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Cyanobacteria, or oxyphotobacteria, are primary producers that establish ecological

interactions with a wide variety of organisms. Although their associations with eukaryotes

have received most attention, interactions with bacterial and archaeal symbionts

have also been occurring for billions of years. Due to these associations, obtaining

axenic cultures of cyanobacteria is usually difficult, and most isolation efforts result

in unicyanobacterial cultures containing a number of associated microbes, hence

composing a microbial consortium. With rising numbers of cyanobacterial blooms

due to climate change, demand for genomic evaluations of these microorganisms is

increasing. However, standard genomic techniques call for the sequencing of axenic

cultures, an approach that not only adds months or even years for culture purification,

but also appears to be impossible for some cyanobacteria, which is reflected in

the relatively low number of publicly available genomic sequences of this phylum.

Under the framework of metagenomics, on the other hand, cumbersome techniques

for achieving axenic growth can be circumvented and individual genomes can be

successfully obtained from microbial consortia. This review focuses on approaches

for the genomic and metagenomic assessment of non-axenic cyanobacterial cultures

that bypass requirements for axenity. These methods enable researchers to achieve

faster and less costly genomic characterizations of cyanobacterial strains and raise

additional information about their associated microorganisms. While non-axenic cultures

may have been previously frowned upon in cyanobacteriology, latest advancements in

metagenomics have provided new possibilities for in vitro studies of oxyphotobacteria,

renewing the value of microbial consortia as a reliable and functional resource for the

rapid assessment of bloom-forming cyanobacteria.

Keywords: bioinformatics, microbial ecology, genome assembly, metagenome binning, symbiosis, microbial

consortia, oxyphotobacteria

INTRODUCTION

Next generation DNA sequencing technologies became widely available in the middle 2000’s,
acting synergistically with advances in computer sciences and instigating a revolution in genomics
(Koboldt et al., 2013). These technological advancements are much faster in acquiring data and
enabled the analysis of much larger biological datasets than possible with the methodology of
Sanger et al. (1977), which had become the standard DNA sequencing method for over three
decades. The bioinformatics community has kept up with these advancements and developed a
considerable number of computer software for analyzing this ever-growing amount of biological
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information. Following these new methods, not only has
genome characterization become quicker, but large-scale projects
involving genomics andmetagenomics have also become feasible.

Despite the huge advances recent technologies have brought
to microbiology, several obstacles still need to be overcome for
a broader characterization of the domain Bacteria, as several
phyla are still insufficiently covered by genomics. The field
of cyanobacterial genomics holds an interesting example of a
research subject that has been moving forward at a pace that is
relatively slower than currently observed for some of the other
bacterial phyla. Although an increasing number of laboratories
around the world are interested in entering this research field,
the availability of genomic sequences from cyanobacteria is still
relatively low (Figure 1). Therefore, cyanobacteria are severely
underrepresented in genomic databases when compared to other
bacteria, and even archaea. Additionally, the currently available
cyanobacterial genome databases are still lacking in taxonomic,
environmental, and geographical diversity, thus providing an
incomplete picture of this phylum.

The phylum Cyanobacteria groups oxygenic phototrophic
bacteria, or oxyphotobacteria, the likely descendants of the
pioneers of oxygenic photosynthesis (Fischer et al., 2016;
Shaw, 2016). Most research on cyanobacteria is guided by
evolutionary, ecological, ecotoxicological, biochemical, and
taxonomic concerns (for a review on common investigation
topics regarding cyanobacteria see Sciuto and Moro, 2015).
Cyanobacteria were amongst the earliest organisms on the planet

FIGURE 1 | Proportion of public genomes from cyanobacteria in comparison to the total number of genomes currently available for bacteria and

archaea. The number of cyanobacterial genomes amounts for approximately 0.6% of all prokaryotic genomes available at this moment.

and synthesized important molecules for primitive life (Banack
et al., 2012; Schirrmeister et al., 2016). Later, microorganisms of
this phylum were responsible for oxygenating Earth’s atmosphere
(Shih et al., 2017) and originating chloroplasts (Alda et al., 2014).
Currently, oxyphotobacteria (also known as blue-green bacteria)
are important primary producers, with some taxa capable of
fixing both atmospheric carbon and nitrogen (Hartmann et al.,
2014; Karlson et al., 2015). Some of these organisms cause
ecological disturbances after blooming in natural and eutrophic
waters, an event that is becoming more frequent as the climate
changes (Paerl and Otten, 2013; Costa et al., 2016; Visser et al.,
2016). In addition, cyanobacteria are a subject of scientific
investigation in regard to their production of toxic and non-toxic
secondary metabolites (Merel et al., 2013; Micallef et al., 2015;
Pearson et al., 2016). Their troubled taxonomic history has also
left an ongoing need for revisiting the systematics of this phylum
(Hoffmann et al., 2005; Komárek et al., 2014).

With the help of genomic methods, these topics are now
under deeper scrutiny. It is now easier to gather information
for understanding the evolution, organization, and distribution
of genes involved in cyanotoxin biosynthesis (Stucken et al.,
2010; Dittmann et al., 2013; D’Agostino et al., 2016), as well
as investigating their possible ecophysiological functions and
evolutionary advantages (Holland and Kinnear, 2013; Neilan
et al., 2013); to acquire a better view of secondarymetabolism and
discover new molecules (Baran et al., 2013; Méjean and Ploux,
2013; Calteau et al., 2014; Dittmann et al., 2015;Moss et al., 2016);
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to verify the structure of DNA packaging (Lehmann et al., 2014);
to better comprehend the relationship between morphology and
genetics (Dagan et al., 2013; Gonzalez-Esquer et al., 2016); to
advance the evolutionary history of the phylum and early life on
Earth (Cardona et al., 2015; Harel et al., 2015; Schirrmeister et al.,
2015); to study geological and biogeochemical alterations that
occurred concurrently with changes in microbiota (Kaufman,
2014; Hamilton et al., 2016); and to refine systematics (Komárek
et al., 2014; Thompson et al., 2015). Metagenomics has
also made important discoveries, advancing our knowledge
on macroevolution (Zaremba-Niedzwiedzka et al., 2017) and
revealing a huge diversity yet to be explored (Hug et al., 2016),
including the melainabacteria, the closest known relatives of
oxyphotobacteria (Di Rienzi et al., 2013; Soo et al., 2014).

These investigations demonstrate that research on
cyanobacteria gathers valuable knowledge on a broad range
of subjects, and that genomics is well-suited for achieving
breakthroughs. Therefore, the small number of available
genome sequences for this phylum does not necessarily reflect
irrelevance of the topic or lack of interest in either cyanobacteria
or genomics; rather, it is likely a consequence of peculiarities
inherent to current researchmethods on cyanobacteria. Difficulty
in obtaining pure cyanobacterial cultures, technical challenges
in the study of mixed cultures, and the very idiosyncrasies of
cyanobacterial genomes are the main factors contributing to
the complexity of this research theme, and they must be better
understood and adequately addressed for more genomes of these
microorganisms to become available. This review explores these
factors and highlights joint genomics/metagenomics workflows
that aim to overcome some of the challenges commonly found in
cyanobacteriology.

CURRENT STATE OF CYANOBACTERIAL
GENOMICS

In 1996, Synechocystis sp. PCC 6803 became the first
cyanobacterium to have its genome published (Kaneko
et al., 1996). Yet, more than 20 years later, just a few over
400 cyanobacterial genomes are available in public databases,
a number that pales in comparison to more than 30,000
complete genomes available for strains classified in 50 bacterial
and 11 archaeal phyla (Land et al., 2015). Additionally, most
available cyanobacterial genomes were retrieved from sea or
freshwater strains deposited at the Pasteur Culture Collection
(PCC) in Paris, France. Although the importance and quality
of the PCC is undeniable, this predominance means that
public databases are lacking in geographical diversity, as the
majority of cyanobacterial strains deposited in the PCC are
European. Also worrisome is the fact that some cyanobacterial
taxa are overrepresented. As of this moment, 166 genomes
were obtained from Prochlorococcus spp., among which 45
belong to a single species, P. marinus. Thus, the current
public cyanobacterial genomes dataset is a biased sample of
natural diversity in this phylum. Nevertheless, this dataset
has helped to uncover fundamental information about these
microorganisms.

The most recent ancestral genome for the cyanobacteria
was estimated as having approximately 4.5 Mb and somewhere
between 1,678 and 3,291 genes, with only around 4–6%
remaining exclusive to the genomes of modern cyanobacteria,
which have innovated in sequences for filament development,
heterocyte differentiation, diazotrophic metabolism, and
symbiotic competence (Larsson et al., 2011). Nonetheless, some
of these innovations, like multicellularity, appear to have been
acquired and lost many times during the evolutionary history
of this phylum and may have been inherited from its common
ancestor (Schirrmeister et al., 2011). By looking at the complete
genomes published, it can be observed that the genetic material
in cyanobacteria is composed of one or two chromosomes
(Wang H. et al., 2012), ranging from 1.4 to 8.2 Mb (Meeks et al.,
2001; Zehr et al., 2008), with up to 12 plasmids (Hirose et al.,
2015), and occasionally an incision element (Thiel et al., 2014).
Nevertheless, molecular analyses of the number of chromosomes
in cyanobacteria indicate this phylum also presents polyploidy,
so that some cyanobacteria contain up to 218 chromosomes
during exponential growth (Griese et al., 2011). Akinetes may
contain up to 450 chromosomes, most likely due to the necessity
of a fast comeback for metabolic activities and cell division after
dormancy (Sukenik et al., 2012).

Genomic content can be either the result of neutral processes
or the reflection of adaptation to the different conditions an
organism is subjected (Barrick et al., 2009; Koonin, 2009;
Tenaillon et al., 2016). Basically, two adaptation strategies can
be inferred from genomic analyses of cyanobacteria; broad
adaptation potential through the increase of gene families as a
result of genomic expansion, and elimination of genes that are
dispensable for adaptation to a certain niche via mechanisms
of genomic reduction (Larsson et al., 2011). Selection pressures
may cause changes in genetic factors such as genome size,
G-C percentage, gene number, and evolutionary rates. While
cyanobacteria may develop individual strategies for interacting
with the environment, several of their systems are globally
conserved (Simm et al., 2015). Similar to what occurs in other
microorganisms, a set of essential genes is found in cyanobacteria
presenting considerably high conservation and resistance to
horizontal transfer. This conserved gene set, or their core
genome, consists mostly of sequences coding for complex protein
structures and indispensable biochemical pathways (Shi and
Falkowski, 2008; Larsson et al., 2011).

Non-essential genes, part of the accessory genome, are
more frequently subject to horizontal gene transfer, which
plays an important role in generating molecular diversity in
cyanobacteria (Zhaxybayeva et al., 2006). Genome plasticity in
these microorganisms is evidenced by the broad distribution and
hypervariability of mobile genetic elements, mainly represented
by insertion sequences, which can amount up to 10.95%
of some genomes (Lin et al., 2010). The relatively high
amount of repeated sequences found in the genomes of a
number of cyanobacteria is a limiting factor for bioinformatic
assembling, even after increasing sequencing depth. Therefore,
these repeated sequences directly impact the cyanobacterial
genome completeness during assembly. As is well known, large
amounts of repeats deliver great challenges for assembling
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algorithms (Wang H. et al., 2012) and hence are an important
factor to explain why approximately 90% of the genomes thus
far available are permanent or temporary drafts (Land et al.,
2015). Even for cyanobacterial strains in axenic cultures, genome
sequencings with high depth and varying library strategies may
prove insufficient for reconstructing chromosomes and plasmids
into single sequences or even attending the minimum assembly
quality for acceptance into the NCBI RefSeq genomes database
(N50 above 5,000, L50 under 200, and less than 1,000 contigs)
(Tatusova et al., 2013, 2015).

Techniques based on polyphasic taxonomy were introduced
to cyanobacterial systematics in an attempt to overcome
shortcomings brought by traditional emphasis on morphological
features (Vandamme et al., 1996; Komárek, 2005, 2016).
Genomics is currently the most promising framework for
correcting mistakes caused by traditional taxonomics and
clearing out the complicated evolutionary relationships of several
polyphyletic taxa persisting in cyanobacterial classification.
Potentially, even misleading errors caused by horizontal gene
transfer or other processes that obscure the phylogenetic signal
could be solved by phylogenomics (Kauff and Büdel, 2011).
While the refinement of polyphasic taxonomy is still being
discussed (Palinska and Surosz, 2014; Mishra et al., 2015),
comparative genomics is its next logical step, and phylogenomics
and synapomorphy analyses may redefine our understanding
of the evolution of cyanobacteria (Gupta, 2009; Gupta and
Mathews, 2010; Komárek et al., 2014).

Phylogenetically, the unbalanced availability of genomic
sequences from cyanobacteria causes an unsatisfactory
representation of their genomic potential. This prevents
the expansion of knowledge of the molecular biology of the
phylum, since sequences from neglected taxa may bring to light
answers to meaningful questions (Richards, 2015). Sequencing
genomes from cyanobacteria of lesser known taxa allows not
only increasing knowledge of the molecular genetics of the
phylum, but also of the evolution and diversity of aspects such
as morphology, photosynthesis, secondary metabolism, and
endosymbiosis (Dagan et al., 2013; Shih et al., 2013). There is a
clearly observable tendency in more recent genomic projects,
to recognize the necessity of studying cyanobacteria from taxa
that were poorly investigated or that come from less explored
environments. Due to the relatively low number of available
genomes from cyanobacteria, applying genomic approaches to
some topics was not yet successful on a larger scale. However,
even if at this moment there are technical questions preventing
a broader use of genomics in cyanobacterial research, genome
sequencing is becoming so much faster and cheaper, that it is
likely to eventually become a standard procedure.

ECOLOGICAL ASSOCIATIONS INVOLVING
CYANOBACTERIA

Cyanobacteria present a broad range of metabolic capacities
that lead them to perform important ecological roles and
to establish mutualistic interactions with a wide variety of

organisms. Epi- or endobiotic symbioses between cyanobacteria
and eukaryotes such as animals (ascidia, echiuroid worms, midge
larvae, sponges), chromalveolata (diatoms, dinoflagellates), fungi
(lichens, Geosiphon), and plants (cycads, hornworths, liverworts,
mosses, Azolla, Gunnera) have been documented (Adams, 2000;
Bergman et al., 2007; Adams et al., 2013). On the other hand,
associations between cyanobacteria and other bacteria or archaea
have not received similar attention.

Several heterotrophic microorganisms benefit from
associations with bacteria capable of oxygenic photosynthesis,
nitrogen fixation, and biosynthesis of secondary metabolites,
characteristics found in many cyanobacteria. Indeed,
cyanobacteria often present heterotrophic microbes in symbiotic
association with their cells (Figure 2). Some of these associates
are in intimate contact with their cell envelope or even reside
inside their glycocalyx (Zhubanova et al., 2013). The interacting
interface between cyanobacteria and heterotrophic microbes
in cyanobacteria-dominated communities could even be
considered a “cyanosphere” in analogy to what is observed in
plant rhizospheres and phyllospheres.

Associations between cyanobacteria and other
microorganisms have been presumed to exist even amongst
the oldest known forms of life, engaging in important ecological
interactions for billions of years. Stromatolites are a classical
example of cyanobacteria-dominated mats supporting highly-
developed microbial communities that establish complex
interactions (Cohen and Gurevitz, 2006). Exopolysaccharides
secreted by cyanobacteria are constantly colonized by microbes
and may originate biofilms and microbial mats with high
richness and abundance, where autotrophs and heterotrophs
find diverse opportunities for interacting (Paerl et al., 2000; Cole
et al., 2014). Biofilms dominated by cyanobacteria usually have
high nutritional quality and may support large biomasses of
primary consumers (Yamamuro, 1999; Nagarkar et al., 2004).
Similarly, cyanobacterial blooms occurring in response to
eutrophic conditions in water bodies may also be followed by
associations with heterotrophic bacteria, several being capable of
enhancing cyanobacterial growth (Berg et al., 2009).

In addition to bioavailable carbon and nitrogen, microbes
interacting with cyanobacteria may benefit from the secondary
metabolites they produce. For instance, some cyanotoxins and
cyanopeptides may be degraded and taken up by associated
bacteria (Kormas and Lymperopoulou, 2013; Briand et al., 2016).
A wide range of chemicals are synthesized by cyanobacteria both
under axenic and symbiotic conditions, either in artificial or
natural habitats. Molecules with antibacterial, antiprotozoan,
antitumor, immunomodulatory, and protease-inhibiting
activities have been described, pointing to cyanobacteria as a
prolific source for the production of bioactive compounds (Singh
et al., 2011). Some authors consider the potential for biosynthesis
of secondary metabolites from these organisms as matched only
by the potential of myxobacteria and the actinobacterial genus
Streptomyces (Nunnery et al., 2010). Though the ecological or
physiological role of a considerable number of these metabolites
is not yet understood, the chemical ecology of this phylum has
been an increasingly explored topic (Leão et al., 2012).
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FIGURE 2 | Scanning electron microscopy of a cyanobacterial strain after standard isolation procedures showing microbes associated with its

filaments in a carbon- and nitrogen-free culture medium. Arrows highlight microbial assemblages attached to cyanobacterial sheaths. Scale: 5µm.

NON-AXENIC CULTURES IN
CYANOBACTERIOLOGY

Especially because of the associations between cyanobacteria
and other microorganisms, the process for obtaining axenic
cyanobacterial cultures is very challenging. Even with the
use of cyanobacteria-specific media, heterotrophs may quickly
overcome cells of the target cyanobacterium during isolation,
and consequently culture purification becomes a very complex
and time-consuming process (Waterbury, 2006). Although
several techniques for the purification of cyanobacterial cultures
including both mechanical and chemical methods have been
published, axenic cyanobacterial cultures are still very hard to
achieve, since most methodologies for axenity are somewhat
specific to a few strains and have low rates of success (Choi et al.,
2008; Sena et al., 2008). Some commonly-employed techniques,
such as washing, centrifugation, or filtering are merely capable
of reducing the number of unattached microorganisms that are
either smaller or larger than the target cells (Vázquez-Martínez
et al., 2004; Sena et al., 2008), and they usually cannot remove
microbes strongly connected to cyanobacterial sheaths. In certain
instances, an axenic culture is considered virtually impossible
to obtain due to strong associations between cyanobacteria and
symbiont microbes. In addition, fibrous carbohydrate structures
in cyanobacterial mucilage may establish firm aggregates with
microbes, resulting in strong connections capable of even
protecting from antibiotic action (Vázquez-Martínez et al., 2004).
Therefore, recalcitrant heterotrophs are a constant concern
during the process of isolating cyanobacteria.

Most conventional efforts for the isolation of cyanobacteria
result in non-axenic cultures, consisting of microbial consortia

composed of a single cyanobacterial species and a number
of closely associated non-cyanobacterial organisms, or a
unicyanobacterial culture. These cultures are almost like “in vitro
blooms” in the sense that they provide essential nutrients
and conditions for cyanobacteria to massively reproduce and
dominate their communities while bringing forward a number
of ecological associations with microbes that are potentially host-
specific, as commonly observed in environmental blooms (Pope
and Patel, 2008; Berg et al., 2009; Bagatini et al., 2014). Most
research labs keep non-axenic, unicyanobacterial cultures for
routine work, and only dedicate time for trying to achieve an
axenic culture when a specific strain is scheduled to be studied
in further detail, e.g., for genomic sequencing. Furthermore,
traditional methods for evaluating axenity in cyanobacterial
cultures may be misleading, as they check for the persistence of
cultured bacteria while ignoring uncultured symbionts, causing
a mixed culture to be mistaken for an axenic one (Heck et al.,
2016).

Another fact adding to the routine use of non-axenic cultures
in cyanobacteriology is that these microbes were initially studied
in botany, and for legacy reasons the International Code of
Nomenclature for algae, fungi, and plants (Botanical Code)
(McNeill et al., 2012) is still used for describing cyanobacteria
in addition to the International Code of Nomenclature of
Prokaryotes (Prokaryotic Code) (Parker et al., 2015). Even today,
decades after cyanobacteria were proved to be prokaryotes and
not algae, very few cyanobacteria have been described under
the Prokaryotic Code (Oren, 2011), and one of the reasons for
this is that the Botanical Code does not require axenic cultures
as type material, unlike the Prokaryotic Code. As knowledge of
microbial ecology advances, the requirement of axenic cultures
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in the Prokaryotic Code may come to be viewed as unnecessary,
unrealistic, or anachronistic in the advancement of microbial
systematics, since the great majority of microorganisms are likely
to remain uncultured in the near future, due not only to the
lack of knowledge of their physiological demands, but also to the
incredible amount of work that would be necessary for culturing
them, even if it were possible to remove these organisms from
their ecological context.

Discussions about the Prokaryotic Code validating
cyanobacterial names validly published under the Botanical
Code (Pinevich, 2015) and adopting alternative type materials
for the description of new microbes (Chun and Rainey, 2014;
Sutcliffe, 2015; Whitman, 2015, 2016) are still in the beginning,
thus it is likely the current practices will still be kept for quite
some time. It is important nevertheless to also include in this
discussion the availability of mixed cultures. Most botanical
collections that accept cyanobacterial samples require either
dried biomass in exsicata or liquid cultures preserved in
formaldehyde, which make samples unsuitable for further
work. Microbiological collections, on the other hand, are better
equipped to receive in vitro microbial consortia, but typically
only accept axenic cultures. Consequently, the only available
option to obtain non-axenic cyanobacterial cultures mentioned
in publications is to ask authors directly. The expansion of type
material possibilities should therefore be accompanied by official
avenues for depositing microbial consortia, which would greatly
favor experiment reproducibility.

By using non-axenic cultures, it is possible to significantly
speed up research and achieve breakthroughs faster, since the
results are obtained drastically quicker when the time that
would be necessary for removing the last remaining associated
microbes is eliminated. In addition, if the culture is transferred
to fresh media on a frequent basis, the relative abundance of
cyanobacterial cells is maintained at higher levels than cells of
other individual species in the community, as the conditions
offered by the culture medium are directed toward the necessities
of cyanobacterial physiology, which reduces interference from
associates.

ADVANTAGES OF CYANOBACTERIA IN
MICROBIAL CONSORTIA

Microbial consortia are usually obtained from the enrichment
of environmental samples, which are based on the investigation
of microbial assemblages after exposure to conditions that
stimulate the growth of certain microorganisms from within
the community. Depending on the research objectives, such an
approach may present some advantages over the analyses of
raw, unrefined environmental samples. Datasets coming from
the high-throughput sequencing of non-axenic cyanobacterial
cultures can be very similar to metagenomic sequences obtained
from enriched microbial consortia.

Although a mixed culture may be initially seen as an
undesired outcome, microorganisms in consortia may act
synergistically and become more efficient than axenic cultures
for some processes, or even perform complex ecological

functions with multiple steps, which are only possible with
the co-culturing of distinct populations (Brenner et al.,
2008). Microbial consortia also allow researchers to carry out
studies on ecological interaction and co-evolution (Brenner
et al., 2008). Mutualism, competition, predation/parasitism,
commensalism, amensalism, and neutralism play a central role
in the modeling of the stability and dynamics of communities
in consortia; therefore, co-culturing enables the discovery of
complex interaction networks, including contact-dependent or
-independent mediating molecules (Faust and Raes, 2012; Song
et al., 2014).

In a microbial consortium, cyanobacteria may enhance
the conditions for the community to perform a certain
task (Zhubanova et al., 2013). Furthermore, some microbial
consortia supported by cyanobacteria potentially enable the
growth of otherwise uncultured microbes. Most bacteria are
not currently subject to growth under culturing conditions
(Rappé and Giovannoni, 2003). Among these bacteria, obligatory
symbionts depend on nutrients or cell interactions provided
by other microorganisms, which explains the low success
rates in attempts of axenic culturing (Wilson and Piel, 2013).
Consequently, co-culturing has been suggested as an alternative
for carrying out in vitro studies in previously uncultured bacteria
(Vartoukian et al., 2010; Stewart, 2012). Low emphasis has been
given to cyanobacteria as culturing partners, as research has
focused mostly on other photosynthetic microorganisms, such as
chlorophytes (Otsuka et al., 2008). Nonetheless, as a consequence
of their extraordinary metabolic capacities, cyanobacteria have
great potential for promoting the in vitro growth of currently
uncultured bacteria.

Whereas high-throughput sequencing of non-axenic cultures
delivers a great challenge to the genomic study of specific
strains, it also provides the researcher with access to the
genomes of its symbiotic microorganisms, allowing for a
broader investigation. In contrast to conventional microbial
genomics approaches, which assume datasets originating from
axenic samples, metagenomics deals with data from mixed
samples, composed of distinct microbial populations (McHardy
and Rigoutsos, 2010). Metagenomic approaches have proved
useful for unveiling the composition, structure, genetics, and
metabolism of natural and artificial microbial communities and
are appropriate for the evaluation of microbial consortia (Song
et al., 2014). Metagenomics also allow to successfully retrieve
draft, near-complete, or even complete microbial genomes from
mixed samples (Tyson et al., 2004; Sharon and Banfield, 2013;
Sangwan et al., 2016).

Metagenomic assembly is more efficient under conditions
of lower richness and higher genomic coherence, when it
faces lower interference of less relevant sequences (Teeling and
Glöckner, 2012), and it is also favored by samples composed of
distantly-related species (De Filippo et al., 2012), as commonly
found in non-axenic cyanobacterial cultures. In addition,
genomes obtained by metagenomics commonly represent a
hybrid population genome, i.e., a chimeric sequence constructed
with sequences from different strains of the same species. This
problem is not found in a cyanobacterial genome retrieved
from the metagenome of a non-axenic culture, as isolation

Frontiers in Microbiology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 809

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Alvarenga et al. A Metagenomic Approach to Cyanobacterial Genomics

and culturing procedures are responsible for ensuring a single,
monoclonal strain.

Sequences obtained by this methodmust be subjected to either
pre- or post-assembly separation into groups representing the
distinct genomes present in the dataset. This separation, called
binning, can be carried out based either on methods relying on
comparisons to databases constructed from genome references or
on unsupervised algorithms that consider differences in sequence
composition and/or the differential profiling of genomic coverage
(Drögue and McHardy, 2012; Mande et al., 2012; Albertsen et al.,
2013; Alneberg et al., 2014; Nielsen et al., 2014). Metagenomic
binning algorithms now enable the identification and retrieval of
cyanobacterial genomes among the metagenomes of microbial
consortia, and thus allow to bypass requirements for axenic
cultures. This strategy has great potential for accelerating
genomic research and has been successfully employed in the

characterization of cyanobacterial genomes in mixed cultures in
some recent work (Grim and Dick, 2016; Uyl et al., 2016).

STRATEGIES FOR THE GENOMICS OF
AXENIC CULTURES

If all associated microorganisms have been removed and a
cyanobacterium has been successfully isolated into an axenic
culture, a relatively straightforward approach can be employed
in its genomic characterization (Figure 3A). Virtually, the only
challenges that need to be overcome are those brought by the
unique characteristics of the target genome, such as total genomic
size, presence and number of extrachromosomal elements,
occurrence of repeated regions, and type and abundance of
mobile genetic elements, among others. Thus, standard practices

FIGURE 3 | Workflows for the genomics of cultured cyanobacterial strains. (A) Usual roadmaps in the traditional approach, relying on the genomic sequencing

of axenic cyanobacterial strains. (B) Common progression in the genomic characterization of cyanobacterial strains in non-axenic cultures. Both approaches start with

the enrichment of an environmental sample by inoculation in cyanobacteria-specific culture media followed by the elimination of the majority of other organisms,

leaving only a monoclonal cyanobacterial strain and its most strongly attached associates. For the workflow (A), additional procedures are required for the removal of

associated microbes before genome sequencing can be carried out, usually causing major delays. Next, genomic DNA is extracted for the construction of libraries,

which are submitted to a high-throughput sequencing platform. Finally, remaining sequencing reads in the filtered datasets are assembled. Workflow (B) sidesteps

requirements for axenity by performing an additional binning step for the identification and retrieval of cyanobacterial sequences after assembly.
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in microbial genomics can be readily applied without major
modifications, except for some techniques for genome assembly
finishing and gap closing, since reference genomes are likely
unavailable or too phylogenetically distant. Even when reference
genomes have been published, they are likely to present
significant rearrangements (Humbert et al., 2013). Consequently,
reference assemblies may produce sequences that are neither
more accurate nor more complete than those obtained from
de novo assemblies (Fadeev et al., 2016).

A satisfactory strategy for the genomics of axenic
cyanobacterial cultures will be composed basically of read
quality control, de novo assembly, scaffolding, gap closing,
assembly statistics, and genome annotation. First, it is necessary
to verify sequencing quality and remove from the reads regions
containing bases of low quality scores or unknown bases
(represented as “N” in the datasets). Acceptable sequence quality
scores depend mainly on sequencing depth and technology,
but Phred 20 as the very minimum quality is advised, whereas
Phred 28 or higher is recommended for most analyses. We
suggest using FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) for evaluating sequence quality and
PRINSEQ (Schmieder and Edwards, 2011a) for filtering reads, as
it is a powerful and flexible software enabling a large number of
filtering parameters. FLASH (Magoč and Salzberg, 2011) can be
used for merging read pairs with overlapping ends if paired-ends
libraries constructed with shorter fragments are available. For
genome assembly, SPAdes (Bankevich et al., 2014) currently
appears to achieve the best results for most microbial genomes
and metagenomes datasets obtained by Illumina sequencing.
Platanus (Kajitani et al., 2014) can be employed after SPAdes
assemblies for enhancing assembly by carrying out additional
scaffolding and gap closing steps. QUAST (Gurevich et al., 2013)
is interesting for verifying assembly statistics and comparing
results from different workflows. Finally, the assembled genome
can be annotated with Prokka (Seemann, 2014), which generates
all files necessary for submitting the genome to NCBI, or RAST,
which also provides subsystems information (Aziz et al., 2008;
Overbeek et al., 2014). We also recommend using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) (Tatusova
et al., 2016), since it is capable of properly identifying and
annotating pseudogenes, which are commonly missed by Prokka
and RAST.

Although this is viewed as the best scenario for characterizing
the genome of a cyanobacterium, this strategy may still come
short of producing finished chromosome and plasmid sequences.
Nevertheless, draft genomes are suited to a number of analyses,
including comparative genomics, as they can contain most of the
genetic information of the genome (Humbert et al., 2013; Fadeev
et al., 2016). Paired-ends libraries resulting in draft genomes are
good enough for several applications, but differing sequencing
strategies should be adopted if a finished genome is particularly
indispensable for research, including mate-pair libraries, longer
sequencing reads, or even BAC cloning.

Single-cell genomics has been recently reviewed as an
alternative approach for sequencing cyanobacteria in natural
environments (Davison et al., 2015). This strategy consists
basically of the capture of a single-cell followed by routines

that are similar to the ones employed for axenic strains.
Unfortunately, this technology still faces methodological
challenges and very few laboratories have access to or familiarity
with its methods. In addition, it is also worth considering if
it is really desirable to look at the genome of an individual
strain and ignore the genomes of its most intimate associates,
since ecological interactions are usually an important factor for
determining evolutionary influence on genomic content.

STRATEGIES FOR THE GENOMICS OF
NON-AXENIC CULTURES

The main problem with the genomic sequencing of non-axenic
cultures is the high number of “contaminating” sequences,
which reduce the coverage of the target genome and disturb
assembly by introducing increased complexity and noise. In most
cases, the conventional genomic approach will be very hard to
apply in conjunction with standard practices in the culturing
of cyanobacteria, which mostly rely on microbial consortia.
For cyanobacteria-dominated microbial consortia, it is more
adequate to employ a metagenomics-like approach (Figure 3B).
This strategy has to consider additional issues besides the
particularities of the target genomes, urging for precautions to
be taken both before and after sequencing.

Since microbial consortia contain a mixture of genomes,
metagenome sequencing must have higher throughput than
genome sequencing in order to obtain satisfactory depth for
individual genomes. Several platforms currently provide enough
depth and coverage for metagenome sequencing. However, when
the cyanobacterial genome is the main target and sequencing
is performed either under budget constraints or on a platform
that provides longer sequences at the cost of lower depth, it
is advisable to ascertain by microbiological methods that the
abundance of the cyanobacterium is high enough for its genome
to be present among the sequences. In this case, a great deal
of caution must be taken in the maintenance of non-axenic
cultures so that the abundance of associated bacteria is kept at
controllable levels. This is achieved by frequently transferring the
culture to fresh media (at a frequency that varies according to the
growth rates of the strain) and using mechanical techniques that
eliminate the organisms not firmly attached to the cyanobacteria
(like streaking and washing, among others). Time spent on
further cleaning up a cyanobacterial culture eventually pays off
even if it does not result in axenity when faced with limited
sequencing.

The diversity of associated microbes can be initially explored
in unassembled datasets, so that the relative abundance of
operational taxonomic units in the datasets is estimated. FOCUS
(Silva et al., 2014) and SUPER-FOCUS (Silva et al., 2015)
are useful for quickly verifying diversity in the dataset before
assembly and allow the previewing of the relative abundances of
the different genomes in the metagenome. Due to the less than
satisfactory current state of public databases, most metagenomics
software will state there are several different cyanobacterial taxa
in the sample instead of a single one, either in the sequencing of a
new cyanobacterium or in the resequencing of a known taxon. In

Frontiers in Microbiology | www.frontiersin.org 8 May 2017 | Volume 8 | Article 809

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Alvarenga et al. A Metagenomic Approach to Cyanobacterial Genomics

the case of unicyanobacterial cultures, the level of phylum should
be considered for these analyses, as the still low number of related
genomes, if available, most likely do not encompass the whole
genomic diversity of the referenced taxon and similar sequences
may be found in the genomes of some phylogenetically distant
taxa, resulting in the overestimation of cyanobacterial diversity
in the sample.

After sequencing, it is fundamental to pre-process the data set
for eliminating not only low quality sequences with PRINSEQ
as previously mentioned, but also contamination. DeconSeq
(Schmieder and Edwards, 2011b) is a very useful tool for
removing usual contaminants from metagenomic sequences. If
the number of associated microbes is low and reference genomes
are available, their sequences can be dealt with in the same way
contaminating sequences are, such as mapping sequencing reads
to references with Bowtie (Langmead et al., 2009) or BWA (Li
and Durbin, 2009) and collecting unmapped reads. If successful,
downstream analyses may follow some of the methods employed
for axenic cultures. However, if the associated community is
richer, binning will need to be carried out either before or
after assembly. QUAST can be used for comparing results and
evaluating at which point binning has to be carried out for the
best results, and CheckM (Parks et al., 2014) is useful for verifying
binning reliability.

A relatively intuitive approach for pre-assembly selection
of cyanobacterial sequences is to fetch available reference
cyanobacterial genomes and format them as a Bowtie database.
Reads that are mapped to this database can then be retrieved
and de novo assembled as if they were originated from an
axenic culture. Although this method is commonly brought
up by some researchers new to cyanobacterial genomics, most
often it only produces meaningful results for taxa that have a
considerable number of references available and low genomic
variation. However, even in this case, binning the assembled
metagenome after assembly will most often achieve better results,
including when using a reference-based method. This occurs
because of the likely presence of regions exclusive to that novel
strain, whose reads may escape selection because of their absence
in the reference genomes or of the distance of their evolutionary
relationship; reference-based binning of reads before assembly
would lead to the removal of a significant amount of unknown
sequences, which might otherwise be connected to known
sequences into contigs or scaffolds.

Metagenome reconstruction from non-axenic cyanobacterial
cultures may also be carried out successfully by using
SPAdes for initial assembly and Platanus for additional
scaffolding and gap closing steps. After a satisfactory assembly
is achieved, metagenome binning should be carried out
for separating cyanobacterial sequences and sequences from
associated microbes. Binnning is a crucial step in strategies
that work with non-axenic cultures, as correct identification
of genome sequences ensures the success of downstream
annotation. The retrieval of population genomes among
metagenomes and their validation has been recently reviewed
(Sangwan et al., 2016), and similar methods may apply to the
metagenomics of microbial consortia. A considerable diversity of
bioinformatic tools is now available for performing metagenomic

binning (Drögue and McHardy, 2012; Mande et al., 2012;
Sangwan et al., 2016; Sedlar et al., 2017), and yet it is still hard to
point to an optimal method for this step (Sangwan et al., 2016),
so this step asks for increased attention.

The simplest scenario is presented when sequencing a
cyanobacterium with publicly available references. However, if a
sequence from a closely related species or genus is not available,
references belonging to related taxonomic levels up to phylum
might be used for supervised binning (Thomas et al., 2012),
which allows for sequences from unreferenced cyanobacteria
in unicyanobacterial cultures to be processed by a reference-
based strategy. For post-assembly taxonomic assignment, Kraken
(Wood and Salzberg, 2014) is usually a good choice, since it
has shown good accuracy and very low levels of false positives
when compared to other binning software (Lindgren et al.,
2016). To facilitate genome retrieval after taxonomic assignment
of the assembled sequences by Kraken, we have developed a
custom Python script that enables the collection of genome
sequences from select taxa among the assembled metagenome
based on the Kraken output. This script is freely available
at https://www.github.com/danillo-alvarenga/zeuss and can be
used for retrieving either the target cyanobacterium genome,
the associated community metagenome, or the genome from
an associated microbe in particular that has been identified by
Kraken.

Depending on the available sequencing data and genomic
information, software employing reference-basedmethodsmight
be more suited to resequencing, while novel taxa could be
more adequately addressed by methods based on reference-
free algorithms. Reference-based binning is frequently limited
by poor databases, which greatly favors unsupervised strategies.
Since even genomes from the same species present considerable
variation (Humbert et al., 2013), reference-based assembly may
not be an optimal methodology even for genomes with references
available. Furthermore, modern reference-free binning software
can distinguish between genomes until the taxonomic rank of
species (Strous et al., 2012; Kang et al., 2015), and thus might
be useful even for multicyanobacterial cultures. There are lots of
binning software alternatives implementing differing algorithms
and methodologies that may be employed in metagenome
binning (see Tables 1, 2), and it is hard to favor one over another,
but the results of different binning software may be combined
and refined for more accurate results (Song and Thomas, 2017).
Additionally, some of thesemethodologies, including those based
on differential coverage, benefit from sequencing the cultures at
different phases of their growth cycle, such as during log, lag, and
early or late stationary phases.

After separation of the cyanobacterium genome, diversity and
function analyses can be easily performed on the associated
community sequences, as well as functional analyses comparing
cyanobacterium and community sequences. The associated
community genome can then be automatically annotated
with the MG-RAST server (Meyer et al., 2008) or another
metagenome annotation software. Finally, manual curation of the
cyanobacterial genome after annotation by Prokka, RAST, PGAP
or other resource assures the assembly of a single genome. Several
pipeline options are available for the analysis and annotation of
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TABLE 1 | Software presently available for unsupervised binning of metagenomes.

Program Website License* References

ABAWACA https://github.com/CK7/abawaca BSD Sangwan et al., 2016

AbundanceBin http://omics.informatics.indiana.edu/AbundanceBin proprietary Wu and Ye, 2011

BinSanity https://github.com/edgraham/BinSanity GPL 3 Graham et al., 2017

Canopy https://bitbucket.org/HeyHo/mgs-canopy-algorithm GPL 3 Nielsen et al., 2014

CARMA3 http://wwww.cebitec.uni-bielefeld.de/webcarma.cebitec.uni-bielefeld.de GPL 2 Gerlach and Stoye, 2011

Centrifuge https://github.com/infphilo/centrifuge GPL 3 Kim et al., 2016

ClaMS http://clams.jgi-psf.org BSD Pati et al., 2011

COCACOLA https://github.com/younglululu/COCACOLA GPL 3 Lu et al., 2017

CompostBin https://figshare.com/articles/Compost_Bin_Software_and_Data_Sets/717223 proprietary Chatterji et al., 2008

CONCOCT https://github.com/BinPro/CONCOCT BSD Alneberg et al., 2014

GroopM https://github.com/ecogenomics/GroopM GPL 3 Imelfort et al., 2014

LikelyBin http://ecotheory.biology.gatech.edu/likelybin proprietary Kislyuk et al., 2009

MaxBin https://sourceforge.net/projects/maxbin BSD Wu et al., 2014

MBBC http://eecs.ucf.edu/∼xiaoman/MBBC/MBBC.html proprietary Wang et al., 2015

MetaBAT https://bitbucket.org/berkeleylab/metabat BSD Kang et al., 2015

MetaCluster http://i.cs.hku.hk/∼alse/MetaCluster GPL 2 Wang Y. et al., 2012

Metawatt https://sourceforge.net/projects/metawatt AFL Strous et al., 2012

MyCC https://sourceforge.net/projects/sb2nhri/files/MyCC proprietary Lin and Liao, 2016

NBC http://nbc.ece.drexel.edu proprietary Rosen et al., 2010

RAIphy http://bioinfo.unl.edu/raiphy.php proprietary Nalbantoglu et al., 2011

RITA http://kiwi.cs.dal.ca/Software/RITA CC 3.0 MacDonald et al., 2012

SCIMM http://www.cbcb.umd.edu/software/scimm AL 2.0 Kelley and Salzberg, 2010

VizBin https://claczny.github.io/VizBin BSD Laczny et al., 2015

*GPL, GNU Public License; BSD, Berkeley Software Distribution License-based; AFL, Academic Free License; AL, Artistic License; CC, Creative Commons. Software without clear,

open licensing information was assumed to be proprietary, even when otherwise claimed.

TABLE 2 | Currently available software for taxonomic assignment of metagenomic sequences.

Program Website License* References

CLARK http://clark.cs.ucr.edu GPL 3 Ounit and Lonardi, 2016

Genometa http://genomics1.mh-hannover.de/genometa CPL Davenport et al., 2012

Gottcha https://github.com/LANL-Bioinformatics/GOTTCHA GPL 3 Freitas et al., 2015

k-SLAM https://github.com/aindj/k-SLAM GPL 3 Ainsworth et al., 2016

Kraken http://ccb.jhu.edu/software/kraken GPL 3 Wood and Salzberg, 2014

LMAT http://sourceforge.net/projects/lmat proprietary Ames et al., 2013

MEGAN CE https://github.com/danielhuson/megan-ce GPL 3 Huson et al., 2016

Metaphlan http://huttenhower.sph.harvard.edu/metaphlan MIT Segata et al., 2012

MetaPhyler http://metaphyler.cbcb.umd.edu proprietary Liu et al., 2011

MG-RAST http://metagenomics.anl.gov BSD Meyer et al., 2008

MLTreeMap http://mltreemap.org proprietary Stark et al., 2010

mOTU http://www.bork.embl.de/software/mOTU GPL 3 Sunagawa et al., 2013

PHY SCIMM http://www.cbcb.umd.edu/software/scimm AL 2.0 Kelley and Salzberg, 2010

PhyloPythiaS+ https://github.com/algbioi/ppsp proprietary Gregor et al., 2016

PhymmBL http://www.cbcb.umd.edu/software/phymmbl proprietary Brady and Salzberg, 2011

SOrt-ITEMS http://metagenomics.atc.tcs.com/binning/SOrt-ITEMS proprietary Mohammed et al., 2009

Taxator-tk https://github.com/fungs/taxator-tk GPL 3 Dröge et al., 2014

TreePhyler http://www.gobics.de/fabian/treephyler.php proprietary Schreiber et al., 2010

TWARIT http://metagenomics.atc.tcs.com/Twarit proprietary Reddy et al., 2012

*GPL, GNU Public License; BSD, Berkeley Software Distribution License-based; MIT, The MIT License; CPL, Common Public License; AL, Artistic License. Software without clear, open

licensing information was assumed to be proprietary, even when otherwise claimed.
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FIGURE 4 | Suggested software for research on cyanobacterial genomics. Typical bioinformatics procedures for characterizing cyanobacterial genomes may

be divided into three main steps: (1) assessment and filtering of sequencing read quality; (2) assembly of filtered reads; (3) annotation of genomic sequences. When

sequencing axenic cultures, genome sequences can be evaluated right after assembly (blue arrows), while the sequencing of mixed cultures depend on binning the

assembled consortium metagenome (green arrows). *For a list of software options implementing unsupervised methods, see Table 1. **See Table 2 for a list of

software based on supervised methods.

mobile genetic elements, which have been reviewed elsewhere
(Alvarenga et al., in press).

Figure 4 illustrates a possible workflow for the initial genomic
investigation of cultured cyanobacteria. The indications provided
are based on free and open source bioinformatics tools that are
readily available for use on modern GNU/Linux distributions.
Please keep in mind that there is now a large diversity of
bioinformatics software that can be employed in this effort,
and thus many alternative programs could replace the examples
given, and some steps could be repeated and reiterated for
improved results. Therefore, this suggestion should be taken
merely as a starting point.

CONCLUDING REMARKS

The assembly of high-throughput reads becomes easier for
both genomics andmetagenomics when sequencing technologies
become capable of generating longer reads. New methods
of library preparation, such as Illumina synthetic long reads
(McCoy et al., 2014) and developing platforms from the
10x Genomics and Dovetail startups (Eisenstein, 2015), are
becoming available for achieving longer reads. Likewise,
new generations of sequencing technologies, including Pacific
BioSciences SMRT (Rhoads and Au, 2015) and Oxford
Nanopore (Laver et al., 2015; Lu et al., 2016), are focused
on generating reads of increasing lengths. As sequencing
technologies, assembly algorithms, metagenomics tools, and
genomic databases advance, so confidence and reliability in
mixed-culture assemblies increase, virtually rendering axenity
dispensable. Whether this is a desirable outcome or an
unfortunate side effect is arguable. If on the one hand it
is likely that a smaller number of research labs will keep
satisfying traditional microbiology demands and pursue axenity

in cyanobacterial cultures, this change may also bring more
cyanobacterial genomes to light and advance our comprehension
of the molecular biology of this phylum. Nonetheless, it appears
to be inevitable that metagenomics becomes a subject of
central interest in cyanobacteriology, not only for the study of
ecological interactions, but also for advancing knowledge on
the genomics and evolution of oxyphotobacteria at an increased
pace.
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