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Abstract
Objectives: To explore the clinical features, molecular characteristics, and 
immune landscape of lung adenocarcinoma patients with KEAP1/NFE2L2/
CUL3 mutations.
Methods: The multi-omics data from the GDC-TCGA LUAD project of The 
Cancer Genome Atlas (TCGA) database were downloaded from the Xena 
browser. The estimate of the immune infiltration was implemented by using the 
GSVA analysis and CIBERSORT. The status of KEAP1/NFE2L2/CUL3 mutation 
in 50 LUAD samples of our department was detected by using Sanger sequencing, 
following the relative expression level of differentially expressed genes (DEGs), 
miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) was validated by IHC and 
real-time quantitative polymerase chain reaction (RT-qPCR).
Results: The Kaplan–Meier and multivariable Cox regression analyses demon-
strated that KEAP1/NFE2L2/CUL3 mutations had independent prognostic value 
for OS and PFS in LUAD patients. The differential analysis detected 207 upregu-
lated genes (like GSR/UGT1A6) and 447 downregulated genes (such as PIGR). 
GO, KEGG, and GSEA analyses demonstrated that DEGs were enriched in glu-
tamate metabolism and the immune response. The constructed ceRNA network 
shows the linkage of differential lncRNAs and mRNAs. Three hundred and nine 
somatic mutations were detected, alterations in immune infiltration DNA meth-
ylations and stemness scores were also founded between the two groups. Eight 
mutated LUAD patients were detected by Sanger DNA sequencing in 50 surgical 
patients. GSR and UGT1A6 were validated to express higher in the Mut group, 
whereas the expression of PIGR was restrained. Furthermore, the IHC staining 
conducted on paraffin-embedded tissue emphasizes the consistency of our result.
Conclusion: This research implemented the comprehensive analysis of KEAP1/
NFE2L2/CUL3  somatic mutations in the LUAD patients. Compared with the 
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1   |   INTRODUCTION

According to the newest data, lung cancer is the sec-
ond most common cancer diagnosis and the first main 
reason for cancer death.1 The survival of patients with 
lung cancer at 5 years after diagnosis is only 10%–20%. 
Lung adenocarcinoma accounts for most lung cancer 
cases, and its incidence has been increasing year by 
year.2,3 Although targeted therapy and immunotherapy 
have led to dramatic changes in lung cancer treatment, 
the resistance to the therapies and intratumor hetero-
geneity has become a new challenge. It is imperative to 
exploit the new potential target of molecularly targeted 
therapies.4

Kelch-like ECH-associated protein 1 (KEAP1) mu-
tation is one of the most common lung cancer muta-
tions, and its mutant frequency has been over 20% in 
lung adenocarcinoma (LUAD). KEAP1 mutation often 
disrupts the interaction of KEAP1/NFE2L2/CUL3, 
and its disability leads to the promotion of tumor gen-
esis through the abnormal activation of NFE2L2.5,6 
Early in 2014, a study of the TCGA Research Network 
revealed that KEAP1/NFE2L2/CUL3  somatic alter-
ations were components of one of the key pathways in 
LUAD. However, the patients with KEAP1/NFE2L2/
CUL3  mutations clinical characteristics remain un-
clear. The effect of these mutations and the pathways’ 
mechanisms are still under investigation.  Despite 
many drugs targeting the key genes (EGFR, KRAS) 
mutation developed and applied into the first-line us-
age,7–11 the agents targeted to the KEAP1 gene are still 
not available to date.

Our study, based on the multi-omics data from 
the TCGA database, integrated the clinical data and 
expression profiles, comprehensively analyzed the 
differences in clinical features, somatic nucleotide 
variations, gene expression, transcriptome, and tumor 
immune microenvironment between the KEAP1/
NFE2L2/CUL3 pathway mutant and the wild-type pa-
tients in LUAD. The present study aims to increase the 
understanding of KEAP1/NFE2L2/CUL3  mutations 
in LUAD and shed light on new drugs targeting this 
pathway.

2   |   MATERIALS AND METHODS

2.1  |  Data acquisition

The gene expression data (log(FPKM+1)) (reads per ki-
lobase per million) of 585 LUAD patients (493 LUAD tis-
sues were used) and corresponding clinical information of 
the Cancer Genome Atlas (TCGA) were downloaded from 
the UCSC Xena browser (GDC hub: https://gdc.xenah​
ubs.net). We removed patients whose survival time, new 
event time, or vital status were indefinite. The copy num-
ber variation and DNA methylation (Methylation 450k) 
data of TCGA were normalized and downloaded by the 
UCSC Xena browser. The miRNA expression data and 
somatic mutation (VarScan MAF files) were downloaded 
from TCGA (https://tcga-data.nci.nih.gov/tcga/findA​
rchiv​es.htm). All the data were matched with their group 
information during further analysis.

2.2  |  Clinical data analysis

The OS (Overall Survival) and PFS (Progression-Free 
Survival) analyses were performed using the R package 
survival analysis. Afterward, univariate Cox regression 
and multivariate Cox regression analyses were conducted 
by survival package. The construction of the nomogram 
plot was based on the results of the Cox analysis. Besides, 
the Concordance index (C-index) was used to determine 
the discrimination ability of the nomogram. The calibra-
tion curve of the nomogram was plotted to observe the 
nomogram prediction probabilities.

2.3  |  Somatic mutations and copy 
number variants

Mutation Annotation Format (MAF) files that reserve 
information about somatic mutations was summarized, 
analyzed, annotated, and visualized using the maftools 
Bioconductor package.12 We also compared copy num-
ber variations (CNVs) between the two groups. The dif-
ferent SNPs between the two groups were detected using 

wild type of LUAD patients, the Mut group shows a large difference in clinical 
features, RNA sequence, DNA methylation, and immune infiltrations, indicating 
complex mechanism oncogenesis and also reveals potential therapeutic targets.

K E Y W O R D S

cullin 3 (CUL3), kelch-like ECH-associated protein 1 (KEAP1), lung adenocarcinoma (LUAD), 
mutation, nuclear factor erythroid 2-like 2 (NFE2L2)
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the mafCompare function in the maftools package, which 
performs a Fisher test on all SNPs, and we set the p value 
of <0.01 as the screening threshold.

2.4  |  Differentially expression analysis

The mRNAs and lncRNAs were annotated by using the 
Genecode database (https://www.genco​degen​es.org/, ver-
sion: Release 22 [GRCh38.p2]) 13; the miRNAs were anno-
tated by using the R package named “miRBaseVersions.db.” 
According to the gencodes annotation files, all 15328 lncR-
NAs were extracted from the mRNA expression matrix. 
Differentially expressed mRNAs, miRNAs, and lncRNAs 
(DEmRNA, miRNAs, and lncRNAs) were identified in Mut 
and Wild groups using package limma.14 Specifically, ex-
pression data were input and underwent lmFit and eBayes 
functions in the R limma package. Then we set the cutoff 
criteria of screening differentially expressed genes as ad-
just. p value <0.05 and logFC(log(Fold Change)) >0.5.

2.5  |  Functional enrichment analyses

Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways enrichment anal-
yses performed based on the GO database (http://www.
geneo​ntolo​gy.org/) and the KEGG database (http://www.
genome.jp/kegg/). The R package “ClusterProfiler” was 
used to distinguish the differentially expressed pathways, 
with p-values calculated using right-sided hypergeometric, 
and the package “enrichplot” was used for visualization.

2.6  |  PPI network and ceRNA 
construction

PPI networks were established using STRING,15 v11.0 by 
uploading the DEG list, and the isolated nodes were deleted. 
An exported .cys file format from STRING has then con-
ducted the polishment by Cytoscape. Based on the ceRNA 
hypothesis, a ceRNA network's construction was built by the 
“GDCRNATools”16 R package, the gdcCEanalysis function 
identified ceRNAs by some databases of miRNA–lncRNA in-
teractions like starBase, we set the thereshold as hyperPvalue 
as 0.01 and CorPvalue as 0.01. Both networks were visualized 
and polished by Cytoscape17 software (Version 3.8.3).

2.7  |  Immune infiltration analysis

To construct a Geneset of microenvironment genes to di-
vide immune cell subsets, we accepted the investigation of 

Bindea et al.18-20 It incorporated 585 genes to 24 immune 
cell subcollections from intrinsic and adaptive immunity. 
The 24 immune-related cells contain dendritic cells (DCs), 
immature DCs, activated DCs (aDCs), macrophages, mast 
cells, neutrophils, eosinophils, natural killer (NK) cells, 
NK CD56dim cells, NK CD56bright cells, T cells, and 
CD8 T cells, as well as Tγδ, T helper, Tcm, Tem, Th1, Th2, 
Th17, Tfh, Tgd, Treg cells, B cells, and cytotoxic cells. The 
expression values of immune cells were calculated from 
protein-coding mRNA’s log(FPKM+1) via R “GSVA” pack-
age19 with the following parameters: method  =  “gsva,” 
mx.diff = “TRUE,” and kcdf = “Gaussian.” We used the 
ImmuCellAI21 and CIBERSORT (https://ciber​sort.stanf​
ord.edu/), EPIC, and QUANTISEQ22 algorithm to predict 
the immune cell proportions and the immune infiltration 
score.

2.8  |  Differential analysis of DNA 
methylation and Stemness index

Differentially methylation positions (DMP) were identi-
fied by Fisher's exact test using the R package “ChAMP”.23 
The GSEA (Gene Set enrichment analysis) (https://www.
gsea-msigdb.org/gsea/index.jsp) of DMR, and DMP was 
conducted through the “champ.gsea”24–27 function in 
ChAMP. Stemness indices were collected from a Malta 
study,28 and we applied mRNAsi and mDNAsi to iden-
tify the stemness based on mRNA and DNA methylation 
expression.

2.9  |  RNA isolation from patients’ tumor 
tissue and real-time PCR

LUAD tumor tissues of 50 patients were obtained from 
the Department of Thoracic Surgery, Zhongshan Hospital, 
Fudan University, Shanghai, China, who had received 
surgery from November 2020 to May 2021.

Total RNA from the patients’ samples was extracted 
using TRIzol reagent (TIANGEN Biotech, Beijing, 
China). The cDNA synthesis was performed using the 
PrimeScriptTM RT Master Mix (Yeasen, Shanghai, China). 
Real-time PCR was conducted with the SYBR-Green kit 
(Yeasen) to detect the mRNA expression levels of core 
prognostic genes. The gene and lncRNA primer were 
listed in Table S1.

miRNA preparation and detection procedures were 
performed as previously reported.29 The total miR-
NAs were extracted by miRcute miRNA Isolation Kit 
(TIANGEN), and the miRNA First-Strand cDNA Synthesis 
Kit (TIANGEN) was used to synthesize miRNA cDNA 
according to the manufacturer's instructions. miRcute 

https://www.gencodegenes.org/
http://www.geneontology.org/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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miRNA qPCR Detection Kit (SYBR Green) (TIANGEN) 
was used with the following PCR parameters, 1 cycle of 
2  min at 94°C, 40 cycles of 20  s at 94°C, and 40 cycles 
of 34 s at 60°C using a QuantStudio™ 5 Real-Time PCR 
Systems. (Thermo Fisher Scientific, Inc.). miRNA primers 
were obtained from TIANGEN.

2.10  |  Sanger sequencing

Sanger sequencing was performed as previously re-
ported.30 First, cDNA was amplified using 2 × HotStart 
Taq PCR MasterMix (TIANGEN). Then the PCR products 
were sequenced by Sangon Biotech (Shanghai, China). 
Sequencing results were compared with corresponding en-
tries in the National Centre for Biotechnology Information 
(NCBI) Nucleotide Database (http://www.ncbi.nlm.
nih.gov/nucco​re/, NFE2L2: NM_006164.5, KEAP1: 
NM_203500.2, CUL3: NM_003590.5). Reduplicated ex-
periments further confirmed all of the mutations detected. 
Single nucleotide polymorphism (SNP) information was 
obtained from the NCBI dbSNP database (http://www.
ncbi.nlm.nih.gov/snp/).

2.11  |  IHC staining

Mut LUAD and paired Wild LUAD paraffin-embedded 
tumor tissues of 18 patients were also obtained. Primary 
antibodies used in IHC, including GSR (ab134315, 1:200 
for IHC), UGT1A6 (ab157476, 1:250 for IHC), PIGR 
(ab275020, 1:200 for IHC), all antibodies were purchased 
from Abcam, Cambridge, UK. The procedure was con-
structed as previously reported.31 For quantification of 
IHC images, the ImageJ IHC Toolbox plugin was used in 
ImageJ software (NIH).

2.12  |  Statistical analysis

The whole statistical analysis was performed using R 
studio and R software (Version 4.0.4; R Foundation for 
Statistical Computing). The distribution of baseline char-
acteristics between the Wild and Mut groups was ana-
lyzed in which categorical variables were compared by 
the chi-square test and Fisher's exact test when appropri-
ate. Continuous variables were compared by the use of the 
Students’ t test and Wilcoxon test. Survival analysis per-
formed the log-rank test and Cox regression. Multivariate 
Cox regression analyses were conducted to determine the 
independent prognostic factors related to overall survival 
using the “step()” function in R. The forestplot, nomo-
gram, and other plots were performed using the regplot, 

ggplot2, and forestplot. Data screen, transformation, and 
visualization were performed using the “tidyverse” pack-
ages. All p values were two-sided, and p < 0.05 indicated 
statistical significance.

3   |   RESULT

3.1  |  Clinical Features

The workflow of our research was shown in Figure 1. 
Table 1 shows the patients’ baseline characteristics (e.g., 
sex, age, race, and smoke group), summarized using 
counts and percentages. All 493 patients were separated 
into groups due to their mutation status. No significant 
divergence was observed in the two groups’ clinical 
characteristics, except for sex; more male patients were 
shown in the KEAP1/NFE2L2/CUL3 Mut group (male: 
59.46% Mut, female: 40.54% Mut, p = 0.002). Moreover, 
patients in the Smoke group are more likely to gain the 
KEAP1/NFE2L2/CUL3  mutations (smoke yes: 25.4% 
Mut, no/unknown: 18.3% Mut, p  =  0.087), although 
this difference was not statistically significant (Table 1). 
Furthermore, the tumor stage distribution with no sig-
nificant difference indicated no association with the 
KEAP1/NFE2L2/CUL3  mutation status and clinical 
tumor stage or TNM stage.

The log-rank method was implemented to compare the 
OS (Overall survival) of LUAD patients in the Mut group 
and the Wild group (Figure 2A and Figure S1). Patients 
whose tumors carried KEAP1/NFE2L2/CUL3 mutations 
had significantly worse overall survival than their wild-
type counterparts (median survival time: Mut 32.5 months 
vs. Wild 40.5  months, p  =  0.009). The progression-free 
survival (PFS) analysis, which can better reflect tumor 
progression and predict clinical benefits, also showed an 
association between KEAP1/NFE2L2/CUL3  mutation 
and faster disease progression (median survival time: 
17.7 months vs. 31.7 months, p = 0.016). Next, we under-
took univariate and multivariate Cox regression analyses 
of the clinical characteristics listed in Table  1. The Cox 
hazard regression model results are shown in Table  2, 
which revealed that KEAP1/NFE2L2/CUL3  mutation is 
an independent prognostic factor for the patients’ prog-
nosis (Univariate cox: HR 1.63 [1.14, 2.32], p = 0.007 and 
multivariate cox: HR 1.48 [1.08, 2.02], p  =  0.014). Next, 
we constructed the nomogram to predict 1-year and 3-
year OS based on the step-wise multivariable cox model's 
result, including group, ajcc_T, ajcc_N, and radiotherapy 
(Figure  2D and Figure  S2). The Nomogram's C-index is 
0.672; calibration plots showed the nomogram in the in-
ternal validation has a good prediction of the patients’ 
prognosis.

http://www.ncbi.nlm.nih.gov/nuccore/
http://www.ncbi.nlm.nih.gov/nuccore/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
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3.2  |  Tumor genomic alterations 
between mutated and wild-type patients

We performed the differential analysis in the somatic mu-
tation distribution to the Mut and Wild group. Finally, 309 
different somatic mutated genes between Mut and Wild 
groups were mined. The top 20 mutated genes’ distribution 

between the two groups was presented (Figure 3A,B), and 
KEAP1/NFE2L2/CUL3 genes were shown at the top. The 
most significant eight genes and their mutation frequency 
were shown in Figure 3C and Figure S3. Compared with 
the Wild group, the mutated frequency of Sperm Flagellar 
2 (SPEF2: Mut, 19% vs. Wild, 6%, p < 0.001), Glutamate 
Ionotropic Receptor NMDA Type Subunit 2B (GRIN2B: 

Characteristics
Mut 
(n = 111)

Wild 
(n = 382)

Overall 
(n = 493)

p 
value

Age (median [IQR]) 65 [59, 72] 66 [59, 73] 66 [59, 72] 0.6142
Sex (%)

Female 45 (40.54) 222 (58.12) 267 (54.16) 0.0016
Male 66 (59.46) 160 (41.88) 226 (45.84)

Race (%)
White 89 (80.18) 291 (76.18) 380 (77.08) 0.4364
Black 12 (10.81) 39 (10.21) 51 (10.34)
Other 10 (9.01) 52 (13.61) 62 (12.58)

Smoke_group (%)a

No/Unknow 36 (33.33) 160 (43.13) 196 (40.92) 0.0872
Yes 72 (66.67) 211 (56.87) 283 (59.08)

T (%)
T1 36 (32.73) 130 (34.21) 166 (33.88) 0.9256
T2 59 (53.64) 205 (53.95) 264 (53.88)
T3 11 (10.00) 31 (8.16) 42 (8.57)
T4 4 (3.64) 14 (3.68) 18 (3.67)

N (%)
N0 72 (64.86) 245 (64.30) 317 (64.43) 0.9159
N1 21 (18.92) 73 (19.16) 94 (19.11)
N2 17 (15.32) 52 (13.65) 69 (14.02)
N3 0 (0.00) 2 (0.52) 2 (0.41)
NX 1 (0.90) 9 (2.36) 10 (2.03)

M (%)
M0 67 (60.36) 261 (69.05) 328 (67.08) 0.0147
M1 11 (9.91) 13 (3.44) 24 (4.91)
MX 33 (29.73) 104 (27.51) 137 (28.02)

Stage group (%)b

Early stage 80 (73.39) 302 (79.89) 382 (78.44) 0.1863
Later stage 29 (26.61) 76 (20.11) 105 (21.56)

Resection site (%)
Lower lobe 39 (35.14) 128 (33.51) 167 (33.87) 0.2533
Middle lobe 3 (2.70) 17 (4.45) 20 (4.06)
Upper lobe 62 (55.86) 227 (59.42) 289 (58.62)
Other site 7 (6.31) 10 (2.62) 17 (3.45)

Radiotherapy (%)
No/unknown 96 (86.49) 339 (88.74) 435 (88.24) 0.6296
YES 15 (13.51) 43 (11.26) 58 (11.76)

a Smoke_group: No/unknown: lifelong nonsmoker, reformed smoker for >15 years or smoke history not 
documented.
b Early stage: stage I–II; later stage: III-IV. TCGA, the Cancer Genome Atlas.
The bold values indicate the significant of p values.

T A B L E  1   Baseline characteristics of 
the LUAD patients in two groups from the 
TCGA database
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19% vs. 8%, p  <  0.001), Syntrophin Gamma 2 (SNTG2: 
11% vs. 2%, p  <  0.001), Ryanodine Receptor 2 (RYR2: 
45% vs. 33%, p < 0.001), and Serine/Threonine Kinase 11 
(STK11: 26% vs. 12%, p < 0.001) were higher in Mut group, 
whereas epidermal growth factor receptor (EGFR: 3% vs. 
15%, p  <  0.001) was less frequently mutated in patients 
with KEAP1/NFE2L2/CUL3  mutations. The mutation 
rate of Tumor Protein P53 (TP53: 46% vs. 49%), Mucin 
16, Cell Surface Associated (MUC16: 45% vs. 33%), and 
Titin (TTN: 52% vs. 43%) have no statistical differences. 

We mined that some important tumor drive genes dif-
fered significantly between the two groups, whereas oth-
ers showed no differences. The Mut group's mutation rate 
was relatively higher than the Wild group, which can also 
be manifested at the tumor mutation burden level. The 
copy number variation data were integrated into the so-
matic mutations data to evaluate the tumor mutation bur-
den precisely. The violin plot (Figure 3D) identified that 
the Mut group correlates with a higher tumor burden than 
the Wild group (p = 0.00016.). These data enabled us to 

F I G U R E  1   Flowchart diagram: a 
flow chart of the whole study design and 
analysis
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comprehensively explore the KEAP1/NFE2L2/CUL3 mu-
tated pathway's molecular characteristics.

3.3  |  DEGs and enrichment analysis

To identify the protein and other biologic characteris-
tics between the Mut and the Wild groups. DEmRNAs 
(protein-coding mRNAs) were detected by applying 

the limma package with the cutoff criteria (adjusted p 
value <0.05 and logFC >0.5). A total of 487 upregulated 
genes and 207 downregulated genes were detected in the 
Mut group. A volcano plot was also presented to show the 
differentially expressed genes ordered by the logFC value 
(Figure 4A). PPI network was constructed to identify the 
connections between the DE proteins (Figure  4B). We 
found that GSR (logFC = 1.36, p < 0.001), UGT1A6(logFC 
=1.24, p < 0.001), and the AKR Family proteins were the 

F I G U R E  2   Survival analysis and nomogram. Survival curves and forest plots of overall survival and progression-free survival in LUAD 
patients with or without the KEAP1/NFE2L2/CUL3 mutations. Kaplan–Meier survival curves show significant differences between the Mut 
and the Wild groups in overall survival (OS) (A) and progression-free survival (B). The forest plots manifested that the KEAP1/NFE2L2/
CUL3 mutations are a risk factor for LUAD patients in overall survival (OS) (C) Nomogram of the overall survival in LUAD patients (D). 
1-year and 3-year internal calibration plots of the overall survival nomogram (E)
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hub genes in the upregulated genes. Among the down-
regulated genes, PIGR (logFC  =  −1.72, p  <  0.001) had 
the highest significant fold changes as shown in heatmap 
(Figure 4E).

On the other hand, GO and KEGG analyses were 
applied to the DEGs to exhibited enriched results 
(Figure  4C,D). The dot plot of GO enrichment analysis 
showed that the humoral immune response pathway was 
the most significant in the DEmRNAs of the Mut and 
Wild group. Other immune-related pathways like posi-
tive regulation of cell activation, lymphocyte-mediated 
immunity, and positive regulation of leukocyte activation 
have a suggestive effect on our following investigations. 
Concerning the KEGG’s results, apart from the immune-
associated pathways, phagocytosis, cell adhesion mole-
cules, and glutathione metabolism have differed between 
the Mut and the Wild groups in KEGG pathways. Next, 
gene set enrichment analysis (GSEA) was conducted to 
attain better insight into the potential biologic procedures 
of functional effects that KEAP1/NFE2L2/CUL3  muta-
tion connections within LUAD. As shown in Figure  S4, 
the KEAP1/NFE2L2/CUL3 Mut group's ROS pathway ox-
idative phosphorylation and respiratory electron transport 
chain process were upregulated. In contrast, pathways 
such as NOTCH, KRAS, and JAK/STAT3 signaling were 
enriched in the Wild group. The GSEA results manifested 
that KEAP1/NFE2L2/CUL3  Mut group patients have a 
complex ROS mechanism that affects tumor development.

3.4  |  ceRNA network construction

All expressed mature miRNAs were applied differ-
ential expression analysis to found the Mut and the 
Wild group's DEmiRNAs using the limma package 
(Figure  5A). Sixteen upregulated miRNAs and three 
downregulated miRNAs were identified statistically sig-
nificant (p < 0.05, |logFC| > 0.5) (Figure 5B). We found 
that miR-193b-3p was the most significantly upregulated 
miRNA (logFC = 1.28, p < 0.001), As for the downregu-
lated miRNAs, miR-187-3p was the most (logFC = −0.73, 
p < 0.001). Among all the 15,328 lncRNAs, there were 22 
upregulated lncRNAs and 34 downregulated lncRNAs in 
the Mut group versus the Wild group (p < 0.05, |logFC| > 
0.5). lncRNA RP11-499O7.7(logFC = 1.73, p < 0.001) and 
lncRNA CTD-2139B15.5(logFC = 1.66, p < 0.001) were 
the most significantly differentially expressed lncRNAs, 
both of them were upregulated in the Mut group. Given 
the ceRNA network mechanism's influence, a ceRNA 
network was established based on the above differen-
tial expression data to investigate the underlying asso-
ciation between lncRNAs, mRNAs, and protein-coding 
mRNAs in LUAD. Finally, we identified three lncRNAs, 

eight miRNAs, and 36  mRNAs, and their interactions 
were predicted or validated in starBase, miRcode, and 
TargetScan databases. The network demonstrated the 
complex interactions through the visualization of the 
Cytoscape in Figure 5C. The key lncRNA in the ceRNA 
was LINC00473, which showed a significantly higher 
expression in KEAP1/NFE2L2/CUL3 Mut group (logFC 
= 0.72, p  <  0.001). Moreover, our ceRNA network's 
downstream mRNAs were enriched in the AMPK signal-
ing pathway, cGMP-PKG signaling pathway, and other 
KEGG analysis pathways (Figure 5D,E).

3.5  |  Immune microenvironmental 
peculiarity

The tumor microenvironment, where tumor cells prolifer-
ate, develop, and prepare for metastasis, is also infiltrated 
by immune cells and immune-related molecules. Integral 
investigations to immune-related genes, miRNAs, and 
other immune signatures were implemented to picture the 
thorough landscape of the KEAP1/NFE2L2/CUL3  mu-
tant patients. First, we conducted a GSVA procedure and 
gained the Enrichment Score of 24 immune cell subsets. 
As shown in Figure 6A, the KEAP1/NFE2L2/CUL3 Mut 
group has a lower abundant level of immune cells than 
the Wild group. Only T helper and Th17 cells were upreg-
ulated in the Mut group. Then we estimated TIC (tumor-
infiltrating immune cells)’ proportions by CIBERSORT,32 
ImmucellAI, EPIC, and QUANTISEQ, presenting similar 
results (Figure S5).

Since we have found significant differences in the 
composition of immune cells, the immune molecules 
were also analyzed on the basis of the expression pro-
file. The differential analysis of the genes associated 
with the innate immunity and antigen-presenting 
immune molecules between the KEAP1/NFE2L2/
CUL3  Mut group and the Wild group were shown in 
Figure  6B, which demonstrated the same trends (all 
p < 0.05). Furthermore, 60 immune checkpoint genes, 
including 23 coinhibitors and 37 costimulators, were 
compared between the KEAP1/NFE2L2/CUL3 Mut and 
Wild groups. Only significant (p < 0.05) and concordant 
results were discussed. The large majority of immune 
checkpoint genes, as shown in the heatmap (Figure 6C), 
were observed expressed higher in the Wild group (most 
p < 0.05, such as PD-L1 [CD274], CTLA4, PD-1 [PDCD1], 
TGFB1, VEGFA, and VEGFB, Figure 6D). Next, we an-
alyzed other immune-related genes expression between 
the two groups.33 Among the top 10 differential immune 
genes (Figure  S5), five immune genes were related to 
antimicrobials functions, four cytokines and cytokine 
receptor-related genes were downregulated in the Wild 
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group. Furthermore, CX3CL1(C-X3-C Motif Chemokine 
Ligand 1) was a chemokine that significantly upreg-
ulated in the Wild group. These findings indicated a 

connection between the cytokine or chemokine's func-
tion and microenvironment changes of the KEAP1/
NFE2L2/CUL3 Mut group.

F I G U R E  3   Genetic mutations related to Mut and Wild groups. Waterfall plot of (A) KEAP1/NFE2L2/CUL3 Mut and (B) Wild group 
summarizing the somatic alterations and copy number variations. Different colors annotated the type of alterations. (C) The top eight 
differential mutations in the Mut and the Wild groups and their distributions. p value indicated. (D) A violin plot is presenting the tumor 
mutation burden in the two groups. The differences between the two groups were compared through the Wilcoxon test. p values indicated

F I G U R E  4   Differential and function enrichment analysis of DEmRNAs and ceRNA network. (A) Differential expressed genes between 
the KEAP1/NFE2L2/CUL3 Mut and the Wild groups were shown in a volcano plot. (B) Cytoscape's plugin “MCODE” found the hub genes 
in DEGs and established the PPI network. The node's size represents the degree of the gene, and the width of the line indicates the combined 
score. (C) Dot plot of GO-BP and (D) KEGG pathway analysis to the DEGs (top 10). (E) Heatmap of the top 40 DEmRNAs and the phenotype 
of the two groups.
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3.6  |  Tumor stemness differences

Malta's study28 demonstrated that Tumor stemness could 
be accounted for RNA stemness index (RNAsi) and DNA 
stemness index (DNAsi) which were based on mRNA 
expression and DNA methylation by using the one-class 
logistic regression (OCLR) machine-learning algorithm. 
In our study, we applied the Chip Analysis Methylation 

Pipeline (ChAMP) R package to mining the differential 
methylated positions (DMPs) and the differential meth-
ylation regions (DMRs). As shown in Figure 6E, the top 
14 differential DMPs (adjusted p value <0.05, |Deltabeta| 
>0.2) between the KEAP1/NFE2L2/CUL3 Mut and Wild 
groups were presented with a heatmap (Figure  S6A). 
The most differentially methylated position (DMP), 
cg10880599 on chromosome 14, was hypermethylated in 

F I G U R E  5   DEmiRNAs, DElncRNAs, and the ceRNA network analyses. (A) DEmiRNAs and (B) DElncRNAs between the Mut and Wild 
groups were presented in the volcano plots. (C) Dot plot of KEGG pathway analysis of the downstream mRNAs regulated by LINC00473 (D) 
Upset plot of hallmark enrichment analysis of the linc00473’s modified mRNAs. (E) The ceRNA network of the DElncRNA–DEmiRNA–
DEmRNA demonstrates the cascade regulation relationship in the KEAP1/NFE2L2/CUL3 mutant LUAD patients
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the Wild group (Figure S6E), which might downregulate 
the expression of gene GPX2. We also found significant 
CpGs enriched some other DEGs (Figure S6B,C).

The GSEA analysis of the DMPs and DMRs identified 
that some pathways about cancers and glutamate metab-
olism were enriched in coinciding with the DEmRNAs’ 
result. The differences in DNA methylation were vali-
dated in the DNAsi. In Figure  6F,G, we compared the 
DNA stemness index and RNA stemness index. The Mut 
group had a significantly higher value of both indices (493 
patients, 111  KEAP1/NFE2L2/CUL3  Mut and 382  Wild 
groups, RNAsi: p < 0.001; DNAsi: p = 0.004). These results 
fitted the initial investigations that the Mut group patients 
might have more oncogenic dedifferentiation.

3.7  |  Validation of the expression 
levels of eight hub factors in LUAD 
tumor tissues

To better estimated the above bioinformatics results ob-
tained from the public databases, we collected 50 LUAD 
samples and tested their mutation status using Sanger's se-
quencing. Table S2 showed that 10 missense KEAP1 mu-
tations, including two deletions, were detected in seven 
patients (16%), whereas only one NFE2L2 mutation was 
detected in one patient (2%). Next, we selected these eight 
KEAP1/NFE2L2 Mut LUAD samples and paired 16 Wild 
LUAD samples to test the expression levels of eight sig-
nificant differential hub genes, miRNAs, and lncRNAs 
was fundamental in the ceRNA network. As shown in 
Figure  7A, the quantitative rt-qPCR array showed en-
hanced expression in upregulated factors such as GSR and 
UGT1A6. Alternatively, the expression of PIGR and miR-
205-5p has significantly diminished in the Wild group 
patients. The results were generally compatible with the 
previous differential analysis. Additionally, the IHC anal-
ysis with paraffin continuous tissue sections on the three 
differential genes verified that GSR and UGT1A6  have 
significantly higher expression in the Mut patient group 
than the Wild group, and the Wild LUAD patient had a 
stronger PIGR expression. These important findings fur-
ther emphasize that the differentiating factors we figured 
out in silicon analysis are biologically meaningful.

3.8  |  The survival analysis of external 
validation cohort

The external validation cohort was browsed and down-
loaded from cBioportal, which was combined from the 
studies such as MSK, MSKCC, and OncoSG and provided 
the mutated status. OS and RFS between the KEAP1/

NFE2L2/CUL3 Mut and Wild groups were considerably 
different. As shown in Figure 7C, PFS’s difference was not 
statistically significant, but it had a low P value as well. 
Inconsistent with the TCGA database, LUAD patients 
with KEAP1/NFE2L2/CUL3  mutations have a worse 
prognosis in terms of survival and disease progression. 
The cross-validation of internal and external strengthened 
the clinical value of our research. Combined with Jessica's 
study,34 the KEAP1/NFE2L2/CUL3 pathway alterations 
may play a pivotal role in carcinogenesis, invasion, and 
treatment resistance.

4   |   DISCUSSION

KEAP1/NFE2L2/CUL3 alterations in LUAD jeopardized 
the normal function of the antioxidant signaling path-
way,35,36 which contributed to the tumorigenesis and 
resistance to target treatments or chemotherapies in the 
patients.37 Nevertheless, the therapeutic drugs targeting 
the KEAP1/NFE2L2/CUL3 pathway mutations were still 
underdeveloped. The independent prognostic value of the 
three gene mutations was validated in the present study. 
The multi-omics genetic analysis and tumor immune 
microenvironment characterization revealed the latent 
mechanism and developed our understanding, contribut-
ing to discovering new therapeutic target drugs.

The NFE2L2 pathway was mainly comprised of cullin 
3 (CUL3)/kelch-like ECH-associated protein 1 (KEAP1) 
and  nuclear factor erythroid 2-like 2 (NFE2L2). It was 
well known that KEAP1 functions as an adaptor for 
CUL3-based E3  ligase to regulate proteasomal degrada-
tion of NFE2L2,38 the KEAP1/NFE2L2/CUL3 mutations 
caused the abnormal activation of the NFE2L2 pathway, 
which drive cancer progression.39 Recent studies have 
reported that KEAP1/NFE2L2/CUL3  mutated in many 
cancers and led to worse survival outcomes in many can-
cers,35,38,40–45 our survival analysis also confirmed this. 
The alteration rate in lung adenocarcinoma was over 20%. 
Frank et al. reported that KEAP1 mutations spread over 
the whole protein while the NFE2L2 is often mutated in 
specific hotspot regions. In the study of Goeman et al., 
variations of KEAP1/NFE2L2/CUL3 in LUAD were de-
fined as a molecular subtype rapidly progressing.46 Many 
studies revealed that the NFE2L2 pathway was a “double-
edged sword” in cancer.47 It could resist oxidative damage 
from the external environment, thus preventing the car-
cinogenesis of normal cells.48 For example, the full func-
tion NEF2L2 genotype could protect the smoker against 
the oxidant and chemical stress which could be carcino-
genic.49 However, emerging evidence have illustrated that 
NFE2L2’ hyperactivation promotes metabolic reprogram-
ming via redirecting glucose and glutamine to anabolic 
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F I G U R E  6   Immune landscape, methylation differences, and stemness indices of the KEAP1/NFE2L2/CUL3 Mut and Wild groups. 
(A) Comparison of each immune cell fraction between Mut and Wild groups, (B) relative expression level of molecules participated in 
innate immunity (left) and MHC-I/II antigen-presenting procedure (right), (C) relative expression level of immune coinhibitors (left) and 
costimulators (right), (D) the differential genes related to the immune checkpoint. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. (E) 
Heatmap of DMPs between the KEAP1/NFE2L2/CUL3 Mut and Wild groups (adjusted p value <0.05, |Deltabeta| >0.2); (F) mRNAsi and 
(G) mDNAsi differences of the two groups in the LUAD patients were displayed in the violin plots. p values indicated
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pathways.50,51 Su et al. revealed that NFE2L2 activated 
micropinocytosis in pancreatic ductal adenocarcinoma for 
the energy supplies to tumor cells autophagy-deficient.52 
Whereas connections with the antioxidant response, met-
abolic reprogramming, and autophagy have been demon-
strated, definitive mechanisms underlying the NFE2L2 
pathway remain highly sought after.

The treatment of lung cancer was gradually develop-
ing, but the patients with KEAP1/NFE2L2/CUL3  muta-
tions were in a dilemma. On the one hand, these patients 
were not eligible for targeting treatments because of the 
lack of activating genetic mutations or fusions and the 
resistance to the kinase inhibitor drugs,53 on the other 
hand, previous studies had demonstrated that the genetic 
alterations on the NFE2L2 pathway's gene would result 
in tumor resistances against chemotherapeutic agents in 
NSCLC.37,54,55 Consequently, the optimal choice for the 
KEAP1/NFE2L2/CUL3  mutant patients was immuno-
therapy compared with other treatments.56-59

Our results show that LUAD patients with EGFR muta-
tions often do not have KEAP1/NFE2L2/CUL3 mutations 
simultaneously, called the mutually exclusive pattern 
SNPs.60,61 However, in Hellyer’ study, 7% (17 in 228) of 
EGFR-mutant NSCLC patients also carried alterations in 
KEAP1/NFE2L2/CUL3, the patients with the comutation 
of KEAP1/NFE2L2/CUL3 had a shorter median time to 
treatment resistance on EGFR TKI (4.7 months) than the 
wild-type matched cohort (13.0  months).34 Besides, we 
found that STK11, SPEF2, and other gene mutations were 
significantly higher in patients with NFE2L2 pathway mu-
tations than in the Wild group. The STK11 (or LKB1) gene 
is a tumor suppressor gene. Its mutation often resulted 
in tumor metastasis and poor survival in NCSLC.57,62 
The relationship between STK11 and KEAP1  mutations 
in LUAD is worth further investigation. Our differential 
analysis on the mRNA level showed that GRS, UGT1A6, 
were upregulated in the Mut group, and they were all 
downstream genes of the KEAP1/NFE2L2/CUL3 path-
way. Glutathione S-Reductase(GRS) gene, encoding glu-
tathione (GSH) reductase, had a crucial role in the cancer 
progression and treatment response via the metabolic of 
glutamine in TME, and Baity et al. found that GSR copy 
number loss is common in LUAD, which might be a bio-
marker for personalized therapy in the future.63,64 UDP 
Glucuronosyltransferase Family 1 Member A6 (UGT1A6) 
was related to the lipid metabolism by transforming small 
lipophilic molecules into hydrophilic molecules, and Li 
et al. found that its overexpression in LUAD has relation-
ship with a worse prognosis.65,66 Kua et al. also reported 
that the UGT1A6 polymorphisms might modulate lung 
cancer risk. The expression of polymeric immunoglobulin 
receptor (PIGR) in the Mut group was downregulated. The 
loss of pIgR expression is associated with cell proliferation 

and poor prognosis in lung cancer.67 However, in Ai et al.’ 
study,68 its high expression also was identified as a role 
between induction of epithelial–mesenchymal transition 
(EMT) and hepatocellular carcinoma (HCC) metastasis. 
The two sides of immune defense and immune betrayal 
of pIgR in LUAD need further exploration. However, the 
associations between KEAP1/NFE2L2/CUL3  mutations 
and the expression of these genes in LUAD have not been 
reported yet.

With regard to the DEmiRNAs and DElncRNAs, in our 
study, the overexpression of hsa-miR-193b-3p in the Mut 
was evident. The previous study reported its importance 
in the progression of gastric cancer and colon cancer.69,70 
Although it was considered to have tumor suppressor 
functions in acute myeloid leukemia,71 the recent study 
of Zhang found that miR-193b-3p was upregulated in 
NSCLC, which verified the miR-193-193b-3p could serve 
as a biomarker of NSCLC,72 our findings further revealed 
that the overexpression of miR-193b-3p might have re-
lationships with the KEAP1/NFE2L2/CUL3  mutations. 
As to the most significant downregulated miRNA, miR-
187-3p played a vital role in tumor inhibition and che-
moresistance rescuers in NSCLC.73,74 The DElncRNA 
RP11-499O7.7 and CTD-2139B15.5 were the first time 
to report in the present study that the overexpression of 
the KEAP1/NFE2L2/CUL3  mutant LUAD patients, the 
functions, and mechanism requires further explorations. 
Thus, we constructed the ceRNA network and identified 
the crucial lncRNA LINC00473. lncRNA LINC00473 is 
located on the human chromosome 6p27 and has been 
overexpressed in various malignant tumors including 
LUAD.75-80 Our findings were consistent with the previ-
ous study and implied that LINC00473 might be a novel 
driver of lncRNA in tumor progression and an extensive 
anticancer therapeutic target. The downstream genes in 
ceRNA were enriched in some vital pathways associated 
with tumor progression. FNIP2, as the highest combined 
score node in ceRNA, was identified to play an important 
role in kidney tumor suppression, whereas its function in 
LUAD remains unclear.

The critical role of the tumor environment (TME) in 
LUAD has been elucidated in various studies.81,82 We in-
vestigated the infiltration of the immune cells via GSVA 
analysis. The present study demonstrated that the KEAP1/
NFE2L2/CUL3 mutations might be correlated to the lower 
immune infiltration and higher tumor mutation burden. 
The expression of MHC class II in the Mut group was 
markedly decreased. As we know, one of the immunoeva-
sion mechanisms is that the cancer cells hide their tumor 
antigens. Johnson's study illustrated that the inadequate 
MHCII expression in LUAD resulted in a lower response 
to immunotherapy.83 We also found a markable differ-
ence in the expression of the PD-L1 (CD274), PDCD1, 
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and CTLA4 between the two groups. These investigations 
about immune infiltration and tumor environment indi-
cated that the Wild group patients might have a higher 
immunotherapy response rate due to the TME status and 
the KEAP1/NFE2L2/CUL3 alterations that contribute to 
the tumor immune escape and “cold” tumor's formation.7 
Given that the immunotherapy’ response rate was still low 
at 14–20% in unselected patients, and the recent study re-
vealed the uptake of glutamine and lipids was controlled 
by tumor cells, suggesting that targeting glutamine metab-
olism could be used as a specific strategy to inhibit tumor 
growth and change the immunophenotype of TME.84

Our research still has certain limitations. Since 
KEAP1/NFE2L2/CUL3  gene mutations have not re-
ceived enough attention in the clinical practice of lung 
adenocarcinoma, these three genes are not included in 
routine postoperative pathologic sample gene mutation 
detection in our hospital. Our cohort for the validation 
needs more appropriate  patients included. Therefore, 
our further research needs more samples to provide a 
more accurate subgroup analysis of KEAP1/NFE2L2/
CUL3 pathway mutations so as to exhibit a deeper in-
sight into KEAP1/NFE2L2/CUL3 pathway mutation in 
lung adenocarcinoma progression. The current study is 
a preliminary validation of the key difference factors. 
More research needs to be done to figure out the under-
lying molecular mechanism of mutations of the KEAP1/
NFE2L2/CUL3 pathway in lung adenocarcinoma, and 
there is still a long way to go to target these mutations as 
a new therapeutic strategy.

Generally, our study comprehensively analyzed the 
multiplatform data of TCGA to compare the biologic char-
acteristics, intrinsic heterogeneities, and clinical features 
of the KEAP1/NFE2L2/CUL3 mutant and wild lung ade-
nocarcinoma patients. It is imperative to mine the under-
lying mechanisms and characteristics of KEAP1/NFE2L2/
CUL3 mutations in lung adenocarcinoma and accelerate 
the investigations of the pathway and the targeted drugs.
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