo cytokine treatments, we used individual mice as biological 

replicates to reduce the total number of mice. Standardized organ harvesting and 

dissociation protocols were established to obtain single-cell suspension for subsequent cell 

purification by fluorescence activated cell sorting (FACS). The same digestion solution was 

used for all organs, to avoid organ-specific technical confounders. The workflow is 

described in detail below.

Brain—Following decapitation, the skull was cut longitudinally with scissors, and the 

cranium was opened with tweezers. Both brain hemispheres were carefully collected and 

placed into cell culture dishes containing cold PBS supplemented with 0.1% BSA (PBS + 

BSA). White matter was manually removed, the tissue shredded with scissors and added to a 

50 ml tube containing 15 ml cold Accumax (Sigma-Aldrich) digestion solution and 

incubated for 45 min at 37 °C while shaking at 200 rpm. Remaining tissue fragments were 

processed with a Dounce homogenizer (Sigma-Aldrich) followed by centrifugation at 300 g 

for 5 min at 4 °C. Myelin was removed by using density gradient centrifugation. Cells were 
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recovered at the interface between a 80% Percoll layer and a 30% Percoll layer and washed 

in PBS + BSA to remove excess Percoll.

Caecum, large intestine, small intestine—Luminal contents were removed. The 

organs were cut longitudinally with scissors, rinsed several times in PBS + BSA to remove 

mucus, then cut into 0.5 cm pieces and placed in 50 ml tubes containing 20 ml pre-warmed 

(37 °C) RPMI containing 10% FCS and 5 mM EDTA (RPMI + FCS + EDTA). Samples 

were incubated for 25 min at 37 °C in a shaking incubator at 200 rpm. Supernatant was 

collected, samples were resuspended once again in 20 ml pre-warmed RPMI + FCS + 

EDTA, and incubated for 25 min at 37 °C in a shaking incubator at 200 rpm. These wash 

steps were performed to dissociate epithelial cells. After the second incubation, supernatants 

were collected and combined, followed by digestion of the samples in 15 ml cold Accumax 

for 45 min at 37 °C while shaking at 200 rpm. Remaining tissue fragments were processed 

with a Dounce homogenizer. Organ homogenates were combined with the epithelial cell 

fractions, filtered twice through a 100 μm cell strainer and washed in cold PBS + BSA.

Heart, kidney, lung, spleen, thymus—Organs were rinsed with cold PBS + BSA and 

shredded with scissors. Tissue fragments were placed into 50 ml tubes containing 20 ml cold 

Accumax digestion solution and incubated for 45 min at 37 °C while shaking at 200 rpm. 

Remaining tissue fragments were processed with a Dounce homogenizer and filtered 

through a 100 μm cell strainer. After centrifugation, 2 ml cold ACK lysis buffer (Thermo 

Fisher Scientific) was added for 3 min to lyse red blood cells and the reaction stopped by 

adding 20 ml of cold PBS + BSA. Supernatants were filtered twice through 100 μm cell 

strainer and washed once to remove residual ACK lysis buffer.

Liver—Three lobes were removed, rinsed with cold PBS + BSA, and shredded with 

scissors. Tissue fragments were placed into a 50 ml tube containing 20 ml cold Accumax 

digestion solution and incubated for 45 min at 37 °C while shaking at 200 rpm. Remaining 

tissue fragments were processed with a Dounce homogenizer and filtered through a 100 μm 

cell strainer. Hepatocytes were removed using density gradient centrifugation. Cells 

recovered at the interface between an 80% Percoll layer and a 30% Percoll layer were 

washed in PBS + BSA to remove excess Percoll.

Lymph nodes—Cervical, axillary, and inguinal lymph nodes were combined, carefully 

pinched with tweezers, and rinsed several times with cold PBS + BSA to release 

hematopoietic cells. Tissue fragments were placed into a 50 ml tube containing 10 ml cold 

Accumax digestion solution and incubated for 45 min at 37 °C while shaking at 200 rpm. 

Remaining tissue fragments were processed with a Dounce homogenizer and filtered twice 

through a 100 μm cell strainer.

Skin—Ears were harvested at the base, and the subcutaneous fat layer scrapped off with a 

scalpel. Tissue fragments were then shredded with scissors, placed into 50 ml tubes 

containing 15 ml of Accumax digestion solution, and incubated for 45 min at 37 °C while 

shaking at 200 rpm. Remaining tissue fragments were processed with a Dounce 

homogenizer and filtered twice through a 100 μm cell strainer.
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Organ-specific sample collection and organ dissociation

Large intestine—The organ was removed and processed as described35. Briefly, luminal 

contents were removed, the large intestine cut longitudinally with scissors, rinsed several 

times in PBS + BSA to remove mucus, then cut into 0.5 cm pieces and placed in 50 ml tubes 

containing 20 ml pre-warmed (37 °C) RPMI containing 10% FCS and 5 mM EDTA (RPMI 

+ FCS + EDTA). Samples were incubated for 40 min at 37 °C in a shaking incubator at 200 

rpm after. Supernatant was collected, samples resuspended once again in 20 ml pre-warmed 

RPMI + FCS + EDTA, and incubated for 20 min at 37 °C in a shaking incubator at 200 rpm. 

These wash steps were performed to dissociate epithelial cells. After the second incubation, 

supernatants were collected and combined, followed by incubating samples in RPMI 

containing 10% FCS and 15 mM HEPES (RPMI + FCS + HEPES) for 10 min at room 

temperature. Supernatant was discarded and samples digested in RPMI + FCS + HEPES 

containing 100 U/ml collagenase from Clostridium histolyticum (Sigma) for 1 hour at 37 °C 

in a shaking incubator at 200 rpm. Remaining tissue fragments were processed with a 

Dounce homogenizer. Organ homogenates were combined with the epithelial cell fractions, 

filtered twice through 100 μm cell strainers and washed in cold PBS + BSA.

Lung—The organ was removed and processed as described36. Briefly, the organ was cut 

into 0.5 cm pieces and placed in gentleMACS C tubes (Miltenyi) containing 160 U/mL 

collagenase type 1 (Gibco) and 12 U/mL DNAse 1 (Sigma) in RPMI containing 5% FCS, 

and dissociated using a gentleMACS Dissociator (Miltenyi; program m_lung_01). After 

incubation at 37°C for 35 min in a shaking incubator at 170 rpm, digested samples were 

homogenized using the gentleMACS Dissociator (program m_lung_02). Subsequently, cell 

suspensions were filtered through 70 μM cell strainers and centrifuged for 5 min at 4 °C at 

300g. After centrifugation, 1 ml cold ACK lysis buffer (Thermo Fisher) was added for 5 min 

to lyse red blood cells and the reaction stopped by adding 20 ml of cold PBS + BSA. 

Supernatants were filtered twice through 100 μm cell strainer and washed once to remove 

residual ACK lysis buffer.

Liver—Mice were anesthetized (ketamine/xylazine 1:3, 0.1ml/10g mouse, Vetoquinol) 

before cannulation of the liver and dissociation using a two-step perfusion protocol37. 

Briefly, the liver was perfused first with 20 mL HBSS (Gibco) containing 0.5 mM EGTA 

(Sigma) and afterward with 20 mL L15 medium (Gibco) containing 40 mg/L liberase 

(Roche) at a rate of 5 mL/min. Next, the liver was removed, placed in a Petri dish with 10 ml 

of the same liberase-containing medium, followed by removal of the liver capsule. 

Hepatocytes were removed from the resulting cell suspension using density gradient 

centrifugation. Cells recovered at the interface between an 80% Percoll layer and a 30% 

Percoll layer were washed in PBS + BSA to remove excess Percoll.

Flow cytometry and FACS

Single-cell suspensions were washed once with PBS containing 0.1% BSA and 5 mM EDTA 

(PBS + BSA + EDTA). Cells were then incubated with anti-CD16/CD32 (clone 93, 

BioLegend) to prevent nonspecific binding. Single-cell suspensions were then stained with 

different combinations of antibodies against CD45 (PerCP-Cy5.5, clone 30-F11), TER-119 

(PerCP-Cy5.5, clone TER-119), podoplanin (PE, clone 8.1.1), Ep-CAM (Pe-Cy7, clone 8.8), 

Krausgruber et al. Page 11

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



lymphotoxin beta receptor (APC, clone 5G11), CD31 (FITC, clone MEC13.3), CD90.2 

(AF700, clone 30-H12), CD106 (AF647, clone 429), CD144 (BV421, clone BV13), CD324 

(APC-Cy7, clone DECMA-1) (all from BioLegend), CD140a (BV605, clone APA5, BD 

Bioscience), MAdCAM1 (BV421, clone MECA-367, BD Bioscience), and LYVE1 (eFlour 

660, clone ALY7, Thermo Fisher Scientific) for 30 min at 4 °C, followed by two washes 

with PBS + BSA + EDTA. Dead cells were stained either by adding Zombie Red Fixable 

Viability Dye or Zombie Aqua Fixable Viability Dye (both from BioLegend) immediately 

prior to flow cytometry characterization or cell sorting. For flow cytometry, cells were 

acquired with an LSRFortessa (BD Biosciences) cell analyzer using the outlined gating 

strategies (Extended Data Fig. 1a, 2a, 8a). For FACS, cells were sort-purified with a MoFlo 

Astrios (Beckman Coulter) or SH800 (Sony) using the outlined gating strategies (Extended 

Data Fig. 1a, 8a). Data analysis was performed using the FlowJo software (Version 10.5.3, 

Tree Star).

Transcriptome profiling by Smart-seq2

Smart-seq2 was performed as previously described14, starting from low-input bulk samples. 

In each experiment, a maximum of 200 cells were sort-purified and deposited in 96-well 

plates containing 4 μl lysis buffer (1:20 solution of RNase Inhibitor (Clontech) in 0.2% v/v 

Triton X-100 (Sigma-Aldrich)), spun down, and immediately frozen at -80°C. Reverse 

transcription was performed using SuperScript II (Invitrogen) followed by PCR 

amplification with KAPA HiFi HotStart Ready Mix (Kapa Biosystems). cDNA amplification 

was followed by two rounds of SPRI (Beckman Coulter) purification, and cDNA 

concentration was measured with a Qubit fluorometer (Life Technologies). Library 

preparation was conducted on 1 ng of cDNA using the Nextera XT DNA Sample 

Preparation Kit (Illumina), followed by SPRI (Beckman Coulter) size selection. Libraries 

were sequenced by the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq 

3000/4000 platform and the 50-bp single-end configuration. Transcriptome profiling by 

Smart-seq2 was done in three biologically independent experiments. Sequencing statistics 

are provided in Supplementary Table 1.

Chromatin accessibility mapping by ATAC-seq

ATAC-seq was performed as previously described15, 38, with minor adaptations. In each 

experiment, a maximum of 50,000 sort-purified cells were collected at 300 g for 5 min at 4 

°C. After centrifugation, the pellet was carefully resuspended in the transposase reaction mix 

(12.5 μl 2xTD buffer, 2 μl TDE1 (Illumina), 10.25 μl nuclease-free water, and 0.25 μl 1% 

digitonin (Promega)) for 30 min at 37 °C. Following DNA purification with the MinElute kit 

eluting in 11 μl, 1 μl of eluted DNA was used in a quantitative PCR (qPCR) reaction to 

estimate the optimum number of amplification cycles. The remaining 10 μl of each library 

were amplified for the number of cycles corresponding to the Cq value (i.e., the cycle 

number at which fluorescence has increased above background levels) from the qPCR. 

Library amplification was followed by SPRI (Beckman Coulter) size selection to exclude 

fragments larger than 1,200 bp. DNA concentration was measured with a Qubit fluorometer 

(Life Technologies). Library amplification was performed using custom Nextera primers15. 

Libraries were sequenced by the Biomedical Sequencing Facility at CeMM using the 

Illumina HiSeq 3000/4000 platform and the 50-bp single-end configuration. Chromatin 
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accessibility mapping by ATAC-seq was done in two biologically independent experiments. 

Sequencing statistics are provided in Supplementary Table 1.

Epigenome mapping by ChIPmentation for H3K4me2

ChIPmentation was performed as previously described16, 39, with minor adaptions. In each 

experiment, a maximum of 50,000 sort-purified cells were washed once with PBS and fixed 

with 1% paraformaldehyde for 10 min at room temperature. Glycine (0.125 M final 

concentration) was added to stop the reaction. Cells were collected at 500 g for 10 min at 4 

°C (subsequent work was performed on ice and used cooled buffers and solutions unless 

otherwise specified) and washed once with ice-cold PBS supplemented with 1 mM 

phenylmethyl sulfonyl fluoride (PMSF). After centrifugation, cells were lysed in sonication 

buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 0.25% SDS, 1x protease inhibitors 

(Sigma-Aldrich), and 1 mM PMSF) and sonicated (Covaris S220) for 30 min in a 

microTUBE until the size of most fragments was in the range of 200 to 700 bp. Following 

sonication, the lysate was adjusted to RIPA buffer conditions (final concentration: 10 mM 

Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 140 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.1% 

sodium deoxycholate, 1x protease inhibitors (Sigma-Aldrich), and 1 mM PMSF).

For each immunoprecipitation, 10 μl magnetic Protein A (Life Technologies) were washed 

twice and resuspended in PBS supplemented with 0.1% BSA. 1 μg of antibody recognizing 

H3K4me2 (Aigma-Aldric, clone AW30) was added and bound to the beads by rotating 

overnight at 4 °C. Beads were added to the sonicated lysate and incubated for 2 h at 4 °C on 

a rotator followed by washing the beads once with RIPA low-salt buffer (10 mM Tris-HCl, 

150 mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, and 1 mM EDTA), 

once with RIPA high-salt buffer (10 mM Tris-HCl, 500 mM NaCl, 0.1% SDS, 0.1% sodium 

deoxycholate, 1% Triton X-100, and 1 mM EDTA), once with RIPA lithium-chloride buffer 

(10 mM Tris-HCl, 250 mM LiCl, 0.5% IGEPAL CA-630, 0.5% sodium deoxycholate, and 1 

mM EDTA), and once with Tris-Cl pH 8. Bead-bound chromatin was then resuspended in 

tagmentation mix (5 μl 5xTD buffer, 1 μl TDE1 (Illumina), 19 μl nuclease-free water) and 

incubated for 10 min at 37 °C.

After tagmentation, the beads were washed once with RIPA and once with cold Tris-Cl pH 

8. Bead bound tagmented chromatin was resuspended in 10.5 μl 20 mM EDTA and 

incubated for 30 min at 50 °C. Then, 10.5 μl 20 mM MgCl2 as well as 25 μl pre-activated 2x 

KAPA HiFi HotStart Ready Mix (incubation at 98 °C for 45 s, (Kapa Biosystems) were 

added and incubated for 5 min at 72 °C, followed by incubation for 10 min at 95 °C. Beads 

are magnetized and 2 μl of each library were amplified in a 10 μl qPCR reaction containing 

0.8 mM primers, SYBR Green, and 5 μl Kapa HiFi HotStart ReadyMix to estimate the 

optimum number of enrichment cycles, using the following program: 72 °C for 5 min, 98 °C 

for 30 s, 24 cycles of 98 °C for 10 s, 63 °C for 30 s, 72 °C for 30 s, and a final elongation at 

72 °C for 1 min. Kapa HiFi HotStart ReadyMix was incubated at 98 °C for 45 s before 

preparation of all PCR reactions (qPCR and final enrichment PCR), in order to activate the 

hot-start enzyme for successful nick translation at 72 °C in the first PCR step.

Final enrichment of the libraries was performed in a 50 μl reaction using 0.75 mM primers 

(custom Nextera primers as described for ATAC-seq) and 25 ml Kapa HiFi HotStart 
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ReadyMix. Libraries were amplified for the for the number of cycles corresponding to the 

Cq value determined in the qPCR reaction. Enriched libraries were purified using SPRI 

AMPure XP beads. To prepare input control samples, 3μl of 50mM MgCl2 was added to 

15μl sonicated lysate (pool of 5μl of endothelium, epithelium, and fibroblasts lysates from 

the same organ) to neutralize the EDTA in the SDS lysis buffer; 20μl of tagmentation buffer 

and 1μl transposase (Illumina) was added, and samples were incubated at 37°C for 10min; 

chromatin was purified with MinElute PCR purification kit (Qiagen), and 22.5μl of the 

purified transposition reaction were combined with 25μl of PCR master mix and 0.75 mM 

primers (custom Nextera). Control libraries were amplified as described above. Libraries 

were sequenced by the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq 

3000/4000 platform and the 50-bp single-end configuration. Epigenome mapping by 

ChIPmentation was done in two biologically independent experiments, with two exceptions: 

for endothelium from lymph node and fibroblasts from thymus, only one high-quality profile 

could be obtained). Sequencing statistics are provided in Supplementary Table 1.

Quantification of LCMV viral RNA

In the LCMV infection experiments, samples were collected at day 8 after infection and 

snap-frozen in liquid nitrogen. For detection of LCMV viral RNA, pieces of the organs were 

homogenized with a TissueLyser II (Qiagen), RNA was extracted using QIAzol lysis reagent 

(Qiagen), and reverse transcription was done using random primers and the First Strand 

cDNA Synthesis Kit (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. The expression of the viral gene that encodes the LCMV nucleoprotein (NP) 

was measured with qPCR using TaqMan Fast Universal PCR Mastermix (Thermo Fisher 

Scientific) and previously published primers and probes40. The qPCR data were normalized 

against a reference comprising five established housekeeping genes (TaqMan Gene 

Expression Assays, Thermo Fisher Scientific): Arf1 (Mm01946109_uH), Rpl37 

(Mm00782745_s1), Rab1b (Mm00504046_g1), Ef1a (Mm04259522_g1), and Gapdh 

(4352339E), in order minimize biases introduced by potential tissue-specific expression of 

housekeeping genes41, 42. Importantly, this qPCR assay estimates infection levels based on 

LCMV viral RNA in bulk tissue, and it cannot account for organ-specific differences in the 

relative frequencies of cells that are susceptible to LCMV infection. The results should 

therefore be regarded as an indication (rather than as a precise quantitative measure) of the 

degree to which structural cells in different organs are directly and indirectly affected by the 

LCMV infections.

RNA-seq data processing and quality control

The RNA-seq data were processed and quality-controlled using established bioinformatics 

software and custom analysis scripts. Specific emphasis was put on ensuring high purity of 

the structural cell transcriptomes, while minimizing the risk and impact of potential 

contaminations (e.g., due to cell-free RNA released by dying cells or as the result of 

potential impurities during FACS purification of the structural cell populations).

Raw reads were trimmed using trimmomatic (version 0.32) and aligned to the mouse 

reference genome (mm10) using HISAT2 (version 2.1.0). Gene expression was quantified by 

counting primary alignments to exons using the function summarizeOverlaps from the 
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GenomicAlignments package (version 1.6.3) in R (version 3.2.3). Gene annotations were 

based on the Ensembl GENCODE Basic set (genome-build GRCm38.p6).

To detect and remove potential biases arising from contaminating RNA of hematopoietic 

immune cells among the sorted structural cell populations, we screened all transcriptome 

profiles for gene expression signatures associated with eight types of hematopoietic immune 

cells. To that end, we derived gene signatures indicative of B cells, T cells, NK cells, natural 

killer T cells, macrophages, monocytes, dendritic cells, and neutrophils from a recent mouse 

single-cell expression atlas19. In addition, a TCR signature was defined by the genes Cd3d, 

Cd3e, Cd3g, Lat, Lck, Vav1, Tbx21, and Zap70. For each of these gene signatures, 

aggregated expression values were calculated as follows. First, raw read counts were 

converted to counts per million (CPM) and log2 transformed using the function voom from 

the limma package (version 3.26.9) in R. Second, voom-converted values were normalized 

to z-scores, followed by averaging across all genes in a given gene signature. Samples with 

detectable contamination by hematopoietic immune cells were automatically discarded, and 

replacement samples were generated until three uncontaminated samples were available for 

each cell type in each organ.

As an additional precaution, we computationally corrected for residual contamination by 

RNA from hematopoietic immune cells, regressing out the gene signatures of hematopoietic 

immune cells from the matrix of structural cell transcriptomes using the function 

removeBatchEffect from the limma package in R. With this procedure, we generated 

corrected log2 counts per million (log2 CPM), which we used in all further analyses unless 

otherwise stated. Finally, for the comparisons between individual genes, we normalized the 

corrected expression values by gene length, thereby generating reads per kilobase per 

million reads (RPKM) values.

Bioinformatic analysis of cell-type-specific and organ-specific gene expression

The processed and quality-controlled RNA-seq profiles of structural cells were analyzed for 

characteristic differences in gene expression across cell types and organs, and enrichment 

analysis against public reference data was used to obtain an initial annotation of the 

identified gene signatures (Fig. 1d, Extended Data Fig 3).

Cell-type-specific and organ-specific marker genes were identified using a two-step 

procedure. First, we performed pairwise differential expression analysis for each of the three 

type of structural cells, comparing them across organs. Second, based on the resulting 

pairwise comparisons, we identified for each organ those genes that were upregulated in a 

given cell type compared to at least five other organs. Pairwise comparisons between organs 

were performed using the limma package in R, separately for each of the three structural cell 

types. Significantly differential genes were selected based on statistical significance 

(adjusted p-value < 0.05), average expression (log2 CPM > -1), and sequencing coverage 

(median number of reads greater than 10 in the group with stronger signal). Based on these 

pairwise comparisons, we counted the total number of times each gene was upregulated in a 

specific organ compared to all other organs. Genes that were upregulated in comparison to 

five or more other organs were selected as marker genes of the corresponding organ.
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The identified cell-type-specific and organ-specific marker genes were subjected to 

enrichment analysis with Enrichr (http://amp.pharm.mssm.edu/Enrichr/), using three Enrichr 

libraries: KEGG_2019_Mouse, GO_Biological_Process_2018, and Human_Gene_Atlas. 

The enrichment analysis provided an initial biological annotation of the identified marker 

genes (Fig. 1d) and validated their enrichment for previously reported cell-type-specific and 

organ-specific marker genes expressed in structural cells (Extended Data Fig 3a). For further 

confirmation in an independent reference dataset19, we normalized the expression values for 

each gene within each organ in our dataset, followed by averaging across genes for each set 

of marker genes from the reference dataset (Extended Data Fig 3b). The resulting structural 

cell signatures thus reflect gene expression in one cell type compared to the other cell types 

in the same organ. Finally, we normalized these structural cell gene signatures across organs 

and cell types to z-scores, resulting in cell-type-specific and organ-specific gene signatures.

Bioinformatic inference of cell-cell interactions

To dissect the cell-type-specific and organ-specific crosstalk of structural cells with 

hematopoietic immune cells, we quantified the enrichment of known receptor-ligand pairs 

among the identified marker genes (Fig. 2a). Moreover, we assessed the expression of genes 

encoding receptors and ligands (Fig. 2b) and aggregated receptor and ligand gene signatures 

(Fig. 2c). Given the scale of our study, it was not possible to validate the inferred cell-cell 

interactions experimentally; however, the identification of many well-established 

interactions and of biologically plausible differences between cell types and organs provides 

support for these predictions.

Cell-type-specific and organ-specific marker genes of structural cells were obtained from the 

RNA-seq data as described in the previous section. Marker genes of hematopoietic immune 

cells were downloaded from Supplementary Table 4 of a recent mouse single-cell expression 

atlas19; from Supplementary Table 2 of the Tabula Muris paper20, from Dataset_S02 (sheets 

8, 12, 14 and 16) of a paper by the ImmGen consortium43, and from Supplementary Table 1 

of a large-scale characterization of tissue-resident macrophages44. To aggregate immune cell 

genes into a consensus set, the union of all identified marker genes was taken.

Receptor-ligand pairs were downloaded from CellPhoneDB45 (as of 21 September 2018) 

and merged with additional receptor-ligand pairs extracted from Supplementary Data 2 of a 

recent paper46, retaining only literature-supported pairs. Mouse gene identifiers were 

mapped to human gene identifiers based on the NCBI HomolGene mapping (build 68) using 

only the unique mappings. Interactions formed by receptor complexes from CellPhoneDB 

were transformed to pairwise interactions between individual receptors and ligands, thus 

including an interaction between each member of a receptor complex and the respective 

ligand.

Based on these lists of marker genes and receptor-ligand pairs, we inferred potential cell-cell 

interactions for all pairs of one structural cell type and one hematopoietic immune cell type, 

quantifying the enrichment for known receptor-ligand pairs among all pairs of marker genes 

between the structural cell type and the hematopoietic cell type (Fig. 2a). First, we counted 

all pairs of marker genes for each pair of structural and immune cell types. Second, we 

calculated the fraction of these gene pairs that were annotated as receptor-ligand pairs. 
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Third, we tested whether this fraction was greater than the fraction of annotated receptor-

ligand pairs across all pairs of genes. Fisher’s exact test was used to obtain p-values and 

odds ratios, as implemented by the function fisher.test in R. P-values were adjusted for 

multiple testing using the Benjamini-Hochberg method, as implemented the function 

p.adjust in R. Finally, significantly enriched pairs (adjusted p-value < 0.05) of structural and 

immune cell types were connected by edges to generate a graph of cell-cell interactions.

In addition to testing for significant enrichment (as described in the previous paragraph), we 

calculated aggregated receptor and ligand gene signatures (Fig. 2c) based on a manually 

curated list of immune-related receptors and ligands (Supplementary Table 4). These gene 

signatures were derived by normalizing expression values for each gene and averaging 

across all genes in a given set of biologically related receptors and ligands.

Bioinformatic analysis of the Tabula Muris dataset

To assess the expression patterns of immune genes in structural cells in an independent 

dataset (Extended Data Fig. 5), we obtained single-cell RNA-seq data and t-SNE projections 

from the Tabula Muris website https://tabula-muris.ds.czbiohub.org/ (21 December 2018) 

and cell counts from Supplementary Table 1 of the corresponding paper20. Cell types were 

assigned based on the provided cell ontology class, with stroma cells and basal cells of 

epidermis both labeled as fibroblasts. Gene expression counts were converted to transcripts 

per million (TPM) values and log-transformed. Receptor and ligand gene signatures in the 

Tabula Muris data were based on immune-related receptors and ligands (Supplementary 

Table 4) and normalized log(TPM) values for each gene, which were averaged across all 

genes in a given set of biologically related receptors and ligands.

ATAC-seq and ChIPmentation data processing and quality control

The ATAC-seq and H3K4me2 ChIPmentation data were processed using well-established 

bioinformatics pipelines, followed by quality control following the same approach as for the 

RNA-seq data (described above). The two data types were processed separately and 

subsequently integrated as described in the next section.

Raw reads were trimmed with trimmomatic (version 0.32) and aligned to the mouse 

reference genome (mm10) using bowtie2 (version 2.2.4). Primary alignments with mapping 

quality greater than 30 were retained. ATAC-seq peaks were called using MACS (version 

2.7.6) on each individual sample. H3K4me2 ChIPmentation peaks were called using MACS 

against the input controls (which were obtained by pooling input control data from the three 

types of structural cells in equal amounts for each organ). Peaks were aggregated into a list 

of consensus peaks using the function reduce of the package GenomicRanges (version 

1.22.4) in R. Consensus peak that overlapped with blacklisted genomic regions (downloaded 

from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/) were 

discarded.

Quantitative measurements were obtained by counting reads within consensus peaks using 

the function summarizeOverlaps from the GenomicAlignments (version 1.6.3) package in R. 

Samples with detectable contamination by hematopoietic immune cells were identified in 

the same way as for the RNA-seq data, using epigenomic signals in promoter peaks to 
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calculate immune cell signatures. Contaminated samples were automatically removed and 

replaced by new samples. Finally, we computationally corrected for residual contamination 

in the retained samples by regressed out epigenomic signatures of hematopoietic immune 

cells from the matrix of signal intensity values across peaks, using the function 

removeBatchEffect from the limma package in R.

Bioinformatic analysis of cell-type-specific and organ-specific transcription regulation

The processed and quality-controlled RNA-seq, ATAC-seq, and H3K4me2 ChIPmentation 

data were analyzed for differences in transcription regulation across cell types and organs 

(Fig. 3a-c). We integrated all three data types to derive sets of genomic regions with 

characteristic activity patterns (marker peaks), we performed motif enrichment analysis for 

marker peaks, and we inferred a gene-regulatory network by connecting enriched 

transcriptional regulators to their target genes. For gene-regulatory network inference, we 

utilized DNA sequence motifs to connect transcriptional regulators to regulatory regions, 

and genomic proximity to connect regulatory regions to target genes. To make these coarse 

approximations more robust and interpretable, we used the ATAC-seq data to exclude motifs 

that are most likely inactive in the investigated cell types.

First, cell-type-specific and organ-specific marker peaks were identified in analogy to the 

RNA-seq based identification of marker genes (described above), separately for the ATAC-

seq and H3K4me2 ChIPmentation data. For each of the three cell types, we performed 

pairwise comparisons between organs using the limma package in R. Differential peaks were 

selected based on statistical significance (adjusted p-value < 0.05), signal intensity (log2 

CPM > -1), and sequencing coverage (median number of reads of at least 10 in the group 

with stronger signal). We then counted – separately for the two data types – the total number 

of times each peak showed increased signal in a specific organ compared to all other organs. 

Peaks that were upregulated compared to five or more other organs were selected as marker 

peaks of the corresponding organ.

Second, we derived a gene-linked list of marker peaks that were marked as promoter-

associated peaks, enhancer-associated peaks, and other peaks based on gene annotations as 

well as the RNA-seq and H3K4me2 ChIPmentation data (for enhancers). To that end, the 

ATAC-seq peaks were linked to all genes whose transcription start site was located within 

five kilobases, using the function annotatePeakInBatch of the package ChIPpeakAnno 

(version 3.4.6) package in R. They were annotated as promoter-associated if they were 

located within 200 bp from a transcription start site of the respective gene, or as enhancer-

associated if they were located within one to five kilobases from a transcription start site, 

showed a correlation of ATAC-seq and RNA-seq signal greater than 0.3, and overlapped 

with an H3K4me2 ChIPmentation marker peak.

Third, we performed motif analysis on the gene-linked list of marker peaks to connect 

regulatory regions to transcriptional regulators. The HOMER software tool (version 4.9.1, 

http://homer.ucsd.edu/homer/motif/) was used to identify regulator binding motifs in the 

marker peaks and to determine regulator enrichment. This enrichment analysis was 

performed separately for all peaks, for promoter-associated peaks, and for enhancer-

associated peaks, using the HOMER function findMotifsGenome with a background set 
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consistent of all gene-linked peaks. To avoid biases due to differences in peak size, all 

regions were standardized to 500 base pairs around the center of the peak. Transcriptional 

regulators were labeled as significant based on statistical significance (adjusted p-value < 

0.001) and the strength of the enrichment (log2 odds ratio > 1.5).

Fourth, we inferred a gene-regulatory network by connecting transcriptional regulators with 

their target genes. This analysis included only those regulators that were enriched in the 

motif analysis of gene-linked marker peaks (described in the previous paragraph). No 

regulators were excluded based on low or undetectable RNA expression levels, given that 

transcription factors can play a relevant regulatory role despite low expression levels. The 

gene-regulatory network was constructed as follows: (i) We linked transcriptional regulators 

to their target peaks using the HOMER function annotatePeaks; (ii) we used the list of gene-

linked marker peaks to map these peaks to their target genes; (iii) we constructed the final 

network based on the links between regulators and target peaks, and between peaks and 

target genes, using the package igraph (version 1.1.2) in R.

Fifth, we analyzed the inferred gene-regulatory network by determining the network 

similarity between all pairs of transcriptional regulators using the function similarity from 

the igraph package in R (with inverse log weighted similarity). Similarities among 

transcriptional regulators were visualized by multidimensional scaling using the function 

cmdscale in R, based on similarity measures normalized to a minimum of zero and 

maximum of one, and converted to distance measures by taking one minus the normalized 

similarity value.

Epigenetic potential for immune gene activation

To identify genes with unrealized epigenetic potential (i.e., genes whose chromatin state 

indicates much higher expression than observed under homeostatic conditions), we 

compared chromatin accessibility (ATAC-seq signal) of promoter regions with the 

corresponding genes’ expression levels (RNA-seq signal) (Fig. 3d-g).

First, RNA-seq and ATAC-seq read counts were combined into a single table, converted to 

log2(CPM) values, and quantile normalized using the function voom of the limma package 

in R. Second, we removed systematic differences between the two assays for each gene 

using the function removeBatchEffect of the limma package in R. Third, we compared 

normalized RNA-seq and ATAC-seq signal intensities for each gene, organ, and cell type 

using differential analysis from the limma package in R. This analysis used biological 

replicates for RNA-seq and ATAC-seq to statistically assess for a given combination of 

organ and cell type whether the ATAC-seq signal was disproportionately greater (compared 

to other organs and cell types) than the RNA-seq signal. Based on this analysis, genes were 

selected as significant based on the observed difference (log2 fold change > 0.7), statistical 

significance (adjusted p-value < 0.05), and mean signal intensity (normalized log2 CPM > 

0). For ATAC-seq, we further required a minimum sequencing coverage (median number of 

reads > 5). In addition, we calculated the enrichment of genes with immune functions among 

genes with unrealized epigenetic potential. To that end, we selected the 200 genes with the 

greatest difference between ATAC-seq to RNA-seq signal in each organ and cell type, and 
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we calculated their enrichment for our manually curated immune-related gene sets 

(Supplementary Table 8) using Fisher’s exact test based on the function fisher.test in R.

Bioinformatic analysis of the LCMV infection experiments

To evaluate the epigenetic potential for immune gene activation in structural cells, we 

compared the RNA-seq profiles of structural cells under homeostatic conditions with those 

collected on day 8 after infection with LCMV, and we assessed the predictiveness of the 

unrealized potential for the LCMV-induced changes in gene expression (Fig. 4). This 

analysis was based on the hypothesis that LCMV infection – which is widely regarded as a 

systemic infection model – will affect structural cells in most or all investigated organs 

through direct effects (structural cells may get infected) as well as indirect effects (structural 

cells respond to aspects of tissue-specific and systemic infection). Our gene expression 

analysis likely reflects a superposition of several such effects.

First, we identified the genes that were upregulated upon LCMV infection. To that end, we 

compared samples collected under homeostatic conditions with those collected after LCMV 

infection, separately for each cell type and organ, using the limma package in R. 

Differentially expressed genes were selected based on statistical significance (adjusted p-

value < 0.05), average expression (log2 CPM > 1), and sequencing coverage (median 

number of reads > 20 in the upregulated condition). Enrichment analysis was performed by 

comparing differential genes to our manually curated immune-related gene sets 

(Supplementary Table 8) using Fisher’s exact test with the function fisher.test in R.

Second, we evaluated whether genes with unrealized epigenetic potential under homeostatic 

conditions were preferentially upregulated in response to LCMV infection. For each cell 

type and organ, we split all genes into two groups based on their log2 fold change comparing 

ATAC-seq signal to RNA-seq signal: Those with unrealized potential (ATAC-seq signal 

greater than RNA-seq signal) and those without unrealized potential (RNA-seq signal 

greater than ATAC-seq signal). We then assessed whether the LCMV-induced changes in 

gene expression (log2 fold change comparing samples collected after LCMV infection to 

homeostatic conditions) was able to discriminate between the two groups defined by 

epigenetic potential. For visualization and quantitative comparison across cell types and 

organs, the data were plotted in diagrams that conceptually resemble receiver operating 

characteristic (ROC) curves, and the predictiveness of the unrealized potential for gene 

activation upon LCMV infection was quantified by area-under-the-curve (AUC) values.

Third, the activated potential was calculated for each cell type and organ as the percentage of 

genes with unrealized potential under homeostatic conditions (ATAC-seq signal greater than 

RNA-seq signal, p-value < 0.05) that were among the significantly upregulated genes upon 

LCMV infection (defined as described above).

Bioinformatic analysis of the cytokine treatment experiments

To dissect the in vivo effects of individual cytokines on structural cells (Fig. 5), we analyzed 

the transcriptional response to the treatment of mice with six cytokines administrated as 

recombinant proteins, and we obtained RNA-seq profiles (processed and quality-controlled 

as described above) for gene expression analysis.
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First, we compared the gene expression of structural cells between cytokine-treated mice 

and mock-treated (PBS) controls using the limma package in R, separately for each cell type 

and organ. Differentially expressed genes were selected based on statistical significance 

(adjusted p-value < 0.05) and average expression (log2 CPM > 2).

Second, we compared the changes in gene expression upon cytokine treatment to the 

changes in gene expression upon LCMV infection. To that end, we correlated cytokine-

related log fold changes to LCMV-related log fold changes across all genes, separately for 

each cell type, organ, and cytokine.

Third, we tested whether genes upregulated after cytokine treatment were enriched for genes 

with unrealized epigenetic potential. To that end, we calculated the enrichment of genes with 

unrealized epigenetic potential (defined as described above) among genes upregulated by 

cytokine treatment (adjusted p-value < 0.05, log fold change > 0), separately for each organ, 

cell type, and cytokine. Fisher’s exact test was used to calculate statistical significance with 

the function fisher.test in R.
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Extended Data

Extended Data Fig. 1. 
Standardized identification and purification of structural cells across 12 organs. a, Cell-type 

identification and cell sorting scheme (top row) and representative flow cytometry plots 

(selected from n=4 independent biologically replicates) in one representative organ (brain) 

under homeostatic conditions (bottom row). b, Representative plots (selected from n=4 

independent biologically replicates) for gating steps 4 to 6 of the standardized cell-type 
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identification and cell sorting scheme (panel a) across the 12 organs under homeostatic 

conditions. c, Relative frequencies of structural cell types among non-hematopoietic 

(CD45-) cells across 12 organs, for cell suspensions obtained by standardized organ 

dissociation. d, Relative frequencies of structural cell types among non-hematopoietic 

(CD45-) cells across three organs, for cell suspensions obtained by either standardized organ 

dissociation or organ-specific dissociation protocols. Shown are mean and s.e.m. values. 

Sample size: n = 4 (c) and n = 3 (d) independent biological replicates.
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Extended Data Fig. 2. 
Surface marker profiling of structural cells under homeostatic conditions. a, Gating strategy 

for the flow cytometry-based validation of the structural cell sorting scheme. Identification 

of structural cells starts with gating for intact cells (1), single cells (2), live cells (3) and non-

haematopoietic cells (4). From the resulting non-haematopoietic (CD45-) cell population, 

potential epithelial cells (5.1) are gated for epithelial cell markers (5.2). Similarly, potential 

endothelial cells and fibroblasts (6.1, 6.2) are gated for endothelial cell markers (6.3) and 

fibroblast markers (6.4). b, Relative frequencies of potential structural cell types based on 

gates 5.2, 6.3 and 6.4 (from a), comparing the selected markers with alternative markers. c, 

Expression of the selected surface markers of structural cell types (top row) and potential 

alternative markers for cells gated as in Extended Data Fig. 1a. Shown are mean and s.e.m. 

values. Sample size (all panels): n = 3 independent biological replicates.

Extended Data Fig. 3. 
Comparison of the structural cell transcriptomes to published reference data. a, Overlap of 

the identified cell-type-specific and organ-specific marker genes (derived from the RNA-seq 

experiments in the current study) with tissue-specific gene sets from a microarray-based 

expression atlas (two-sided Fisher’s exact test with multiple-testing correction). b, Gene 

expression across cell types and organs (from the current study) aggregated across marker 

genes of structural cell clusters in a single-cell RNA-seq atlas of the mouse19. c, Gene 

expression across cell types and organs (from the current study) plotted for a manually 

curated list of commonly used markers of structural cells. d, Hierarchical clustering of 

structural cells across cell types and organs based on the transcriptome profiles from the 

current study. Sample size (all panels): n = 3 independent biological replicates.
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Extended Data Fig. 4. 
Inference of cell-cell interactions across cell types and organs. a, Enrichment analysis for 

potential cell-cell interactions between structural cells and hematopoietic immune cells, 

based on gene expression of known receptor-ligand pairs (two-sided Fisher’s exact test with 

multiple-testing correction). For each combination of one structural cell type and one 

hematopoietic immune cell type, the analysis assesses whether all pairs of marker genes 

between the two cell types are enriched for annotated receptor-ligand pairs. b, Differently 

expressed genes across cell types and organs, based on a manually curated list of receptors 

and ligands (Supplementary Table 4). Sample size (all panels): n = 3 independent biological 

replicates.
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Extended Data Fig. 5. 
Analysis of immune gene expression among structural cells in an independent dataset. a, 

Relative frequencies of single-cell transcriptomes classified as endothelium, epithelium, and 

fibroblasts in selected organs according to the Tabula Muris dataset20. b, Expression of 

immune gene signatures in structural cells according to the Tabula Muris dataset, jointly 

normalized across all plots (for comparability). c, Expression of immune gene signatures in 

hematopoietic immune cells according to the Tabula Muris dataset, normalized in the same 

way as in panel b. d, Expression of selected immune genes in structural cells and in 
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hematopoietic immune cells according to the Tabula Muris dataset. Sample size: n = 7 (all 

panels) independent biological replicates, comprising 4 male and 3 female mice.

Extended Data Fig. 6. 
Analysis of transcription regulation in structural cells. a, Multidimensional scaling analysis 

of the similarity of chromatin profiles across cell types, organs, and replicates based on 

ATAC-seq (top) and H3K4me2 ChIPmentation (bottom). b, Correlation of chromatin 

profiles across cell types and organs for ATAC-seq (left) and H3K4me2 ChIPmentation 

(right). c, Transcriptional regulators of the inferred gene-regulatory network for structural 

cells, arranged by similarity using multidimensional scaling. d, Motif enrichment for 

transcriptional regulators among differential chromatin peaks, shown separately for each 

regulator (one-sided hypergeometric test with multiple-testing correction). e, Gene 

expression of the transcriptional regulators across cell types and organs (genes discussed in 

the text are in bold). Sample size (all panels): n = 2 independent biological replicates.
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Extended Data Fig. 7. 
Detection and analysis of genes with unrealized epigenetic potential. a, Scatterplot showing 

the correlation between chromatin accessibility in promoter regions and the corresponding 

gene expression levels in structural cells across cell types and organs. Genes with significant 

unrealized epigenetic potential (calculated as the difference between normalized ATAC-seq 

and RNA-seq signals) are highlighted in blue. b, Enrichment of immune-related gene sets 

among the genes with unrealized epigenetic potential (two-sided Fisher’s exact test with 
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multiple-testing correction). Sample size (all panels): n = 2 independent biological 

replicates.

Extended Data Fig. 8. 
Standardized identification and purification of structural cells after LCMV infection. a, Cell-

type identification and cell sorting scheme (top row) and representative flow cytometry plots 

(selected from n=3 independent biologically replicates) in one representative organ (brain) 

after LCMV infection (bottom row). b, Representative plots (selected from n=3 independent 
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biologically replicates) for gating steps 4 to 6 of the standardized cell-type identification and 

cell sorting scheme (a) across the 12 organs upon LCMV infection. c, Change in the relative 

frequenct of structural cells upon LCMV infection. size (all panels): n = 3 independent 

biological replicates.

Extended Data Fig. 9. 
Analysis of differential gene expression in response to LCMV infection. a, Number of 

differentially expressed genes in structural cells upon LCMV infection (this includes not 

only immune genes but for example also genes associated with the substantial organ-specific 

tissue damage induced by LCMV infection). b, Correlation of the observed changes in gene 

expression upon LCMV infection across cell types and organs. c, Organ-specific viral load 

at day 8 of LCMV infection, measured by qPCR in whole-tissue samples collected from 

each organ (without FACS purification of individual cell types). Five reference genes were 

used for normalization and results were ranked across organs, in order to make the analysis 

robust toward tissue-specific differences in the expression of these housekeeping genes. 

However, the experimental results do not support an absolute quantification of viral load in 

each organ nor do they account for differences in the relative frequencies of cells that are 

susceptible to LCMV infection in each organ. d, Scatterplot illustrating the low correlation 

between the activated epigenetic potential and the measured viral load across cell types and 

organs. e, Network analysis (e) and enrichment analysis (f) of potential cell-cell interactions 

between structural cells and hematopoietic immune cells, inferred from gene expression of 

known receptor-ligand pairs upon LCMV infection (two-sided Fisher’s exact test with 

multiple-testing correction). For each combination of one structural cell type and one 
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hematopoietic immune cell type, the analysis assesses whether all pairs of marker genes 

between the two cell types are enriched for annotated receptor-ligand pairs. Sample size: 

n=3 (all panels).

Extended Data Fig. 10. 
Visualization of differential gene expression in response to in vivo cytokine treatments. The 

heatmap visualizes changes in the expression of genes associated with immune functions, 
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plotted across cell types, organs, and cytokines (two-sided linear model with multiple-testing 

correction). Sample size: n = 3 independent biological replicates.

Extended Data Fig. 11. 
Analysis of differential gene expression in response to in vivo cytokine treatments. a, 

Number of differentially expressed genes in response to the individual cytokine treatments. 

b, Gene expression for the known receptors involved in the response to the individual 

cytokine treatments, plotted across cell types and organs under homeostatic conditions. 

Sample size (all panels): n = 3 independent biological replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the Core Facility Flow Cytometry of the Medical University of Vienna for cell sorting service; the 
Biomedical Sequencing Facility at CeMM for assistance with next-generation sequencing; Sophie Zahalka and 
Sylvia Knapp for help and advice with the preparation of lung samples; Sarah Niggemeyer, Jenny Riede, Sabine 

Krausgruber et al. Page 32

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Jungwirth, and Nicole Fleischmann for animal caretaking; and all members of the Bock lab for their help and 
advice. This work was conducted in the context of two Austrian Science Fund (FWF) Special Research Programme 
grants (FWF SFB F6102; FWF SFB F7001). T.K is supported by a Lise Meitner fellowship from the Austrian 
Science Fund (FWF M2403). N.F. is supported by a fellowship from the European Molecular Biology Organization 
(EMBO ALTF 241-2017). A.L. is supported by a DOC fellowship of the Austrian Academy of Sciences. A.B. is 
supported by an ERC Starting Grant (European Union’s Horizon 2020 research and innovation programme, grant 
agreement n° 677006). C.B. is supported by a New Frontiers Group award of the Austrian Academy of Sciences 
and by an ERC Starting Grant (European Union’s Horizon 2020 research and innovation programme, grant 
agreement n° 679146).

Data and code availability

Data availability: Raw and processed sequencing data (RNA-seq, ATAC-seq and H3K4me2 

ChIPmentation) are available from the NCBI Gene Expression Omnibus (GEO) repository 

(accession number: GSE134663). In addition, the dataset is provided as an online resource 

on a supplementary website (http://structural-immunity.computational-epigenetics.org), 

which includes links to raw and processed sequencing data, further analysis results, and 

genome browser tracks for interactive visualization of the RNA-seq, ATAC-seq, and 

ChIPmentation profiles.

Code availability: The analysis source code underlying the final version of the paper is 

available from the Supplementary Website (http://structural-immunity.computational-

epigenetics.org).

References

1. Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015; 
160:816–827. DOI: 10.1016/j.cell.2015.02.010 [PubMed: 25723161] 

2. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 2019

3. Buckley CD, Barone F, Nayar S, Benezech C, Caamano J. Stromal cells in chronic inflammation 
and tertiary lymphoid organ formation. Annu Rev Immunol. 2015; 33:715–745. DOI: 10.1146/
annurev-immunol-032713-120252 [PubMed: 25861980] 

4. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 
2007; 7:803–815. DOI: 10.1038/nri2171 [PubMed: 17893694] 

5. Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC. Epithelium: At the interface of innate and 
adaptive immune responses. J Allergy Clin Immunol. 2007; 120:1279–1284. DOI: 10.1016/
j.jaci.2007.08.046 [PubMed: 17949801] 

6. Pawlina, W, Ross, MH. Histology: A Text and Atlas, International Edition: With Correlated Cell and 
Molecular Biology. Wolters Kluwer Law & Business; 2019. 

7. Humbert M, Hugues S, Dubrot J. Shaping of peripheral T cell responses by lymphatic endothelial 
cells. Front Immunol. 2016; 7:684.doi: 10.3389/fimmu.2016.00684 [PubMed: 28127298] 

8. Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: 
partners in immunity. Immunol Rev. 2013; 251:160–176. DOI: 10.1111/imr.12023 [PubMed: 
23278748] 

9. Nowarski R, Jackson R, Flavell RA. The stromal intervention: Regulation of immunity and 
inflammation at the epithelial-mesenchymal barrier. Cell. 2017; 168:362–375. DOI: 10.1016/
j.cell.2016.11.040 [PubMed: 28129537] 

10. Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and 
adaptive immune responses. Immunol Rev. 2019; 289:31–41. DOI: 10.1111/imr.12748 [PubMed: 
30977192] 

11. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour 
microenvironment. Nat Rev Immunol. 2015; 15:669–682. DOI: 10.1038/nri3902 [PubMed: 
26471778] 

Krausgruber et al. Page 33

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://structural-immunity.computational-epigenetics.org
http://structural-immunity.computational-epigenetics.org
http://structural-immunity.computational-epigenetics.org


12. Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017; 
18:725–732. DOI: 10.1038/ni.3768 [PubMed: 28632713] 

13. Villani AC, Sarkizova S, Hacohen N. Systems immunology: Learning the rules of the immune 
system. Annu Rev Immunol. 2018; 36:813–842. DOI: 10.1146/annurev-immunol-042617-053035 
[PubMed: 29677477] 

14. Picelli S, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9:171–
181. DOI: 10.1038/nprot.2014.006 [PubMed: 24385147] 

15. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin 
for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and 
nucleosome position. Nat Methods. 2013; 10:1213–1218. DOI: 10.1038/nmeth.2688 [PubMed: 
24097267] 

16. Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input ChIP-seq 
for histones and transcription factors. Nat Methods. 2015; 12:963–965. DOI: 10.1038/nmeth.3542 
[PubMed: 26280331] 

17. Wang Y, Li X, Hu H. H3K4me2 reliably defines transcription factor binding regions in different 
cells. Genomics. 2014; 103:222–228. DOI: 10.1016/j.ygeno.2014.02.002 [PubMed: 24530516] 

18. Su AI, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl 
Acad Sci U S A. 2004; 101:6062–6067. DOI: 10.1073/pnas.0400782101 [PubMed: 15075390] 

19. Han X, et al. Mapping the mouse cell atlas by microwell-seq. Cell. 2018; 172:1091–1107.e1017 
DOI: 10.1016/j.cell.2018.02.001 [PubMed: 29474909] 

20. Schaum N, et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 
2018; 562:367–372. DOI: 10.1038/s41586-018-0590-4 [PubMed: 30283141] 

21. Bock C, et al. Reference Maps of human ES and iPS cell variation enable high-throughput 
characterization of pluripotent cell lines. Cell. 2011; 144:439–452. DOI: 10.1016/
j.cell.2010.12.032 [PubMed: 21295703] 

22. Baazim H, et al. CD8+ T cells induce cachexia during chronic viral infection. Nat Immunol. 2019; 
20:701–710. DOI: 10.1038/s41590-019-0397-y [PubMed: 31110314] 

23. Guerrero-Juarez CF, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived 
adipocyte progenitors in murine skin wounds. Nat Commun. 2019; 10:650.doi: 10.1038/
s41467-018-08247-x [PubMed: 30737373] 

24. Kinchen J, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel 
disease. Cell. 2018; 175:372–386 e317. DOI: 10.1016/j.cell.2018.08.067 [PubMed: 30270042] 

25. Mizoguchi F, et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid 
arthritis. Nat Commun. 2018; 9:789.doi: 10.1038/s41467-018-02892-y [PubMed: 29476097] 

26. Montoro DT, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. 
Nature. 2018; 560:319–324. DOI: 10.1038/s41586-018-0393-7 [PubMed: 30069044] 

27. Parikh K, et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 
2019; 567:49–55. DOI: 10.1038/s41586-019-0992-y [PubMed: 30814735] 

28. Plasschaert LW, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary 
ionocyte. Nature. 2018; 560:377–381. DOI: 10.1038/s41586-018-0394-6 [PubMed: 30069046] 

29. Haber AL, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017; 551:333–
339. DOI: 10.1038/nature24489 [PubMed: 29144463] 

30. Rodda LB, et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated 
heterogeneity. Immunity. 2018; 48:1014–1028 e1016. DOI: 10.1016/j.immuni.2018.04.006 
[PubMed: 29752062] 

31. Yan KS, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell 
self-renewal. Nature. 2017; 545:238–242. DOI: 10.1038/nature22313 [PubMed: 28467820] 

32. Ahmed R, Salmi A, Butler LD, Chiller JM, Oldstone MB. Selection of genetic variants of 
lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of 
cytotoxic T lymphocyte response and viral persistence. J Exp Med. 1984; 160:521–540. DOI: 
10.1084/jem.160.2.521 [PubMed: 6332167] 

33. Bergthaler A, et al. Viral replicative capacity is the primary determinant of lymphocytic 
choriomeningitis virus persistence and immunosuppression. Proc Natl Acad Sci U S A. 2010; 
107:21641–21646. DOI: 10.1073/pnas.1011998107 [PubMed: 21098292] 

Krausgruber et al. Page 34

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



34. Immgen Consortium. [Accessed 24 March 2020] Final immgen sorting SOP. 2019. http://
www.immgen.org/Protocols/ImmGen%20Cell%20prep%20and%20sorting%20SOP.pdf

35. Krausgruber T, et al. T-bet is a key modulator of IL-23-driven pathogenic CD4(+) T cell responses 
in the intestine. Nat Commun. 2016; 7:11627.doi: 10.1038/ncomms11627 [PubMed: 27193261] 

36. Saluzzo S, et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell 
Rep. 2017; 18:1893–1905. DOI: 10.1016/j.celrep.2017.01.071 [PubMed: 28228256] 

37. Lercher A, et al. Type I interferon signaling disrupts the hepatic urea cycle and alters systemic 
metabolism to suppress T cell function. Immunity. 2019; 51:1074–1087 e1079. DOI: 10.1016/
j.immuni.2019.10.014 [PubMed: 31784108] 

38. Corces MR, et al. Lineage-specific and single-cell chromatin accessibility charts human 
hematopoiesis and leukemia evolution. Nat Genet. 2016; 48:1193–1203. DOI: 10.1038/ng.3646 
[PubMed: 27526324] 

39. Gustafsson C, De Paepe A, Schmidl C, Mansson R. High-throughput ChIPmentation: freely 
scalable, single day ChIPseq data generation from very low cell-numbers. BMC Genomics. 2019; 
20:59.doi: 10.1186/s12864-018-5299-0 [PubMed: 30658577] 

40. Pinschewer DD, et al. Innate and adaptive immune control of genetically engineered live-
attenuated arenavirus vaccine prototypes. Int Immunol. 2010; 22:749–756. DOI: 10.1093/intimm/
dxq061 [PubMed: 20584765] 

41. Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J. Housekeeping and tissue-
specific genes in mouse tissues. BMC Genomics. 2007; 8:127.doi: 10.1186/1471-2164-8-127 
[PubMed: 17519037] 

42. Li B, et al. A Comprehensive Mouse Transcriptomic BodyMap across 17 Tissues by RNA-seq. 
Scientific Reports. 2017; 7:4200.doi: 10.1038/s41598-017-04520-z [PubMed: 28646208] 

43. Shay T, et al. Conservation and divergence in the transcriptional programs of the human and mouse 
immune systems. Proc Natl Acad Sci U S A. 2013; 110:2946–2951. DOI: 10.1073/
pnas.1222738110 [PubMed: 23382184] 

44. Lavin Y, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local 
microenvironment. Cell. 2014; 159:1312–1326. DOI: 10.1016/j.cell.2014.11.018 [PubMed: 
25480296] 

45. Vento-Tormo R, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. 
Nature. 2018; 563:347–353. DOI: 10.1038/s41586-018-0698-6 [PubMed: 30429548] 

46. Ramilowski JA, et al. A draft network of ligand-receptor-mediated multicellular signalling in 
human. Nat Commun. 2015; 6:7866.doi: 10.1038/ncomms8866 [PubMed: 26198319] 

Krausgruber et al. Page 35

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.immgen.org/Protocols/ImmGen%20Cell%20prep%20and%20sorting%20SOP.pdf
http://www.immgen.org/Protocols/ImmGen%20Cell%20prep%20and%20sorting%20SOP.pdf


Figure 1. 
Multi-omics profiling establishes cell-type-specific and organ-specific characteristics of 

structural cells. a, Schematic outline of the experimental approach. b, Relative frequencies 

of structural cell types based on flow cytometry. c, Expression of surface markers among 

structural cells, comparing the standardized sorting of endothelium, epithelium, and 

fibroblasts to potential alternative markers (left: schematic outline; center: heatmaps 

showing marker overlap; right: illustrative FACS plots). d, Expression of differentially 

regulated genes across cell types and organs. Gene clusters are annotated with enriched 

terms based on gene set analysis. e, Correlation of gene expression across cell types and 

organs. Sample size: n = 4 (b) and n = 3 (c-e) independent biological replicates.
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Figure 2. 
Gene expression of structural cells predicts cell-type-specific and organ-specific crosstalk 

with hematopoietic immune cells. a, Network of potential cell–cell interactions between 

structural cells and haematopoietic immune cells inferred from gene expression of known 

receptor–ligand pairs. NK cell, natural killer cell. b, Expression of receptors and ligands in 

structural cells, annotated with the cell–cell interactions that they may mediate (genes 

discussed in the text are in bold). RPKM, reads per kilobase of transcript per million mapped 

reads. c, Gene signatures of receptors (R) and ligands (L) in structural cells. Sample size (all 

panels): n = 3 independent biological replicates.
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Figure 3. 
Structural cells implement characteristic gene-regulatory networks and an epigenetic 

potential for immune gene activation. a, Schematic outline of the gene-regulatory network 

analysis. b, ATAC-seq signal tracks (average across replicates) for selected genomic regions. 

Differences between cell types and organs are highlighted by black boxes. c, Motif 

enrichment for transcriptional regulators in cell-type-specific and organ-specific chromatin 

marker peaks (one-sided hypergeometric test with multiple-testing correction). d, Schematic 

outline (left) and a concrete example (right) of the epigenetic potential, based on the 

comparison of chromatin accessibility (ATAC-seq) in promoter regions with matched gene 

expression (RNA-seq). e, Scatterplot showing the correlation between promoter chromatin 

accessibility across all genes in liver endothelium and epithelium with Ifngr2 highlighted by 

the red dot. f, Immune genes with unrealized epigenetic potential across cell types and 

organs. g, Pearson correlation between promoter chromatin accessibility and gene 

expression across cell types and organs (mean and s.e.m across pairwise correlations; red 

bars indicate the maximum scope for unrealized epigenetic potential). Sample size: ATAC-

seq n = 2 (b-g), RNA-seq n = 3 (c-g) independent biological replicates.
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Figure 4. 
Systemic viral infection activates the immunological potential of structural cells in vivo. a, 

Schematic outline of the lymphocytic choriomeningitis virus (LCMV) infection analysis. b, 

Comparison of the changes in gene expression upon LCMV infection (day 8) to the 

epigenetic potential observed under homeostatic conditions (day 0), using a threshold of 

zero for differential gene expression (left) or a variable threshold analogous to a ROC curve 

(center). The area under the curve is interpreted as a measure of the epigenetic potential’s 

predictiveness for LCMV-induced gene activation, plotted together with the percentage of 

upregulated genes that carry unrealized epigenetic potential (right). c, Enrichment of 

immune-related gene sets among the LCMV-induced genes (two-sided Fisher’s exact test 

with multiple-testing correction). Sample size (all panels): n = 3 independent biological 

replicates.

Krausgruber et al. Page 39

Nature. Author manuscript; available in PMC 2021 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
Cytokine treatment induces cell-type-specific and organ-specific changes in structural cells 

in vivo. a, Schematic outline of the cytokine treatment experiments (left) and number of 

genes upregulated in each experiment (right). b, Genes upregulated in response to IFN-α 
treatment. c,d, Cytokine-induced changes in spleen endothelium (c) and liver fibroblasts (d), 

showing the percentage of LCMV-induced changes that are recapitulated by cytokine 

treatment (top left), enrichment for genes with unrealized epigenetic potential among the 

cytokine-induced genes (bottom left), and genes upregulated upon cytokine treatment (genes 

discussed in the text are in bold). Significant enrichments (two-sided Fisher’s exact test, 

adjusted p-value < 0.05) are labeled with an asterisk. Differential expression is based on a 

linear model (two-sided test) with multiple-testing correction (panels b-d). Sample size (all 

panels): n = 3 independent biological replicates.
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