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Abstract

This paper presents an integrated hybrid optimization algorithm for training the radial basis

function neural network (RBF NN). Training of neural networks is still a challenging exercise

in machine learning domain. Traditional training algorithms in general suffer and trap in local

optima and lead to premature convergence, which makes them ineffective when applied for

datasets with diverse features. Training algorithms based on evolutionary computations are

becoming popular due to their robust nature in overcoming the drawbacks of the traditional

algorithms. Accordingly, this paper proposes a hybrid training procedure with differential

search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To

surmount the local trapping of the search procedure, a new population initialization scheme

is proposed using Logistic chaotic sequence, which enhances the population diversity and

aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid

training algorithm, experimental analysis on publicly available 7 benchmark datasets are

performed. Subsequently, experiments were conducted on a practical application case for

wind speed prediction to expound the superiority of the proposed RBF training algorithm in

terms of prediction accuracy.

Introduction

Artificial neural networks (ANN) are a section of artificial intelligence systems fundamentally

designed to overcome some of the challenges the mathematical models fail with complex and

ill-defined problems. They are fault tolerant and solve the problem by learning from similar

examples. ANN are capable of handling noisy and ambiguous data, with the ability to predict

and generalize once efficiently trained [1].

Radial basis function (RBF) networks are another class of ANN simulating the locally

tuned response observed in biologic neurons [2]. The structure of RBF consists of three layers,

namely the input, hidden and output layers. The RBF training involves two stages, with centres

of the hidden layer are determined first in a self-organising manner [3] and secondly, the

weights connecting the hidden layer to the output layer are computed. Generally, RBF training
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is accomplished by computing the weights and biases to obtain the target output by minimiz-

ing the error function. To accomplish this, the following methods are widely used in the litera-

ture, matrix inversion techniques, gradient-based training approaches and evolutionary

computation methods [4].

Thus in this section, a review of literature in the topic of various RBF training methods

will be discussed. As the training phase determines the success of any network, the training of

radial basis network(RBF) involves three step learning [5] which is the fastest as the centres are

determined by unsupervised method and output weights are also determined by less complex

algorithms. Though gradient descent method offers precise results as it involves derivatives

which affects the computation time it is not preferred to use alone.

Training the neural networks by heuristic search algorithms like differential evolution (DE)

[6] was previously utilized and the results are compared with gradient descent methods, how-

ever it is observed that no significant improvement in the performance because of DE. Simi-

larly, in [7] the authors suggests solutions for stagnation of Differential evolution (DE) when

used with neural networks, as the individual does not improves even under favourable condi-

tions. Taking care of the initialization, merging DE with specified mutation operators, size of

population (DE) are some of the key areas have been discussed.

In [8], as the training of both MLP and RBFN is difficult, evolutionary algorithms like

Genetic Algorithm optimizes the subset of input data for determining the number of centres

which helps us in elevating the over-fitting problems. In another work [9], the authors carried

out short term wind speed prediction with inputs from five different meteorological stations

and tested with ANN trained by PSO.

Similar works which involves neural network and PSO are experimented in [10] in order to

improve the reliability of electric power generation, wind power is predicted with enhanced

particle swarm optimization (EPSO) in combination with standard neural networks and the

weights of the networks are optimized. For inputs like time series data in [11], GA is used to

optimize all the three parameters of RBFN. Similar time series data in [12], nonlinear time

varying evolution PSO was proposed for training RBFN and tuning the acceleration coeffi-

cients for short term electric power prediction in Taiwan.

Likewise, in [13] to improve the forecasting accuracy of Back propagation network

(BPNN), adaptive differential evolution (ADE) is hybridized. Similarly, in [14] both the

global search and local search capabilities of Adaptive PSO and BP is been efficiently

exploited for finding the global optimum in the given search space. In another work [15] the

authors proposed an improved dynamic PSO, together with Ada Boost algorithm, authors

adjust the parameters (centers, widths, shape parameters and connection weights) to train

the RBF NN.

Similar recently developed hybrid models[16]such as biogeography based optimization

(BBO) algorithm is used for training Multi- layer Perceptron (MLP) networks and tested with

several classification, approximation datasets. In another work [17] modified bat algorithm is

employed to optimize the weights, biases and the structure of neural network and tested on

classification, benchmark time series and real time series (e.g. rainfall) datasets. Again in [18],

to improve the diversity of population, two strategies are proposed in modified bat inspired

algorithm, proposing Ring and Master slave methods, the weights and the structure of ANN

are simultaneously optimized.

To improve the performance of training the RBFN, the combination of PSO, K-NN and

OSD is presented in [19]. PSO replaces K-means clustering for finding centres, as in K-means

random selection of centres was deficient. Subsequently PSO [20] is used for parallel optimiz-

ing of parameters of RBFN as it handles two different swarms. These two swarms exchanged

the information of optimized parameters among themselves. Again in [21], the variant of PSO

PSODS trainer for RBFNN for wind speed prediction
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i.e PSO with mutation operation is used to train the RBF parameters like the weights and

sigma of activation function.

For predicting the electric load demand, a hybrid method of PSO-GA-RBF [22] is pre-

sented. Since GA is binary coded, and PSO is real value coded, this algorithm is a mixed coded

one where the network structure is been optimized by GA and the weights and basis are opti-

mized by PSO. Similarly, a Support Vector Regression (SVR) model is hybridized with the dif-

ferential empirical mode decomposition (DEMD) method and PSO-support vector machine

for electric load forecasting [23]. In [24], the authors tried RBFN for solar power prediction

with wind speed and two dimensional representation of solar irradiation as its inputs. Again

[25] uses a hybrid PSO-GA for finding the parameters of radial basis network in rainfall

prediction.

Similarly, forecasting stock indices using an artificial fish swarm algorithm (AFSA) opti-

mizes RBF is discussed in [26]. K-means clustering which is adapted for finding centres of

RBF, weights linking the output and hidden layer are being optimized by AFSA. Meanwhile in

[27], a hybrid perturbation artificial bee colony trainer for a local linear RBF NN is presented.

Another hybrid method integrating empirical mode decomposition with adaptive neural net-

work based fuzzy inference system (ANFIS) for short-term wind speed forecasting is presented

in [28].

To improve the diversity of individuals results in higher chance to search in the direction

of global optimal [29], proposes an integrated hybrid method with PSO and GA for RBFNN

training. Similarly [30–32], proposes a PSO based training for RBF NN for diverse applica-

tions. [33] presents a spatial correlation model algorithm for training ANN for wind speed and

power forecasting.

Generally, inconsistency of a single technique could be resolved by combining two or more

techniques to overcome the deficiencies of single models and yield more accurate results [34–

36]. Accordingly this paper proposes a hybrid model combining the salient features of PSO

with the differential search algorithm. Thus a new hybrid optimizer called PSODS will be the

trainer for the RBF NN for wind speed prediction. Before establishing the applicability of the

proposed technique to train RBF NN for wind speed prediction, seven publicly available test

datasets are experimented to demonstrate the results produced by the new scheme is evidently

superior in many aspects compared to other reported methods for training RBF NN.

Despite the fact that any developed technique can be experimented and proved to be effec-

tive for standard test problems, it is more insistence to justify its performance on a real time

system. Accordingly this research after establishing the performance of the proposed trainer

for RBF NN, will be experimented on a practical wind prediction problem. Wind is one of the

green renewable energy, widely available for electric power generation. In spite of its chaotic

nature the wind is effectively utilized for power generation with suitable planning. Several

factors influence the speed of the wind and hence prediction of wind speed will help electric

power companies to well utilize the energy tapped from wind and minimize the expenses for

fossil power generation.

The literature for application of NN for wind speed prediction is comprehensive. Here

selective articles are reviewed pertaining to the content of this research. Wind speed prediction

is done using three NN, namely adaptive linear element, back propagation and radial basis

function and demonstrated that no particular NN outperforms the other in terms of all evalua-

tion metrics [37]. In [38], a self-organising map is used to process the uncertainties of wind

nature and then processed using RBF NN. Similarly an adaptive neuro fuzzy system is pro-

posed along with similar day method and proved to be effective [39].

In [40], a NN model for predicting real time information obtained from various locations

in the mountainous regions of Himalaya is presented. Similarly, a recurrent NN model is

PSODS trainer for RBFNN for wind speed prediction
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developed for predicting the wind power generated from wind turbines installed across the

coastal region [41]. In another work [42], a Least square support vector machine (LSSVM),

with empirical wavelet transform as a pre-processor is presented. Similarly, two different sta-

tistical models with same datasets of inputs ranges from atmospheric variables is presented

[43].

Complexity is one of the key factors which trigger the advent of new solution techniques for

finding possible solutions, where existing mathematical programming techniques fail. Evolu-

tionary computation algorithms are promising alternatives, when attempting complex search

space and further expounded to overcome several drawbacks the mathematical programming

techniques face when applied.

The search range of a neural network, where weight determination is the key problem is

also complex and cumbersome in nature. This solution space is not only a challenge for any

method to produce quality solutions, there are other issues like local trapping and premature

convergence. An inherent feature of most of the population based algorithm is their capability

of balancing between exploration and exploitation when searching the complex solution space.

Similar, the key concern and shortcoming of any evolutionary computation algorithms is to

overcome the trapping into local optima and to avoid poor convergence.

Based on this three contributions are made as follows,

• A new population initialization algorithm is proposed using a chaotic sequence called ‘Logis-

tic iterator’ ensuring the search space information can be extracted with enhancement in

population diversity. In addition, an opposition based population is subsequently generated

using the population generated by the chaotic sequence, to further diversify the initialization

population.

• A new optimizer using the differential search algorithm is proposed with functionally modi-

fied by incorporating the local search feature of the PSO. Thereby the exploration of DS is

ensured and exploitation of the PSO is well utilized.

• The newly proposed optimizer named as PSO enhanced differential search (PSODS) algo-

rithm will be used to train the radial basis function neural networks and the best possible set-

tings for centroid, spread and weights will be estimated and demonstrated for its suitability

in solving both theoretical and practical applications of prediction.

The rest of this paper is organized as follows. Section 3, presents a brief introduction to the

RBF NN followed by the Logistic chaotic sequence based Initial population generation algo-

rithm. Subsequently with the brief overview of DS algorithm and PSO algorithm, the modeling

of the PSODS algorithm for training the RBF NN is presented in Section 4. Section 5, summa-

rizes the simulation results of the seven publicly available regression test datasets and finally

for wind speed prediction problem. Finally the paper concludes by summarizing the merits of

the proposed approach.

List of symbols

wjk Weights of hidden layer k linked with j output layer.

μk Centroids of hidden layer neuron k ofRBF NN.

σk Spread of hidden layer Radial basis function k.

δk Activation functions of hidden layer neuron k.

ψki Gaussian activation function of hidden neuron k ofall inputs i

PSODS trainer for RBFNN for wind speed prediction
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POP Population Size

DIM Dimension

MUT Mutation strategy

DNR Donor or the target of superorganism.

chrndk,j Chaotic random generation for k iteration of jdimension.

oppxi,j Opposition based learning of ipopulation of jdimension.

vt
id; v

t� 1
i1 Present and Previous velocities of the particle

Pt
id Local best value of the particle

xt
id Present position of the particle

pt
gd Global best position of the particle

spo Super organism population

ρgd Gamma distribution based random number generation.

cvt
i velocity updation of each particle in the super organism.

cspovtþ1
i New position of superorganism after position updation.

spot
i Current Position of super organisms

Radial basis function neural network (RBF NN): An overview

Radial basis function neural network RBF NN [2,3] is the general class of non-linear and

three-layer feed forward neural networks: (i) an input layer with n nodes, (ii) a hidden layer

with m neurons or RBFs, and (iii) an output layer with one or several nodes (Fig 1). The unsu-

pervised layer is defined between input nodes and the hidden neurons in the RBF network,

while the supervised layer exists between hidden neurons and the output nodes.

The jth output yj(i) in the network can be defined as

yjðiÞ ¼
Xm

k¼1

wjkdk½xðiÞ; mk; sk�; j ¼ 1; 2; . . . . . . ; n; i ¼ 1; 2; . . . . . . n; ð1Þ

Where ‘k’ is the number of used RBFs, wjk (k = 1,2,. . .. . .. . .,m) is the weights of RBF network

linked with jth output, the centroid (center) vector μk = [μ1, μ2,. . ...μm]T, and the spread vector

of RBF NN σk = [σ1, σ2,. . ...σm]T The spread is generally calculated as,

sk ¼
Maximum distance between any 2 centers

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of centers

p ¼
dmax
ffiffiffiffiffiffim1

p

The weights connecting hidden layer to output layer is given by, wk = [w1, w2,. . ..., wm]T

According to [30], the basis function can be defined in several ways, while some of the most

commonly used basis functions are as follows: Gaussian, multi-quadric, inverse multi-quadric,

generalised inverse multi-quadric, thin plate spline, cubic and linear function. In this study,

the RBF is represented by the Gaussian function that acts as the activation function for the

neurons in the hidden layer formed by every term δk. The output layer applies a linear

PSODS trainer for RBFNN for wind speed prediction
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combination of this function and is represented as

dkðx; mk; skÞ ¼
an

i¼1

ckiðxi; ski; mkiÞ ð2Þ

The Gaussian form is defined as

ckiðxi; mki; skiÞ ¼ e
�

ðxi � mki
Þ2

2s2
ki

� �

ð3Þ

Now, the jth output becomes:

yjðiÞ ¼
Xm

k¼1

wjke
�

Xn

i¼1

ðxi � mki
Þ2

2s2
ki

� �

ð4Þ

The parameters of RBFN such as wjk, μk, σk are to be optimised so that the error function as

stated below is minimised. M is the number of sample used to train the RBF NN.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

j¼1

ðtj � yjðiÞÞ
2

M

v
u
u
u
u
t

ð5Þ

The key problem in RBF neural network structure is to judge the number of hidden layer

neurons and their corresponding spread, σk and centroids μk. To obtain the above parameters

to design the RBF neural network used for prediction problems, the root mean square error

Fig 1. Schematic diagram of RBFNN architecture.

https://doi.org/10.1371/journal.pone.0196871.g001
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(RMSE) is formulated as an optimization problem. Accordingly the fitness function for the

optimization procedure is given below.

Fitness function

The fitness function is the key element in determining the suitable parameters for the better

performance of the RBF NN. For a dataset with samples S = {(Xj,Yj), j = 1,2,3,. . .M}. where, Xj

is the jth sample given by Xj = {(xj), j = 1,2,. . ..J}, where ‘M’ is the number of samples, n is the

number of inputs. tj is the output as per data and yj(i) is the output estimated by RBF NN for

the input sample Xj. Thus the error function also considered as fitness function is given by Eq

(5). Thus this paper, proposes a new hybrid optimizer to determine the appropriate weights

wjk, the spread, σk and centroids μk, as they are of particular importance for the better perfor-

mance of the RBF neural network.

Logistic chaotic sequence based Initial population generation

In any evolutionary computation procedure, the convergence speed and final optimum solu-

tion obtained are greatly influenced by the initialization of the candidate solution or popula-

tion. Mostly, initial candidate solutions are randomly generated within the range of the

variables limits as no information of the solution space is available [44,45]. Recently, several

evolutionary computation procedures due to the randomness and sensitivity dependence on

the initial conditions, adopts chaotic maps for initialization of the candidate solutions as cha-

otic maps are capable of extracting diversity within the solution space, thereby generate initial

population that are much diversified (throughout the search space) than the regular randomly

initialized population.

In this work the chaotic map adopted is the one proved to be most successful in various

applications. Thus in this work the Logistic iterator [46] is selected and its equation is given as

follows:

chrndkþ1;j ¼ a:chrndk;jð1 � chrndk;jÞ

Where, chrnd0,j = 0.2027 and α = 4

Subsequently once the population initialization is done with chaotic maps, another impro-

visation is carried out by applying the opposition based population diversification [47]. This

diversification is done for the entire size of the population and their place in the search will be

decided based on their fitness. So that out of twice the size of the candidates only the first half

candidates with highest fitness will enter the PSODS routine. The combined algorithm for

population initialization using chaotic maps and opposition based method is presented in

Algorithm 1.

Algorithm 1: Chaotic opposition-based population initialization

01: The maximum number of chaotic iteration CHITR is set to 300,
02: population size is POP.

{---Chaotic systems---}
03:for i = 1 to POP do
04: for j = 1 to DIM do
05: Initialize the variables randomly from the limit prescribed
06: for k = 1 to CHITR do
07: chrndk+1,j = α.chrndk,j (1 − chrndk,j)
08: end for
09: xi,j = xmin,j + chrndk,j (xmax,j − xmin,j)
10: end for

PSODS trainer for RBFNN for wind speed prediction
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11:end for
{------Opposition—based learning method--------}

13:for i = 2 instep of 2 to POP do
14: for j = 1 to DIM do
15: oppxi,j = xmin,j + xmax,j − xi,j
16: end for
17: end for
18: The POP fittest individuals with better fitness out of 2xPOP will
be the initial population.

Differential search algorithm: An overview

The Differential search (DS) is one of the recently developed evolutionary computation proce-

dure to solve constrained global optimization problems. It is getting attention in recent times

in wide range of applications which requires rigorous search of solution space [48,49]. The DS

algorithm shall be briefed in three stages as follows:

• Set of candidate solutions of a particular problem shall be considered as artificial- super-

organism migrating towards better fitness.

• In the course of migration, the artificial-super-organism examines whether a randomly

selected location (stop over site) is suitable for temporarily settlement.

• If the location (based on fitness evaluation) is suitable to stall over during the migration, the

super-organism that made this location will position itself there.

The above procedure will be continued until all the artificial-super-organism examines and

settle at an acceptable position as per the problem requirement. The DS procedure is inspired

by the movement of a super-organism well similar to the Brownian-like random-walk model.

The flow chart of the Differential search algorithm is shown in Fig 2.

The salient feature of the DS Algorithm is, only two parameters (P1 and P2) are normally to

be appropriately set for the algorithm to search for the better solution. DS is very simple with

good exploration capability but poor at exploitation. Hence requires large number of iterations

to obtain good result.

Particle swarm optimization: An overview

Introduced as a simple real number optimization algorithm, PSO is the widely used swarm

intelligence algorithm in variety of applications [34,35]. The algorithm is inspired from the

behavior of bird flocks known as a swarm in search of food. It’s simple steps in reaching a qual-

ity solution with control over both global and local search capability made it a popular optimi-

zation algorithm. The PSO algorithm shall be briefed in three stages as follows:

• Set of candidate solutions of a particular problem shall be considered as particles with posi-

tions in the search space moving towards better fitness

• The movement of particles will be based on their own personal information and all other

particles information in the search space.

• If there is a better fitness found during the movement, the particles will move to the new

position or else stay where they are.

The above procedure will be continued until all the particles update their positions and set-

tle at an acceptable position as per the problem requirement. The flow chart of the PSO algo-

rithm is shown in Fig 3.

PSODS trainer for RBFNN for wind speed prediction
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Fig 2. Flowchart of the differential search algorithm.

https://doi.org/10.1371/journal.pone.0196871.g002
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One of the features of the PSO algorithm is its ability to have control over both global and

local search of the solution space. In order to realize this, the algorithm is modelled with line-

arly decreasing inertia weight which at the beginning supports global exploration and at the

end it ensures local exploitation. One of the significant weakness of PSO algorithm is during

the exploration the particles often miss better solution region. Additionally, in PSO when

the particles positions are updated neglecting the previous velocities, they tend to lead to local

search of the region where the particles position.

Fig 3. Flowchart of the particle swarm optimization algorithm.

https://doi.org/10.1371/journal.pone.0196871.g003
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In this research work, the PSO will use a neighbourhood topology to exploit the solutions

of DS by thorough search of solution region. This neighbourhood topology will be based on

ring topology with neighbours fetched considering both fitness and candidates themselves.

Accordingly the velocity equation given in Eq (6), will be modified as in Eq (7).

vt
id ¼ vt� 1

i1 þ c1r1ðP
t
id � xt

idÞ þ c2r2ðp
t
gd � xt

idÞ d ¼ 1; 2; . . . ;D ð6Þ

vt
id ¼ r1ðP

t
id � xt

i� 1dÞ þ r2ðP
t
id � xt

iþ1dÞ d ¼ 1; 2; . . . ;D ð7Þ

Where, vt
id; v

t� 1
i1 is the present and previous velocities of the particles, c1, c2, r1, r2 are scale and

random numbers. Pt
id; xt

id&pt
gd are local best, present position & global best of the particles of

‘d’ dimensions, xt
i� 1d; x

t
iþ1d are neighbour of the particles xt

id

In this research, a new topology will be used where both the fitness and candidates

neighbours are chosen for updating the solutions. This will be explained in detail in the next

section.

PSO enhanced differential search optimizer

In this section, the new hybrid algorithm PSODS that functionally integrates PSO with DS will

be discussed in detail. As discussed earlier, DS is very simple with good exploration capability

but poor at exploitation. Similarly, PSO algorithm is good in exploitation with adjustment in

its inertia weight. Hence taking the advantages of both the techniques, a new hybrid technique

is formulated.

Step by step procedure of PSODS algorithm.

1. (Initialization and Generation of the initial artificial organism)

Initialize the super-organism population Such that, POP is the size of super-organism, and K

is the dimension of the problem also assumed as the size of one clan. In addition assume initial

values for control parameters P1 & P2

Randomly initiate artificial organism using the chaotic sequence initialization procedure

discussed in section 4 (Algorithm 1),

Such that, the artificial organism should describe the RBF NN with K numbers of hidden

layer neurons, should comprise of the parameters wik, μk, σk to be minimized and expressed as

t1 ¼ ðwi
11
;wi

12
; . . . . . . ;wi

1K ; s
i
11
; si

12
; . . . ; si

1K ; m
i
11
; mi

12
; . . . :;mi

1KÞ

t2 ¼ ðwi
21
;wi

22
; . . . . . . ;wi

2K ; s
i
21
; si

22
; . . . ; si

2K ; m
i
21
; mi

22
; . . . :;mi

2KÞ

�

�

�

tM ¼ ðwi
M1
;wi

M2
; . . . . . . ;wi

MK ; s
i
M1
; si

M2
; . . . ; si

MK; m
i
M1
; mi

M2
; . . . :;mi

MKÞ

Thus, each artificial organism is functionally expressed as Tp

Tp = {t1, t2, t3,. . .., tM}, p = 1,2,3, . . .., POP, M is the number of samples used for training.

The randomization is done in the range of [-1,+1] for wik, σk[-,1+1] and [0,1]for μk

2. (Fitness Function Evaluations)

Each artificial organism should be evaluated for its fitness value using the fitness function

designed for the problem of interest.
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Thus the fitness function here is fit ¼ RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

j¼1

ðtj � yjðiÞÞ
2

M

v
u
u
u
t

The super-organism population is Initialized as spo = Tp and FTspo = fit

3. Start PSODS, Iteration starts, IT = 1

{- - - Phase 1—Differential search algorithm - - -}

4. Locating the stop-over site for each artificial organism

This stage involves three sub-stages, they are

Determination of Scale Factor (η)
Scale factor is determined using,

Z ¼ rgd½2 � r1� � ðr2 � r3Þ

Where, ρgd generates random numbers from gamma distribution and ρi ~ U(0,1) random

numbers generated.

Determination of Donor organisms (DNR)
The Donor or the target is determined by shuffling the super-organism and is expressed by,

DNR ¼ RND:PERMðspoÞ

Estimation of new temporary position (MUT)
In this stage three mutation strategies are adapted, the control parameters are assumed as,

P1 = 0.3�ρ4, P2 = 0.3�ρ5. In addition ρi ~ U(0,1),i = 1,2,3,. . .10

Mutation strategy in three parts as follows,

{- - -Strategy part 1- - -}

If, ρ6 < ρ7 then,

If, ρ8 < P1,

MUT = Rand(POP,K)

for it1 = 1: POP

map(it1,:) = map (it1,:)<ρ9

end for
elseif

{- - -Strategy part 2- - -}

MUT = ONES(POP,K)

for it2 = 1: POP

MUT(it2, randi (size of K)) = map(it2, randi (size of K))<ρ10;

end for
endif
else

{- - -Strategy part 3- - -}

MUT = ONES(POP,K)

for it3 = 1: pop

g = randi (K,1,(P2x K))

for it4 = 1: size(g)

MUT (it3,d(it4)) = 0

end for
end for

endif
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Based on the above three mutation strategies, the stop over-sites of the super-organisms are

calculated using

spoNEW ¼ ðspoÞ þ ðZ: �MUTÞ: � ðDNR � spoÞ

spoOLD ¼ spo

Evaluate fitness values for the new stopover site and call it as FTNew
spo The new and old super-

organisms are together sorted based on their fitness FTfnl ¼ ½FTspoFTNew
spo � and the first ‘POP’

super-organisms will be used by PSO routine to further improvisation of the solution.

{- - - Phase 2—PSO algorithm for exploitation - - -}

PS01: 01: Select the size of the swarm nps (here 10% of super-organisms) with higher fitness

value, set iteration count ‘tmax’

PS02: Start the iteration t = 1

PS03: Choose spot
i ; i 2 ð1; 2 . . . npsÞ to update the velocity and thereby position of each

particle,

Generate ‘p � Uð0; 1Þ; p ¼ 1; 2; 3

cvt
i ¼ ‘1ðspot

i � spot
i� 1
Þ þ ‘2ðspot

i � spot
iþ1
Þ

cspotþ1

i ¼ cvt� 1

i þ spot
i

Evaluate the fitness using newly generated position,FTcspo ¼ fitðcspotþ1
i Þ

fvt
i ¼ ‘1ðspot

i � spot
fit;i� 1
Þ þ ‘3ðspot

i � spot
fit;iþ1
Þ

fspotþ1

i ¼ fvt� 1

i þ spot
i

Evaluate the fitness using newly generated position,FTfspo ¼ fitðfspotþ1
i Þ

PS04: Compare the fitness FTfspo, & FTcspo with fitness of the spot
i , improvement in fitness

value will replace the position of spot
i .

PS05: Check for t = = tmax, Else t = t+1, Repeat from PS03

END PSO routine

5. Check for IT = = ITMAX

END PSODS

A flowchart of the PSODS algorithm is shown in Fig 4 for easy understanding. In the next

section detailed experiments are performed to demonstrate the applicability of the proposed

algorithm to train RBF NN and predict regression samples.

The proposed methodology was experimented on seven publicly available benchmark

datasets available with the UCI Machine Learning Repository [50–52]. The seven datasets

are Boston housing, Concrete Compressive strength, Airfoil self -noise, Istanbul Stock

Exchange, Forest Fires, Abalone and Auto MPG. Table 1, summarizes the Benchmark Dataset

Description.

The experiments are performed and demonstrated using the proposed PSODS trained

RBF NN. To prove the efficiency of the proposed optimizer, experiments were also conducted

using PSO trained RBF, DS trained RBF and basic RBF. The obtained results are also com-

pared with the results reported in the literature.
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Fig 4. Flowchart of the proposed PSODS algorithm.

https://doi.org/10.1371/journal.pone.0196871.g004
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Dataset description

The benchmark dataset are obtained from UCI repository. These seven dataset which are

taken into consideration for testing the performance of the proposed PSODS method is

described as below:-

• Boston House Price data is concerned about the house price in the area called Boston with

13 attributes such as crime rate, population, pollution level, accessibility to schools, high-

ways, and workplace etc. as inputs and house price as its output. With the total 506 instances,

253 are training instances and 253 instances are used for testing purpose.

• Concrete compressive strength data is having8 input attributes like concrete, water, fly ash,

coarse aggregate, fine aggregate etc. and concrete compressive strength as its output. Out of

1030 total samples 680 are used training and 350 samples for testing.

• Air foil self- noise dataset with scaled sound pressure level as its output and 5 other inputs

for a total of 1503 samples is also experimented. Where, 1000 instances are trained and 503

instances are tested.

• Istanbul stock exchange dataset deals with the stock exchange returns with 8 other stock

exchanges index as its input attributes. For 536 instances, 400 instances are trained and the

remaining 136 instances are tested.

• Forest fires dataset is to estimate the burned area of the forest with 12 relevant inputs for esti-

mation and 517 similar instances. Of which 450 are training instances and 67 are testing

instances.

• Abalone dataset is used primarily to predict the age of abalone with the help of 8 input attri-

butes and a total of 4177 instances. Out of which 2977 instances as training units and 1200

instances as testing units.

• Auto MPG dataset is mainly used to predict the MPG (miles per gallon) values with the 8

attributes of automobile as its input for 398 samples. 199 samples are used for training and

199 samples are used for testing purpose.

In order to demonstrate the efficacy of the proposed PSODS trained RBF NN, several

experiments have been conducted. The PSO and DS also independently used to train the RBF

NN for the sake of comparison with the proposed PSODS algorithm. The parameter setting

for the DS algorithm is p1 & p2 is set as (0.3xrand), population size is 100. For the PSO algo-

rithm the swarm size is 10 and inertia weight is set = 1. No. of iterations are kept as 1000 for all

cases for the PSODS algorithm. The PSO routine will perform the search until 50 iterations or

there is no improvement in the solution for 10 iterations.

Table 1. Description of public datasets.

Datasets Attributes Training data Testing data No. of Samples

Boston housing 13 253 253 506

Concrete Compressive strength 8 680 350 1030

Airfoil self -noise 5 1000 503 1503

Istanbul Stock Exchange 8 400 136 536

Forest Fires 12 450 67 517

Abalone 8 2977 1200 4177

Auto MPG 8 199 199 398

https://doi.org/10.1371/journal.pone.0196871.t001
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The results for each dataset using all techniques are obtained by performing the following

experiments: Each dataset will be simulated for 30 trial runs to obtain the RMSE having best,

worst and mean value. The standard deviation (SD) for each case is also listed. Secondly, to

identify the suitable number of hidden neurons for the RBF NN, the hidden neurons is

changed in the range of 40 to 70 insteps of 5 neurons and experimented for 30trial runs. In

addition, experiments are carried out by varying the training and test samples in contradictory

to the standard procedure. Such that, the testing sample are gradually increased by 5% and

experimented for 30trial runs using the proposed PSODS trained RBF NN. Error statistics var-

iations are shown to prove the robustness of the PSODS algorithm.

Performance evaluation on number of hidden neurons

In this section, the RBF NN is trained using the proposed PSODS algorithm along with the DS

and PSO algorithms training RBF NN independently. Hidden layer neurons will be fixed in

the range of 40 to 70 insteps of 5 neurons and experimented for 30trial runs. All the seven data-

sets are experimented to decide a most suitable size of hidden layer neurons for effective pre-

diction. The number of training and testing samples are fixed as per the standard figures as

given in the UCI database.

Figs 5 to 11, shows the bar chart for all the seven datasets Boston housing, Concrete Com-

pressive strength, Airfoil self -noise, Istanbul Stock Exchange, Forest Fires, Abalone and Auto

MPG respectively. The chart shows the Training RMSE (on left) and Testing RMSE (on right)

obtained by the three algorithms.

The following observations can be made from Figs 5 to 11.

As mentioned earlier, the RMSE for both training and testing of samples are plotted against

the change in hidden layer neuron size. All the results are based on 30 different trial runs.

Since this data is large enough to be tabulated, bar chart in 3D view is plotted. In almost all the

datasets the best RMSE is attained at a neuron size of 65.

The PSODS algorithm proves by producing better RMSE compared to the PSO and DS. In

some cases the worst results of PSODS are even better than the PSO and DS (e.g., Airfoil self—

noise and Abalone). In Boston housing and Istanbul Stock Exchange cases the hidden layer

neuron size is close to 60. But still the next better size is 65 and the difference in RMSE pro-

duced is also comparatively smaller.

Fig 5. RMSE for Boston House Pricing for by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g005
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Thus based on the above results, the hidden layer neuron size for the PSODS trained RBF

NN is fixed at 65 neurons. Further studies and experiments will be performed with these

parameters henceforth of this paper.

Subsequently, the results corresponding to the each dataset used for experimentation are

summarized in Tables 2 to 8. Here the RMSE results for proposed PSODS algorithm along

with PSO, DS and other algorithms reported in the literature are compared. As mentioned ear-

lier each method will be experimented for 30 trial runs and the tabulated result shows the per-

formance of the algorithms for the RBF NN with 65 neurons in all cases. Here the general RBF

NN results are also tabulated as Classic results for the sake of comparison.

The following observations can be made from Table 2, showing the results for Boston hous-

ing. Here, the out of 506 samples 253 samples have been used for training and a same number

of samples are used for testing. As can be seen, the proposed PSODS method is superior in

terms of producing quality solutions compared to the results of all the other methods tabu-

lated. The PSODS is superior in both training RMSE of 0.0977 and testing RMSE of 0.1181, as

Fig 6. RMSE for Concrete Compressive strength by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g006

Fig 7. RMSE for Airfoil self—noise by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g007
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in both the cases the RMSE obtained is much less compared to other methods. Followed by

the DS method, as its testing RMSE is better compared to other networks [50,51].

In support of this, Fig 12(a) shows the convergence of the three methods toward best

RMSE. As can be seen from the convergence plot, the PSODS algorithm converges faster than

the DS and PSO. This plot is one amongst the convergence data in 30 different trial runs. Simi-

larly, Fig 12(b) shows the accuracy in predicting the test sample targets by the RBF trained

using three methods. For the sake of leniency of comparison accuracy a tolerance of 0.01 is

set for all the methods. Thus the PSODS algorithm has predicted much higher samples (at an

average of 147 samples) than the DS (at an average of 125 samples) and PSO (at an average of

110 samples) methods.

Similarly Table 3 shows the results for Concrete Compressive strength. Here, out of 1030

samples 680 samples have been used for training and 350 samples are used for testing. As

can be seen, the proposed PSODS method is superior in terms of producing quality solutions

Fig 8. RMSE for Istanbul Stock Exchange by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g008

Fig 9. RMSE for Forest Fires by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g009
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compared to the results of all the other methods tabulated. The PSODS is superior in both

training RMSE of 0.1269 and testing RMSE of 0.1320, as in both the cases the RMSE obtained

is much less compared to other methods, followed by the DS method, as its testing RMSE is

better compared to other networks [50].

In support of this, Fig 13(a) shows the convergence of the three methods toward best RMSE

FOR Concrete Compressive strength. As can be seen from the convergence plot, the PSODS

algorithm converges faster than the DS and PSO. This plot is one amongst the convergence

data in 30 different trial runs. Similarly, Fig 13(b) shows the accuracy in predicting the test

sample targets by the RBF trained using three methods. For the sake of leniency of comparison

accuracy a tolerance of 0.01 is set for all the methods. Thus the PSODS algorithm has predicted

much higher samples (at an average of 245 samples) than DS (at an average of 225 samples)

and PSO (at an average of 221 samples) methods.

Likewise observations were made from Table 4, showing the results for Airfoil self -noise.

Here, out of 1503 samples 1000 samples have been used for training and 503 samples are used

Fig 10. RMSE for Abalone by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g010

Fig 11. RMSE for Auto MPG by varying hidden layer neurons.

https://doi.org/10.1371/journal.pone.0196871.g011
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Table 2. Summary of results obtained for Boston House Pricing.

Dataset Boston House Pricing

Method Train RMSE Test RMSE

PSODS Best 0.0977 0.1181

Worst 0.1422 0.1404

Mean 0.1304 0.1349

SD 0.0147 0.0094

PSO Best 0.1125 0.1329

Worst 0.1530 0.1553

Mean 0.1452 0.1473

SD 0.0118 0.0075

DS Best 0.1086 0.1297

Worst 0.1523 0.1506

Mean 0.1406 0.1468

SD 0.0121 0.0072

[50,51] Best 0.0987 0.2413

Worst 0.1482 0.2621

Mean 0.1421 0.2589

SD 0.0154 0.0081

Classic Best 0.1423 0.1681

Worst 0.1935 0.1964

Mean 0.1836 0.1863

SD 0.0149 0.0095

https://doi.org/10.1371/journal.pone.0196871.t002

Table 3. Summary of results obtained for Concrete Compressive strength.

Dataset Concrete compressive strength

Method Train RMSE Test RMSE

PSODS Best 0.1269 0.1320

Worst 0.1410 0.1351

Mean 0.1346 0.1341

SD 0.0058 0.0015

PSO Best 0.1386 0.1449

Worst 0.1521 0.1489

Mean 0.1459 0.1466

SD 0.0041 0.0010

DS Best 0.1375 0.1444

Worst 0.1527 0.1493

Mean 0.1475 0.1468

SD 0.0053 0.0013

[50] Best 0.1453 0.1575

Worst 0.1652 0.1703

Mean 0.1573 0.1658

SD 0.0062 0.0028

Classic Best 0.1516 0.1585

Worst 0.1664 0.1629

Mean 0.1596 0.1603

SD 0.0045 0.0011

https://doi.org/10.1371/journal.pone.0196871.t003
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Table 4. Summary of results obtained for Airfoil self -noise.

Dataset Airfoil Self-noise

Method Train RMSE Test RMSE

PSODS Best 0.1308 0.1337

Worst 0.1429 0.1427

Mean 0.1378 0.1369

SD 0.0045 0.0032

PSO Best 0.1434 0.1476

Worst 0.1575 0.1533

Mean 0.1507 0.1492

SD 0.0013 0.0028

DS Best 0.1425 0.1445

Worst 0.1568 0.1543

Mean 0.1505 0.1477

SD 0.0027 0.0019

[50,51] Best 0.1470 0.1373

Worst 0.1579 0.1724

Mean 0.1531 0.1593

SD 0.0072 0.0057

Classic Best 0.1881 0.1936

Worst 0.2066 0.2011

Mean 0.1976 0.1957

SD 0.0017 0.0037

https://doi.org/10.1371/journal.pone.0196871.t004

Table 5. Summary of results obtained for Istanbul Stock Exchange.

Dataset Istanbul stock exchange

Method Train RMSE Test RMSE

PSODS Best 0.0552 0.0603

Worst 0.0806 0.1565

Mean 0.0663 0.0945

SD 0.0106 0.0439

PSO Best 0.0665 0.0736

Worst 0.0941 0.1702

Mean 0.0785 0.1049

SD 0.0024 0.0101

DS Best 0.0659 0.0710

Worst 0.0950 0.1694

Mean 0.0790 0.1052

SD 0.0091 0.0375

[50] Best 0.0996 0.1438

Worst 0.1213 0.1623

Mean 0.1179 0.1497

SD 0.0071 0.0561

Classic Best 0.1129 0.1250

Worst 0.1598 0.2890

Mean 0.1333 0.1781

SD 0.0041 0.0172

https://doi.org/10.1371/journal.pone.0196871.t005
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Table 6. Summary of results obtained for Forest Fires.

Dataset Forest fires

Method Train RMSE Test RMSE

PSODS Best 0.0408 0.0599

Worst 0.0636 0.1251

Mean 0.0522 0.0825

SD 0.0114 0.0426

PSO Best 0.0539 0.0711

Worst 0.0762 0.1353

Mean 0.0626 0.0972

SD 0.0014 0.0209

DS Best 0.0533 0.0716

Worst 0.0781 0.1369

Mean 0.0628 0.0964

SD 0.0044 0.0166

[51] Best 0.0831 0.0912

Worst 0.0972 0.1213

Mean 0.9312 0.0973

SD 0.0017 0.0092

Classic Best 0.1007 0.1328

Worst 0.1423 0.2527

Mean 0.1169 0.1816

SD 0.0026 0.0390

https://doi.org/10.1371/journal.pone.0196871.t006

Table 7. Summary of results obtained for Abalone.

Dataset Abalone

Method Train RMSE Test RMSE

PSODS Best 0.0884 0.0935

Worst 0.0939 0.1181

Mean 0.0912 0.1019

SD 0.0019 0.0103

PSO Best 0.0987 0.1047

Worst 0.1057 0.1322

Mean 0.1013 0.1121

SD 0.0003 0.0017

DS Best 0.0993 0.1069

Worst 0.1078 0.1299

Mean 0.1043 0.1158

SD 0.0002 0.0008

[52] Best 2.1100 2.0797

Worst 0.1457 0.1577

Mean 0.1373 0.1427

SD 0.0052 0.0057

Classic Best 0.1284 0.1382

Worst 0.1393 0.1679

Mean 0.1348 0.1497

SD 0.0003 0.0010

https://doi.org/10.1371/journal.pone.0196871.t007
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for testing. As can be seen, the proposed PSODS method is superior in terms of producing

quality solutions compared to the results of all the other methods. The PSODS is superior in

both training RMSE of 0.1308 and testing RMSE of 0.1337, as in both the cases the RMSE

obtained is much less compared to other methods, followed by the DS method is better com-

pared to others [50,51].

Table 8. Summary of results obtained for Auto MPG.

Dataset Auto MPG

Method Train RMSE Test RMSE

PSODS Best 0.0780 0.0844

Worst 0.0841 0.1065

Mean 0.0821 0.0926

SD 0.0025 0.0086

PSO Best 0.0926 0.0983

Worst 0.0965 0.1187

Mean 0.0943 0.1042

SD 0.0013 0.0044

DS Best 0.0906 0.0985

Worst 0.0981 0.1197

Mean 0.0940 0.1067

SD 0.0013 0.0046

[52] Best 2.7518 2.7968

Worst 0.1012 0.1179

Mean 0.9791 0.1091

SD 0.0071 0.0059

Classic Best 0.1314 0.1395

Worst 0.1369 0.1684

Mean 0.1338 0.1478

SD 0.0018 0.0062

https://doi.org/10.1371/journal.pone.0196871.t008

Fig 12. a) Convergence plot b) Successfully predicted samples for Boston House Pricing.

https://doi.org/10.1371/journal.pone.0196871.g012
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In support of this, Fig 14(a) shows the convergence of the three methods toward best RMSE

for Airfoil self -noise. As can be seen from the convergence plot, the PSODS algorithm con-

verges faster than the DS and PSO. This plot is one amongst the convergence data in 30 differ-

ent trial runs. Similarly, Fig 14(b) shows the accuracy in predicting the test sample targets by

the RBF trained using three methods. For the sake of leniency of comparison accuracy a toler-

ance of 0.01 is set for all the methods. Thus the PSODS algorithm has predicted much higher

samples (at an average of 393 samples) than DS (at an average of 370 samples) and PSO (at an

average of 352 samples) methods.

Consequently the results for Istanbul Stock Exchange are shown in Table 5. Here, out of

400 samples 536 samples have been used for training and 136 samples are used for testing. As

can be seen, the proposed PSODS method is superior in terms of producing quality solutions

compared to the results of all the other methods tabulated. The PSODS is superior in both

Fig 13. a) Convergence plot b) Successfully predicted samples for Concrete strength.

https://doi.org/10.1371/journal.pone.0196871.g013

Fig 14. a) Convergence plot b) Successfully predicted samples for Airfoil self -noise.

https://doi.org/10.1371/journal.pone.0196871.g014
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training RMSE of 0.1269 and testing RMSE of 0.1320, as in both the cases the RMSE obtained

is much less compared to other methods, followed by the DS method, as its testing RMSE is

better compared to other networks [50].

In support of this, Fig 15(a) shows the convergence of the three methods toward best RMSE

for Istanbul Stock Exchange. As can be seen from the convergence plot, the PSODS algorithm

converges faster than the DS and PSO. This plot is one amongst the convergence data in 30 dif-

ferent trial runs. Similarly, Fig 15(b) shows the accuracy in predicting the test sample targets

by the RBF trained using three methods. For the sake of leniency of comparison accuracy a tol-

erance of 0.01 is set for all the methods. Thus the PSODS algorithm has predicted much higher

samples (at an average of 97 samples) than the DS (at an average of 85 samples) and PSO (at an

average of 80 samples) methods.

Next in Table 6 the results for Forest Fires are summarized. Here, out of 517 samples 450

samples have been used for training and 67 samples are used for testing.

As can be seen, the proposed PSODS method is superior in terms of producing quality solu-

tions compared to the results of all the other methods tabulated. The PSODS is superior in

both training RMSE of 0.0408 and testing RMSE of 0.0599, as in both the cases the RMSE

obtained is much less compared to other methods, followed by the DS method, as its testing

RMSE is better compared to other networks [51].

In support of this, Fig 16(a) shows the convergence of the three methods toward best RMSE

for Forest Fires. As can be seen from the convergence plot, the PSODS algorithm converges

faster than the DS and PSO. This plot is one amongst the convergence data in 30 different trial

runs. Similarly, Fig 16(b) shows the accuracy in predicting the test sample targets by the RBF

trained using three methods. For the sake of leniency of comparison accuracy a tolerance of

0.01 is set for all the methods. Thus the PSODS algorithm has predicted much higher samples

(at an average of 47 samples) than the DS (at an average of 42 samples) and PSO (at an average

of 38 samples) methods.

In continuation following observations were made from Table 7, showing the results for

Abalone. Here, out of 4177 samples 2977 samples have been used for training and 1200 sam-

ples are used for testing. As can be seen, the proposed PSODS method is superior in terms of

producing quality solutions compared to the results of all the other methods tabulated. The

Fig 15. a) Convergence plot b) Successfully predicted samples for Istanbul Stock Exchange.

https://doi.org/10.1371/journal.pone.0196871.g015
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PSODS is superior in both training RMSE of 0.0884 and testing RMSE of 0.0935, as in both

the cases the RMSE obtained is much less compared to other methods, followed by the DS

method, as its testing RMSE is better compared to other networks [51].

In support of this, Fig 17(a) shows the convergence of the three methods toward best RMSE

for Abalone. As can be seen from the convergence plot, the PSODS algorithm converges faster

than the DS and PSO. This plot is one amongst the convergence data in 30 different trial runs.

Similarly, Fig 17(b) shows the accuracy in predicting the test sample targets by the RBF trained

using three methods. For the sake of leniency of comparison accuracy a tolerance of 0.01 is

set for all the methods. Thus the PSODS algorithm has predicted much higher samples (at an

average of 970 samples) than DS (at an average of 925 samples) and PSO (at an average of 910

samples) methods.

Fig 16. a) Convergence plot b) Successfully predicted samples for Forest Fires.

https://doi.org/10.1371/journal.pone.0196871.g016

Fig 17. a) Convergence plot b) Successfully predicted samples for Abalone.

https://doi.org/10.1371/journal.pone.0196871.g017

PSODS trainer for RBFNN for wind speed prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0196871 May 16, 2018 26 / 35

https://doi.org/10.1371/journal.pone.0196871.g016
https://doi.org/10.1371/journal.pone.0196871.g017
https://doi.org/10.1371/journal.pone.0196871


Again, the results for Auto MPG are shown in Table 8. Here, out of 398 samples 199 sam-

ples have been used for training and 199 samples are used for testing. As can be seen, the pro-

posed PSODS method is superior in terms of producing quality solutions compared to the

results of all the other methods tabulated. The PSODS is superior in both training RMSE of

0.0780 and testing RMSE of 0.0844, as in both the cases the RMSE obtained is much less com-

pared to other methods, followed by the DS method, as its testing RMSE is better compared to

other networks [52].

In support of this, Fig 18(a) shows the convergence of the three methods toward best RMSE

for Auto MPG. As can be seen from the convergence plot, the PSODS algorithm converges

faster than the DS and PSO. This plot is one amongst the convergence data in 30 different trial

runs. Similarly, Fig 18(b) shows the accuracy in predicting the test sample targets by the RBF

trained using three methods. For the sake of leniency of comparison accuracy a tolerance of

0.01 is set for all the methods. Thus the PSODS algorithm has predicted much higher samples

(at an average of 157 samples) than DS (at an average of 135 samples) and PSO (at an average

of 125 samples) methods.

Comparison of error statistics using PSODS

In this experiment, the proposed PSODS trained RBF NN is tested for its applicability in pre-

dicting testing sample increased from its standard size. To facilitate this, the training samples

are reduced at the rate of 5% from its original size and alternatively the testing samples are

equally increased. The seven bench mark datasets are experimented and the box plots are

shown in Fig 19. Instead of the RMSE value, the normalized RMSE (NRMSE) value is plotted

in order to make easy the comparison between 7 datasets altogether. In order to realize this fol-

lowing Eq (8) is used for calculating the NRMSE:

NRMSE ¼
RMSE

L
ð8Þ

Where, RMSE is the root mean squared error given in (5) and L is the difference of the maxi-

mum and minimum RMSE of the respective case.

Fig 18. a) Convergence plot b) Successfully predicted samples for Auto MPG.

https://doi.org/10.1371/journal.pone.0196871.g018
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Fig 19. Normalized RMSE statistics using PSODS for % increase in testing samples.

https://doi.org/10.1371/journal.pone.0196871.g019
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Based on the plots, the following observations are made:

• the error variation is minimum when the testing samples are increased to 10% in almost all

cases by the proposed PSODS method. Whereas, when the sample increase goes beyond

15%, the variation is considerably getting higher.

• the median seems to be same for the increase in testing sample for almost 10% and then it

also goes little higher for further increase in testing sample.

• the box span indicates the spread of the error and again here up to 10% increase in testing

samples the PSODS has produced similar variations.

• the outliers also indicates the performance efficacy in producing similar error statistics for

the PSODS method for 10% increase in testing samples (alternatively 10% decrease in train-

ing samples)

• perhaps not a full data is presented in this paper about the performance of the PSO and DS

methods in this experiment, they could not show any improvement when the test samples

are increased.

Wind speed prediction

This problem is a practical wind prediction problem and its data is measured by Suzlon Energy

Ltd, India, during June 2015. The terrain is tropical (Palghat Pass, India) and data is regressive.

The data description is similar to other wind prediction models. Thus, the wind speed as

desired output and its corresponding atmospheric variables such as wind vane direction, tem-

perature, atmospheric pressure, air density and relative humidity for the altitude of 65m as

input attributes are obtained from Suzlon Energy Ltd, India. The total of 832 hourly data sam-

ples are considered, of which 500 samples are used for training and 332 samples are used for

testing the performance of the algorithm.

Based on the performance of the RBF NN trained by PSODS algorithm, the hidden layer

neuron is set to 65. The simulation parameters are set as it is for both the algorithms while

solving the 7 benchmark datasets. Simulation for wind prediction is done for 30trial runs

using three algorithms to train the RBF NN. Table 9 summarizes the results obtained and

depicts the superiority of the proposed PSODS algorithm over PSO and DS in all cases.

Table 9. Summary of results obtained for wind speed.

Wind Speed

Method Train RMSE Test RMSE

PSODS Best 0.181989 0.195412

Worst 0.196687 0.200098

Mean 0.189058 0.198033

SD 0.006013 0.001936

PSO Best 0.190602 0.184147

Worst 0.199691 0.200109

Mean 0.195708 0.191417

SD 0.003794 0.006675

DS Best 0.188173 0.188101

Worst 0.195178 0.203312

Mean 0.191780 0.195275

SD 0.003157 0.005547

https://doi.org/10.1371/journal.pone.0196871.t009
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Similarly, the convergence plot for 1000 iterations is shown in Fig 20(a). Again the pro-

posed PSODS algorithm outperforms the other two algorithms and reaches the better solution

faster. Due to the search feature blended from both DS and PSO algorithms, the PSODS

reaches the quality solution in early iterations itself. In the same way, Fig 20(b), depicts the

plot of three algorithms in attaining the accuracy by predicting the target samples. According

the plot elucidates the successful numbers of samples predicted with a 0.01 tolerance. Based on

this plot, it is comprehensible that the PSODS algorithm could make the RBF NN to predict

relatively higher number of samples, compared to the PSO and DS methods.

To additionally substantiate the performance of the proposed PSODS algorithm over

PSO and DS methods, Fig 21, portray the variance plot of the three methods to obtain the

RMSE for increase in testing samples. Here each algorithm is used to obtain the RMSE for

30 trial runs. As discussed earlier, there are 832 hourly data samples, of which 500 samples

are used for training and 332 (+0%) samples are used for testing. While doing the simula-

tions, the testing samples are increased to 10% and 20%. Accordingly the Training sample

will be reduced. Intelligibly from Fig 21, the PSODS algorithm could predict better results

compared to the other two methods. Thus again PSODS establishes itself as a suitable

method for prediction.

To demonstrate the superiority of the proposed PSODS technique over the other existing

neural network method for wind speed prediction, three networks are chosen and experi-

mented for 30 trial runs. The three NN are basic RBF NN [19], extreme learning machine

(ELM) [50] and multi-layer perceptron [16] trained by back propagation algorithm

(MLP-BP). Table 10, summarizes the test RMSE obtained by various methods for predicting

the datasets and wind speed. During the experiments the training samples are kept at 40% and

60% of samples are taken for testing. From the table, it can be observed that the proposed

PSODS trained RBF NN is dominant in predicting the samples compared to other methods.

Table 11, summarizes the accuracy in predicting the test sample targets by the three net-

works. For the sake of leniency of comparison accuracy a tolerance of 0.01 is set for all the

methods. It is observed that the proposed PSODS trained RBF is superior in terms of produc-

ing successful samples compared to the results of all the other networks tabulated. Thus the

PSODS trained RBF is superior in predicting for all the 7 datasets and the wind problem with

less testing RMSE and also by predicting more number of successful test samples when com-

pared to other NN for a 30 trial experiment.

Fig 20. a) Convergence plot b) Successfully predicted samples for wind speed.

https://doi.org/10.1371/journal.pone.0196871.g020
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Similarly, in order to justify the merits of the proposed chaotic opposition-based population

(COP) initialization algorithm over the general population (GP) initialization algorithm is

experimented to show the dominance of the former in supporting the PSODS trainer to swiftly

predict the test sample. Accordingly, experiments are conducted for 30 trials and Table 12,

summarizes the results obtained. For this purpose, the best and worst fitness value (RMSE) is

recorded during initialization along with the final solution obtained by the PSODS-RBF NN

on termination of the algorithm.

Fig 21. Normalized RMSE statistics for wind speed for % increase in testing samples.

https://doi.org/10.1371/journal.pone.0196871.g021

Table 10. Summary of test RMSE obtained using different neural networks.

Datasets Test RMSE

PSODS-RBFNN RBFNN ELM MLP-BP

Boston housing 0.1181 0.1681 0.1202 0.1924

Concrete Compressive strength 0.1320 0.1585 0.1337 0.1912

Airfoil self -noise 0.1337 0.1936 0.1342 0.2152

Istanbul Stock Exchange 0.0603 0.1250 0.0651 0.1562

Forest Fires 0.0599 0.1328 0.0621 0.1717

Abalone 0.0935 0.1382 0.0945 0.1882

Auto MPG 0.0844 0.1395 0.0861 0.1628

Wind Speed 0.1954 0.2105 0.1983 0.2514

https://doi.org/10.1371/journal.pone.0196871.t010
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From the summarized results it is clear that, the proposed chaotic opposition-based popula-

tion initialization algorithm could generate better initial search solutions and reach the better

solution region and produce quality RMSE over the regular random initialization algorithm.

Also the PSODS-RBFNN with COP could reach the better solution well before the termination

criterion. Thus the proposed chaotic opposition-based population initialization algorithm has

great influence of the training and convergence of the proposed PSODS algorithm.

Conclusions

This paper presents an integrated hybrid optimization algorithm for training the radial basis

function neural network for prediction of standard benchmark regression data sets and one

real-time wind speed case. Accordingly, a hybrid training procedure with differential search

DS algorithm functionally integrated with the PSO is modelled and experimented. Here the

DS will be used as the main optimizer and PSO will use a neighbourhood topology to exploit

the solutions of DS by thorough search of solution region. This neighbourhood topology will

be based on ring topology with neighbours fetched considering both fitness and candidates

themselves. A new chaotic map based algorithm to generate the initial population is proposed

to support the PSODS algorithm to search the n-dimensional space thoroughly by supple-

menting the diversity of population and reach better optimum regions swiftly. To exemplify

the potency of the PSODS method and to generalize the RBF NN architecture, scrupulous

experiments are carried out to find the optimum size of hidden layer neurons.

The Numerical experiments on publicly available 7 benchmark datasets are performed

using the proposed PSODS algorithm for 30 trial runs to evaluate the RMSE to ensure the

RBF NN is prepared to predict outputs of regressive samples database. In all cases the PSODS

Table 11. Summary of successful prediction of samples.

Datasets Successful test samples predicted

PSODS-RBFNN RBFNN ELM MLP-BP

Boston housing 147 135 130 120

Concrete Compressive strength 245 210 227 204

Airfoil self -noise 393 362 371 347

Istanbul Stock Exchange 97 81 86 72

Forest Fires 47 37 40 32

Abalone 970 951 945 903

Auto MPG 157 133 146 127

Wind Speed 300 283 291 278

https://doi.org/10.1371/journal.pone.0196871.t011

Table 12. Performance comparison of population initialization algorithm for PSODS-RBFNN.

Datasets RMSE

Initial Best COP Initial Best GP Initial worst COP Initial worst GP Best using COP Best using GP

Boston housing 0.3241 0.5211 0.3715 0.7174 0.1181 0.1914

Concrete Compressive strength 0.4007 0.6104 0.4275 0.8145 0.1320 0.1821

Airfoil self -noise 0.3710 0.5112 0.4003 0.7721 0.1337 0.2147

Istanbul Stock Exchange 0.1121 0.3371 0.1745 0.5141 0.0603 0.1507

Forest Fires 0.1054 0.3020 0.1257 0.5871 0.0599 0.1625

Abalone 0.2471 0.4014 0.3011 0.7419 0.0935 0.1719

Auto MPG 0.2661 0.5071 0.2914 0.8019 0.0844 0.1421

Wind Speed 0.3877 0.5412 0.4107 0.7721 0.1954 0.2376

https://doi.org/10.1371/journal.pone.0196871.t012
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outperforms the PSO and DS methods in terms of convergence rate and is reliable as the error

statics variations are fairly petite. To demonstrate the applicability of the PSODS with reduced

samples for training, experiments are carried out by reducing training samples and tested with

increased samples, again the error statistics proves the PSODS method is robust in prediction.

The prediction accuracy is also demonstrated by evaluating the number of samples closely

(0.01 tolerance) predicted by all the three methods for training RBF NN. Also a standard of

1000 iterations is fixed for all the three methods. Subsequently, experiments were conducted

on a practical application case for wind speed prediction to expound the superiority of the pro-

posed PSODS training algorithm in terms of prediction accuracy.

In extended work, the proposed PSODS method to train RBF NN will be demonstrated for

problems with more attributes and problems with missing data. Also simulations with other

types of neural networks such as Extreme learning machines (ELM) will be significant. Also,

it is worth to further navigate the proposed PSODS algorithm with many prediction problems

such as electricity price forecasting, solar irradiance and solar radiation prediction.
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