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Abstract: Microcrystalline cellulose (MCC) is a chemically pure product of cellulose mechano-chemical
conversion. It is a white powder composed of the short fragments of the plant cells widely used in the
modern food industry and pharmaceutics. The acid hydrolysis of the bleached lignin-free cellulose raw
is the main and necessary stage of MCC production. For this reason, the acid hydrolysis is generally
accepted to be the driving force of the fragmentation of the initial cellulose fibers into MCC particles.
However, the low sensibility of the MCC properties to repeating the hydrolysis forces doubting this
point of view. The sharp, cleave-looking edges of the MCC particles suggesting the initial cellulose
fibers were fractured; hence the hydrolysis made them brittle. Zhurkov showed that mechanical stress
decreases the activation energy of the polymer fracture, which correlates with the elevated enthalpy of
the MCC thermal destruction compared to the initial cellulose.
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1. Introduction

Cellulose is widely used in the modern industry either in the native form or after deep chemical
and/or mechanical treatment. Some branches use the purified and bleached cellulose, such as
paper production [1], while others require the products of the deep chemical treatment of cellulose:
nitrocellulose for propellants and coatings production [2,3], oxycellulose in pharmaceutics [4], viscose or
MNMO solutions for fabrics production [5,6], etc. On the other hand, some of the products of the so-called
mechano-chemical treatment of cellulose [7] have nearly the same chemical composition as a feedstock.
Such materials are microcrystalline cellulose (MCC) and nanocellulose (NC), widely used in the modern
industry. MCC is used as reinforcing material [8], in the food industry [9], and medicine [10]. NC is also
used as reinforcing material, a base for films [11,12], and conductive materials’ production, as a rheological
modifier (thickener), and for drug delivery [13,14].

MCC is pure, highly-crystalline cellulose, composed of shortened fragments of the original
fibers [15]. The classical MCC production method consists of the treatment of the lignin-free and
whitened cellulose by sulfuric or muriatic acid (2–3 h) at elevated temperature (100–150 ◦C) with
a solvent-to-pulp ratio greater than 10 [8,9]. The nature of the acid does not affect the particle
size [16,17], but affects the crystallinity index of the final product [17]. Simultaneously, the particles’
size decreased with the increase of the acid hydrolysis intensity [18]. The particles’ size does not depend
significantly on the cellulose origin and the lignin removal technique [19]. However, the thermal
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stability and crystallinity of the MCC depend a bit on the delignification method [20,21]. In the course
of acid hydrolysis, the degree of polymerization (DP) of the initial cellulose decreases by a factor of
5–10 [15,18,19]. The hydrolyzed pulp is neutralized, cleaned, and subjected to mechanical grinding.
After drying, the pulp becomes a white homogeneous powder known as MCC [8,9].

The product of deeper cellulose grinding is known as nanocellulose (NC), which can be of
two types: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs), each having different
properties [13,22]. The CNF pulp is composed of fibrils with a cross-section of about 5–100 nm and
a length of several microns, entangled with each other, that significantly increase the viscosity of CNF
suspensions [22–25]. The portion of the crystalline fraction in CNF is relatively low and amounts to
40–60% depending on the method of manufacture [23,24]. Simultaneously, DP decreases by about one
and a half to two times, compared with the values typical for the initial feedstock [24]. In contrast to
CNF, the share of the crystalline fraction in CNC is high and often exceeds 90%, whereas particles
have a smaller cross-section of about 5–20 nm and a length of 100–500 nm [22,23,25]. Such differences
in the structure of the described nanomaterials correlate with the differences in the methods of
their production [25]. More or less, all CNF production methods include the stage of the chemical
pretreatment (TEMPO oxidation or enzymatic hydrolysis), followed by intense mechanical grinding:
high-pressure homogenization, ultra-fine grinding, or microfluidization [24]. For the CNC production,
lignin-free cellulose treated with relatively strong (40–80%) solutions of mineral acids at elevated
temperature (40–80 ◦C) and then subjected to intensive mechanical grinding, such as ultrasonication
or shear grinding [12,26]. The CNC production requires the rotor-stator gap to be about tens of
microns, and the shaft rotation rate should be several thousand rpm, and dozens of processing cycles
are required [12,24,25]. Power consumption for such a process could reach 30 kW/kg of the final
product [25], which significantly increases its cost.

Manufacturing of both MCC and NC is rather laborious. It is accompanied by a noticeable (up to
70%) loss of mass, which decreases the yield of the final product and increases its cost [26]. Investigation
of the wastewater generated in the MCC production course in our experiments revealed NC suspended
in them, which can be extracted and used virtually without additional costs. The result can be directly
used in the industry to obtain a useful supplemental product.

Acid hydrolysis is generally accepted as the main reason for the cellulose destruction in MCC
production [8,9,19]. However, there exists another physically-based mechanism of polymer destruction
proposed by Zhurkov [27–29]. The microcracks formed across mechanically stressed polymer fiber
can efficiently promote its fracture. Moreover, the cracking intensifies in the stress concentration
areas, which further concentrates the stress in these areas and provides for the avalanche-like
increase in the number of cracks and the material fracture. The concentration of microcracks,
the load applied, and the polymer’s breakdown directly correlate with each other, which was
experimentally shown for several polymers, such as nylon, PE, PVC, and even for the cellulose
derivatives [29]. Such a physics-of-failure-based model was successfully used for microelectronics
reliability predictions [30] and analysis of the nitrocellulose thermal destruction process [31].

Zhurkov’s stress-based mechanism of polymer fracture can also affect the thermal properties
of the polymer. Indeed, the internal stress’s energy would facilitate the thermal decomposition,
while the stress-free fibers would be more stable. The TGA/DSC curves of raw cellulose and MCC
have two peaks in the regions of 80–90 and 300–360 ◦C [8,32]. The first one is conditioned by the
water evaporation, and its intensity directly correlates with the humidity of the sample. In contrast,
the second peak appears due to the thermal decomposition of the material. On average, in raw
cellulose, the second peak appears between 320 [15,17] and 350 ◦C [20,21], depending on the raw used.
In MCC, the second peak can be found in a wide range of the temperatures (320–450 ◦C [33] either at
greater temperatures [15,20,21,34] or lower temperatures [33] compared to the raw cellulose. However,
the enthalpy of the thermal destruction of MCC was greater than raw cellulose [15].

Considering the processes taking place in the cellulose pulp is not conceivable without accounting
for the details of its supramolecular structure. In the native cellulose, the polymer chains combine into
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the elementary fibrils (nanofibrils) having a diameter of 2.5 nm in wood and up to 20 nm in cellulose
from tunicates [35–38]. Nanofibrils have a helical structure, but the helix pitch was not determined
experimentally [39], while the molecular modeling brought the value of about 100 and 250 nm for
the softwood and cotton fibrils, respectively [40]. In the cell wall, the nanofibrils are glued together
by lignin and hemicelluloses [41] and form the helical microfibrils [42] having a thickness of about
30–40 nm and usually form bundles [43]. The microfibrils make up the cell wall [41,43], which also has
a helical structure that becomes prominent in the cracked fibers (Figure A1). The helical structure is so
typical for cellulose that it is realized even in the artificial fibers [44].

The helical pitch differs among the structural levels of cellulose organization due to the difference
in their elements’ characteristic diameters. The twist direction sequentially changes when passing from
the previous level to the next [45], caused by the energy gain provided by a decrease in the torsional
stresses [46–48]. Due to the exponential dependence of the friction force on the number of turns in the
coiled fiber, given by the Capstan equation, the supercoiled cellulose fibers cannot be disassembled
without their untwisting [44,45,49]. This circumstance explains, for example, the preservation of the
cellulose morphology even under the harsh conditions of the delignification and nitration processes [45].

2. Materials and Methods

2.1. Cellulose Processing

Cotton cellulose (UzCell, Uzbekistan) and bleached kraft hard-wood cellulose (Arkhangelsk paper
and pulp mill, Russia) were used as raw materials.

At the first stage, the feedstock was soaked in distilled water at room temperature for
72 h (water consumption 30 kg/kg) and washed three times with fresh distilled water (water consumption
20 kg/kg). The resulting pulp was squeezed on the glass filter under vacuum (the resulting cellulose
concentration was ∼12.5%). Then cellulose mass was treated with a hot (93–95 ◦C) 10% solution of sulfuric
acid for 120 min (acid consumption 30 kg/kg). After the hydrolysis, the cellulose mass was squeezed
again to remove the acid (the acid was recirculated), washed with distilled water until the neutral
pH (water consumption 20 kg/kg), and dried with the warm air (90–95 ◦C) until the residual moisture
content of 5–6%. The dried cellulose was shredded using a ball mill (BMR/60, LLC Tekhno-center, Rybinsk,
Russia) and was not sonicated. The result was white, homogeneous, finely dispersed powder (Figure 1).

Figure 1. Microcrystalline cellulose (MCC) obtained from the hardwood cellulose raw according to the
procedure described in the text.
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To harvest the NC suspension, the obtained MCC was soaked again into the distilled water
and treated on a RIM-150 share grinder (gap ∼ 500 µm, shaft rotation speed 1250 rpm). The shear
stress achieved by this machine was insufficient to convert MCC into NC [12,24], which allowed
neglecting the generation of NC in the course of this treatment. The MCC particles were precipitated
by centrifugation (10 min, 1300× g, Avanti J-15, Beckman Coulter, Brea, CA, USA), which resulted in
the dense precipitate.

The NC films were obtained by drying the NC suspension on mica or glass surface at room
temperature repeated up to 30 times to obtain thick films.

2.2. Analytical Approaches

The moisture content in the specimens was determined by the change in the sample’s mass
after drying at 100 ± 5 ◦C, according to GOST 16932-93 (ISO/DIS 638-1/638-2). The specific surface
area of MCC particles was determined according to the Brunauer–Emmett–Teller theory by the
low-temperature (77 K) argon adsorption [50]. A comparative analysis of the MCC particle sizes was
performed on a Fritsch Analysette 22 MicroTec plus instrument (0.08–2000 µm).

The degree of crystallinity was determined using the “peak height” method [51]. X-ray diffraction
analysis of the obtained MCC samples was performed on a URD-6 diffractometer (Seifert-FPM,
Freiberg, Germany) for medium and large angles at the accelerating voltage of 35 kV and current of
25 mA. The sample rotation speed was 1 min−1.

The IR spectra were recorded using a Tensor 27 spectrometer (Bruker, Billerica, MA, USA) with
an incomplete internal reflection on a germanium crystal (resolution was 4 cm−1). The samples were
taken every 20 min during the entire acid hydrolysis process. Before spectra registration, the samples
were incubated for 72 h, at a relative humidity of 60 ± 5% and temperature of 22 ± 2 ◦C. The spectra
were normalized to the absorption band 1056 cm−1.

The Solver HV microscope (LLC NT-MDT, Moscow, Russia) was used for the atomic force microscopy
(semi-contact mode, room temperature, and atmospheric pressure). Solver HV was equipped with the
standard cantilevers (LLC NT-MDT, Russia) with the natural frequencies of 110–180 kHz and a tip radius
of 10 nm. TGA/DSC 3+ combined machine (Mettler Toledo, Greifensee, Switzerland) was used for
thermogravimetric analysis and differential scanning calorimetry of cellulose. The samples (40 mg) were
heated in the Al2O3 cup (300 µl) from 25 to 300 ◦C (5 ◦C/min) in the nitrogen atmosphere.

3. Results

3.1. Characterization of MCC

The microcrystalline cellulose obtained in our technical process corresponded to the generally
accepted standards [8,16]. The degree of crystallinity was 57 ± 1%, the specific surface
area −4 ± 1 m2/g, the bulk density −0.20 ± 0.02 g/mL, and the moisture content −3.2 ± 0.3%.
The MCC particles were the cell fragments of 50–100 µm in length, with typical sharp edges (Figure 2)
reported earlier [15,16,19]. The additional hydrolysis stage, followed by milling, did not significantly
change the particle sizes. After the additional treatment, the maximum of MCC particles’ size
distribution shifted from 40 to 30 µm (Figure 3A).
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Figure 2. Dark-field micrographs of MCC particles obtained after single (A) and double (B) hydrolysis and
subsequent grinding.

DSC experiments (Figure 3B) revealed a significant difference between the initial raw and MCC.
In our case, the raw cellulose decomposition peak was found at 345, while that for MCCs was at
305 ◦C. According to the previous reports, the enthalpy of the raw cellulose thermal decomposition
was 270 ± 10 J/g, while that of MCCs was 690 and 780 ± 10 J/g, which is two times greater than the
reported earlier values [15]. So, the thermal stability of MCC was lower than initial raw, while the
energy required for MCC decomposition was about three times greater. It should be noted that in the
region 150–200 ◦C (between the peaks), the heat influx (and heat capacity) of MCCs (0.45 ± 0.02 and
0.48 ± 0.02) was also greater than of the initial cellulose (−0.36 ± 0.01 mW/mg).

In the IR spectra, the main changes occurred during the first 20 min of the acid hydrolysis.
First of all, the intensity decreased in two bands in the range 1700–1500 cm−1 (Figure 4A)
and 1020–950 cm−1 (Figure 4B). The absorption in the 1700–1500 cm−1 region belonged to the
hemicelluloses’ carbonyl groups [52] and aromatic rings of lignin [53]. Therefore, both hemicelluloses
and lignin were washed out in the first 20 min. However, it took at least 1 hour for the cellulose to
acquire the homogeneity, typical for the MCC suspensions. Thus, the hydrolysis of cellulose itself
required a longer time than hemicelluloses and lignin washing out.
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Figure 3. The size distribution of the MCC particles (A) and DSC-curves (B) for raw soft-wood
cellulose (red line) and MCCs obtained after a single (green line) and double (red line) cycles of acid
hydrolysis and subsequent dispersion.
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Figure 4. Changes in the IR spectra of cotton cellulose in the course of the acid hydrolysis. The spectrum
was split into two parts: 1700–1200 cm−1 (A) and 1200–900 cm−1 (B).

3.2. Nanocellulose

The intense light scattering was found in the sulfuric acid solution after a single cellulose
hydrolysis cycle and the complete removal of the MCC particles by centrifugation at 1300× g (Figure 5,
left). A similar fraction seemed to adsorb on the MCC particles, as the mild mechanical treatment of
MCC by the share grinder also allowed obtaining the suspension of some fine fraction. The latter also
remained in the supernatant after the centrifugation under the same conditions (Figure 5, right).

Figure 5. Light scattering (laser beam, 650 nm) by the sulfuric acid solution after a single cycle of the
cellulose hydrolysis (left) and by the supernatant obtained after MCC mild mechanical treatment and
centrifugation (right).

The weight content of nano-particles in the supernatant obtained after the MCC mild mechanical
treatment was about 10−5. Drying the supernatant on the glass or mica surface resulted in a thin film,
inseparable from the substrate and invisible to the eye. At such a low concentration, the nano-particles
did not form a continuous layer, which allowed distinguishing between individual elements of
the film by atomic force microscopy (Figure 6A). The thin films were composed of the helical
cellulose pseudofibrils having about 100 nm in diameter and up to tens of microns in length.
Manyfold repeating the watering-drying operation resulted in the continuous and uniform film
visible to the eye (Figure 6B).
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Figure 6. The atomic force microscopy (AFM) image of pseudofibrils, forming the “thin” film obtained
by drying the MCC washout on the mica surface (A). The “thick” film obtained by 30-fold repeating
the supernatant drying operation (B).

4. Discussion

MCC is usually considered an intermediate on the way to the NC production [32,54]. In this
regard, much attention is paid to the process of further intensive mechanical MCC grinding. However,
our findings indicate that the nanocellulose formes spontaneously in the process of MCC production.
A relatively small amount of NC (about 0.03–0.05% of the initial weight) forms in the course of the
hydrolysis of cellulose by a dilute sulfuric acid solution. According to the atomic force microscopy
(AFM) data (Figure 6A), the obtained NC was represented by the cellulose nanofibrils (CNFs) since the
observed elements had a considerable length, a diameter of about 100 µm, and were intertwined with
each other [22–25].

Herewith, the MCC production is considered a well-studied process of the acid hydrolysis of
cellulose. However, if the MCC forms only due to simple hydrolysis, then the repeated treatment would
have to reduce significantly the size of MCC particles, which was not observed (Figures 2, 3A, and A2).
On the other hand, the nano- and microfibrils are twisted around each other and form a rather dense
supercoiled structure that must be untwisted in the course of cellulose swelling in the acids [45,49].
The untwisting and subsequent twisting back and compaction of the cellulose fibrils allow explaining
and managing the cellulose films’ properties [12], artificial cellulose fibers [44], and quality of
nitrocellulose [45]. Following this hypothesis, we suppose the cellulose fibers are to be stressed in the
twisting back after the acid removal. The accumulated mechanical stress can trigger the stress-based
mechanism of the polymers fracture [27,30] under even a gentle mechanical treatment, as the additional
load would summarize with the accumulated stress that would decrease the shear-stress threshold
necessary for fibers fragmentation. Indeed, the procedure applied to the hydrolyzed pulp is far
insufficient for noticeable breaking of the initial raw, while the acid-treated cellulose crumbles into dust.

According to Zhurkov’s equation [27,30], the activation energy for the destruction of polymer
chains in the places of stress localization decreases by ∆E:

∆E = νσ = Ea − kBT ln
τ

τ0

where τ is a fracture time, τ0 ≈ 10−13 s, Ea is an activation energy, σ is the characteristic
value of structural stresses, ν is the stress sensitivity coefficient, kB is the Boltzmann constant,
and T is a temperature. Thus, structural stresses can reduce the activation energy of destruction
by 30–40 kJ/mol [55], which would increase the rate constant of destruction by two to three orders
of magnitude.

In contrast, the stress-based hypothesis explains the stability of the MCC particles’ size in repeated
hydrolysis-milling cycles. Indeed, the mechanical stress appeared in the twisting back process, and its
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distribution along the fiber correlates with the pitch of the helices presented in the fiber. Therefore,
the distance between the neighboring fracture points would be greatest among sufficient for the
relaxation of the accumulated mechanical stress below some critical threshold necessary to initiate
Zhurkov’s fracture. Otherwise, the destruction would continue, and we would observe smaller pieces
having a length short enough for stress relaxation. Accordingly, the repeated acid treatment of the
short enough fragments does not lead to stress accumulation and further mechanical destruction of
cellulose under the mild grinding.

Zhurkov’s fracture hypothesis also explains the straight, cleaved faces of the MCC particles (Figure 2)
described by many other authors [15,16,19,20,33]. Under the load, the stress concentrates at the crack’s
edges, which may result in its avalanche-like expansion and breaking of the fiber along it. In this
case, the microcrack in the fiber’s weakest point would start to expand first, which would reduce the
overall stress and preserve the other microcracks from expansion. Therefore, according to our hypothesis,
the cellulose fibers break along such the weakest microcracks, and we observe their edges in the form of
the MCC particle edges.

The thermal properties of the obtained MCC (Figure 3B) differed from the reported earlier. First of
all, the MCC’s thermal decomposition temperature was rather low (∼305 ◦C) compared to the results
of other groups [15,20,21,34]. The only reason for such an inconsistency could be the difference in the
MCC production protocols. The critical step was probably using caustic soda for the acid neutralization
after hydrolysis that we did not use. MCC is known to dissolve in alkalis, so even a short treatment with
1 N NaOH [15,17,20,21] could affect the cellulose structure and cause an increase in the decomposition
temperature. Taking the rates of the cellulose and MCC thermal destruction to be approximately equal,
the difference in the temperatures of decomposition allows rough accessing the difference in activation
energies (Ea) of this process:

EaMCC = Eacellulose
TMCC

Tcellulose
≈ 0.88 · Eacellulose

Variations of the destruction activation energy of 10–15% can be caused by the structural
reorganization (or stress) of the polymer matrix that was shown for nitrocellulose [31]. Besides that,
the enthalpy of the MCC decomposition process (−600–700 J/g) was two-to-three times greater than
that of initial cellulose (∼ −270 J/g), which qualitatively corresponds to the earlier results: the MCC
thermal destruction always requires greater energy than initial raw [15,17,20,21,32–34]. Such a ratio
confirms our hypothesis. Indeed, if the initial raw was a bit stressed, and in MCC, the mechanical
stress relaxed, then the enthalpy of the raw cellulose decomposition would decrease exactly on the
value of the stress’s energy.

5. Conclusions

Summarizing the observations made, we can propose that the MCC formation cannot be
considered an exclusively chemical process. The insignificant decrease in the particles’ size after
the repeated hydrolysis-and-milling cycle directly indicates this proposition. Indeed, the hydrolysis
should intensify with the decrease of the cellulose fragments’ size, and after the repeater acid treatment,
the particles’ size should decrease qualitatively. However, this is not the case. Based on the shape of the
MCC particles and the native cellulose’s superhelical structure, we supposed that the fragmentation of
the initial long cellulose fibers into micron-sized MCC particles occurs due to the mechanical stress
accumulated upon the swelling and subsequent compactization of the superhelical cellulose during
acid hydrolysis and washing-out. Mechanical stress can make the polymer structure brittle, which was
described by Zhurkov [27]. The shape of the MCC particles and the gentleness of the necessary milling
directly indicates the fragility of the cellulose after the acid hydrolysis and reinforce our hypothesis.
Our proposition allows modification of the existing technology or even creating some novel methods
of cellulose fragmentation. So, the main goal would be to increase the fibers’ stress, which would
inevitably cause smaller fragments after the milling.
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Appendix A

Figure A1. SEM images of the initial (A) and nitrated for 30 min (B) cotton cellulose. Cracking of the
fibers reveals the helical structure invisible in the initial cellulose and in the MCC particles (Figure 2).
For the details on the nitration process, please refer to [45].

Figure A2. AFM images of the MCC obtained in a single (A,C) and double (B,D) cycles of acid
hydrolysis and milling.
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