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ABSTRACT Idiopathic scoliosis (IS) is a structural lateral spinal curvature of $10� that affects up to 3% of
otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is
a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the
overall genetic etiology of IS is not well understood. We used exome sequencing to study five multigen-
erational families with IS. Bioinformatic analyses identified unique and low frequency variants (minor allele
frequency #5%) that were present in all sequenced members of the family. Across the five families, we
identified a total of 270 variants with predicted functional consequences in 246 genes, and found that eight
genes were shared by two families. We performed GO term enrichment analyses, with the hypothesis that
certain functional annotations or pathways would be enriched in the 246 genes identified in our IS families.
Using three complementary programs to complete these analyses, we identified enriched categories that
include stereocilia and other actin-based cellular projections, cilia and other microtubule-based cellular
projections, and the extracellular matrix (ECM). Our results suggest that there are multiple paths to IS
and provide a foundation for future studies of IS pathogenesis.
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Idiopathic scoliosis (IS) is a common disorder of the immature skeleton
that affects up to 3% of the pediatric population, with girls often more
severely affected than boys (Asher and Burton 2006). IS is defined
clinically as a structural lateral spinal curvature of$10� with a rotatory

component, documented by radiologic analysis and occurring in oth-
erwise healthy children. Current therapeutic options are limited to
physical therapy, bracing, and surgery. The only treatment option for
severe progressive curves is an operative spinal instrumentation and
fusion, a costly procedure with life-long implications. IS is known to
have a genetic component, with higher concordance rates in monozy-
gotic twins than in dizygotic twins and an increased risk for first-degree
relatives compared to the general population (Cowell et al. 1972;
Riseborough and Wynne-Davies 1973; Bonaiti et al. 1976; Czeizel
et al. 1978; Kesling and Reinker 1997; Inoue et al. 1998; Aksenovich
et al. 1999; Andersen et al. 2007; Ward et al. 2010; Tang et al. 2012).

Genetic studies for IS have been conducted for more than 30 years.
Genome-wide linkage studies have resulted in the identification of large
chromosomal regions rather than specific genes (Salehi et al. 2002;Chan
et al. 2002; Justice et al. 2003; Miller et al. 2005; Gao et al. 2007; Ocaka
et al. 2008; Gurnett et al. 2009; Raggio et al. 2009; Edery et al. 2011).
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Several genome-wide association studies (GWAS) in different ethnic
populations have identified potential genes and regions of interest
(Sharma et al. 2011; Takahashi et al. 2011; Kou et al. 2013; Miyake
et al. 2013; Ogura et al. 2015; Zhu et al. 2015; Sharma et al. 2015;
Chettier et al. 2015; Zhu et al. 2017; Ogura et al. 2017). Both the
LBX1 (Takahashi et al. 2011; Fan et al. 2012; Jiang et al. 2013; Gao
et al. 2013; Londono et al. 2014; Chettier et al. 2015; Grauers et al. 2015;
Zhu et al. 2015; Guo et al. 2016; Cao et al. 2016; Liu et al. 2017; Nada
et al. 2018) and GPR126 (Kou et al. 2013; Xu et al. 2015; Karner et al.
2015; Qin et al. 2017) genes have been associated with IS in multiple
studies. LBX1 is a transcription factor and core regulator of myoblast
development (Masselink et al. 2017), while GPR126 functions within
Schwann cells to control differentiation and myelination (Mogha et al.
2013). Recently, exome sequencing has identified genes that may con-
tribute to the IS phenotype, including genes that encode components of
the extracellular matrix (ECM), cytoskeleton, cilia, and centrosomes
(Buchan et al. 2014a; Baschal et al. 2014; Patten et al. 2015; Li et al.
2016; Oliazadeh et al. 2017; Einarsdottir et al. 2017; Haller et al. 2016).
Overall, these genetic findings lead to proposed mechanisms of IS
pathogenesis stemming from alterations in the ECM, cilia, muscle,
and axon myelination. Even with these findings, the biological basis
of IS is not well understood and the genetic contributions are still
poorly defined.

With the discovery of multiple genes that may contribute to IS
etiology, it has become apparent that IS is likely a polygenic disease
(Kruse et al. 2012; Haller et al. 2016). In this study, we completed exome
sequencing in five multigenerational families to identify variants pre-
sent in all affected familymembers, and then usedGeneOntology (GO)
term enrichment analyses of these variant lists to identify functional
categories that we predict are important for IS etiology.

MATERIALS AND METHODS

Subjects
Individualswere enrolled asdescribedpreviously (Baschal et al. 2014).A
diagnosis of IS required a standing anteroposterior spinal radiograph
showing $10� curvature by the Cobb method with pedicle rotation,
and no congenital deformity or other co-existing genetic disorder
(Shands and Eisberg 1955; Kane 1977; Armstrong et al. 1982). If two
ormore individuals in a family were affectedwith IS using these criteria,
those individuals were classified as having familial IS.

Written informed consent was obtained from study subjects who
were enrolled in accordance with protocols approved by the Johns
Hopkins School of Medicine Institutional Review Board and the Uni-
versity of Colorado Anschutz Medical Campus Institutional Review
Board (Colorado Multiple Institutional Review Board, Study #06-1161
and07-0417).Allproceduresinvolvinghumanparticipantswereperformed
inaccordancewith theethical standardsof these institutional reviewboards,
the 1964 Declaration of Helsinki and its later amendments, or comparable
ethical standards.

We collected blood samples from all participants and extracted
genomicDNAusing theQIAGENGentraPuregeneBloodKitor standard
phenol-chloroform purification protocols (Sambrook et al. 1989; Moore
andDowhan 2002). In the event a blood samplewas not available, a saliva
sample was collected using the Oragene OGR-250 kit and extracted
according to the manufacturer’s protocol.

Five multigenerational IS families with European ancestry were
selected for exome sequencing. These families were selected based on
the number of affected individuals in a family, scoliosis curve severity,
and the degree of relationship to the proband.Where possible, distantly
related individuals in each family were selected for exome sequencing.

Exome sequencing was completed for three to four individuals from
each family, for a total of 16 sequenced individuals from these five
families. Clinical details and family relationships are presented in Table
1, and pedigrees are provided in File S1. In some cases, pedigrees were
simplified to protect the identity of the study participants. Individuals
selected for exome sequencing were affected with IS, with the exception
of one individual from Family B. In this family, we sequenced one
unaffected individual (II-2) who is expected to carry any variants that
contributed to the IS phenotype within the family. In addition to her
grandchildren who were sequenced in the study (IV-3 and IV-5), her
father (I-1), brother (II-5), and two nieces (III-6 and III-7) are affected
with IS, but DNA was not available for these individuals.

Exome Sequencing
Exome capture was completed using 1 mg of genomic DNA from
16 individuals across five families using the Illumina TruSeq Exome
kit. Samples were sequenced with a 2 · 100 bp run on the Illumina
HiSeq 2000 at the University of Colorado Denver Genomics and
Microarray Core Facility with three samples multiplexed per lane.

Bioinformatic Filtering
The reads were aligned to the human genome assembly GRCh38 using
GSNAP (Genomic Short-read Nucleotide Alignment Program, ver-
sion 2014-12-17) (Wu and Nacu 2010) and variants were identified by
FreeBayes (v1.0.1-2-g0cb2697) (Garrison and Marth 2012). The can-
didates were filtered by SnpEff (version 4.1g) (Cingolani et al. 2012) and
custom scripts to retain only non-synonymous SNPs, coding indels,
and variants affecting splice sites. These were also stripped of known
artifacts and variants whose frequency was greater than 5% in the
ExAC database (r0.3) (Lek et al. 2016). If the variant was annotated
in the dbNSFP database (version 3.0) (Liu et al. 2011; Liu et al. 2016), it
was retained only if at least one of the prediction algorithms (SIFT,
Polyphen2, LRT, MutationTaster) scored it as “damaging,” signifying
that the resulting change to the protein had a predicted functional
consequence.

Within each family, variants were required to be shared by all
individuals that underwent exome sequencing. If any individuals in
the family were missing data at the position of interest, the variant was
retained in the list as long as the alleles were shared by the remaining
family members. This filter eliminated variants that did not segregate
with the IS phenotype in each family, which reduced the number of false
positive variants in our results.

Gene values for pLI and pRec were obtained from the Functional
Gene Constraint download from ExAC (fordist_cleaned_exac_r03_
march16_z_pli_rec_null_data.txt, modified 2016-01-13, 5:00:00 PM)
(Samocha et al. 2014; Lek et al. 2016).

Functional Category Annotations
Functional annotations for the GO terms “actin cytoskeleton” and “mi-
crotubule cytoskeleton” listed in File S2 were obtained from DAVID on
2018-05-21. Annotations for “extracellular matrix” were obtained from
the Core Matrisome list (Naba et al. 2012).

Cilia genes were annotated using a pipeline that initially focused on
two cilia gene databases, SYSCILIA Gold Standard (http://syscilia.org
[van Dam et al. 2013]) and the Centrosome and Cilium Database
(CCDB [Gupta et al. 2015]). We also included annotations from two
cilia-related Cellular ComponentGO terms (“cilium” and “microtubule
cytoskeleton”). All potential cilia genes were manually investigated
through searches in UniProt (The UniProt Consortium 2017) and
PubMed (“cilia” + [gene name]). Genes were classified as encoding cilia
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proteins (“yes”) if the gene was listed in at least one of the cilia gene
databases, or had published evidence localizing the protein product to
the cilium. Genes were classified as potential cilia genes (“potential”) if
published evidence suggested the protein interactedwith the cilium, but
was not confirmed to be related to cilia function. Genes were not
classified as cilia genes if no published evidence suggested ciliary in-
volvement, even if they were associated with the GO term “cilium”.
Final determinations were made through review of the identified articles.
Genes annotated as “stereocilia” were identified from the “stereocilium”
GO term and also through review of articles identified in the literature.

GO Term Enrichment Analyses

PANTHER: GeneOntology (GO) termanalysiswas completed using the
PANTHERwebsite (Mi and Thomas 2009;Mi et al. 2013;Mi et al. 2017).
A combined variant list was generated that contained all of the variants
that were identified in any of our five families (variants were filtered
as described above). The corresponding gene names were used as the
input for PANTHER (270 variants in 246 genes), which resulted in
251 PANTHER IDs. Statistical overrepresentation tests were performed
on 2017-11-28 using the PANTHER website, with PANTHER overrep-
resentation test release 20170413 and Gene Ontology database release
2017-10-23. These tests used a Bonferroni multiple testing correction for
the Cellular Component GO term class. The p-values were also obtained
without Bonferroni correction and those results are indicated in the text
and tables where appropriate.

DAVID: DAVID 6.8 was used to identify the significant GO terms and
clusters in our dataset (Huang da et al. 2009b, 2009a). The same input
gene list was used for DAVID as for PANTHER (246 genes), which
resulted in 242 DAVID IDs. Functional annotation clustering was used
on our dataset with custom settings and the GOTERM_CC_All annota-
tion category. DAVID clustering is based on the genes in the dataset of
interest that are shared among the GO terms. The clustering stringency
settings were relaxed from default values for this analysis (both Initial
Group Membership and Final Group Membership were set to 2). Addi-
tionally, the EASE threshold was set to 0.1, tomatch the default threshold
used by DAVID for single GO term chart analyses. The EASE score can
be interpreted like a p-value. Default values were used for the other
settings (Similarity Term Overlap = 3, Similarity Threshold = 0.50,

Multiple Linkage Threshold = 0.5). The enrichment score for the cluster
is based on the EASE score for each term member (negative log scale),
where higher numbers represent clusters that are more enriched.

BiNGO: The Biological Networks Gene Ontology tool (BiNGO) is an
open-source Java tool and Cytoscape plugin that allows for the determi-
nation of GO terms that are significantly overrepresented in a set of genes
and provides a visual representation of the results (Maere et al. 2005;
Shannon et al. 2003). The same input gene list was used for BiNGO as for
PANTHER and DAVID (246 genes), which resulted in 196 BiNGO IDs.
An overrepresentation binomial test was used, with visualization of the
overrepresented categories before correction. We downloaded the ontol-
ogy file go.obo from the GO website (data-version: releases/2017-11-
25, CVS version 38972) (Ashburner et al. 2000; The Gene Ontology
Consortium 2017). The BiNGO analysis used the reference set whole
annotation, with the downloaded go.obo file and namespace Cellular_
component. A significance level of 0.05was used, with nomultiple testing
correction, and first degree relatives of significant GO terms were added
to the visualization to give a clearer view of how the significant GO terms
were related. A custom color gradient was used for the nodes, where blue
is more highly significant (P = 1.0E-03) and teal is less significant (P =
0.05). White represents the non-significant first degree relatives. The size
of the node is proportional to the number of genes in the input dataset
that are annotated to that GO term. Initially, the Prefuse Force Directed
Layout was used, but the terms were subsequently manually rearranged
in an attempt to minimize the overlap and to create clusters or groups of
related terms. GIMP v2.8 (http://gimp.org) was used to add text labels for
the overall groups.

Availability of Data Statement
Theauthors affirmthat all datanecessary for confirming the conclusions
of this article are represented fully within the article and its supplemen-
tary files, including the complete lists of filtered variants for each family.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6104780.

RESULTS
Westudiedfivemultigenerational familiesofEuropeanancestry affected
with familial IS (Table 1). Affected individuals were diagnosed with IS

n Table 1 Clinical information for subjects who underwent exome sequencing. Five families underwent exome sequencing, with three to
four individuals sequenced in each family. Gender, curve measurement (Cobb angle), relationship to proband, degree relationship to
proband, and sequencing coverage across the exome are presented for each individual. Double curves are represented by a slash.
Pedigrees are provided in Supplemental File 1

Family Individual Gender Curve (Degrees) Relationship to Proband Degree Relationship to Proband Coverage

A III-4 F 52/81 proband proband 91X
A III-5 F 76/65 sister 1st degree 51X
A III-1 M 25 half cousin (paternal) 4th degree 51X
A II-4 F unknown aunt (paternal) 2nd degree 68X
B IV-3 F 34/28 proband proband 36X
B IV-5 M 56 cousin (maternal) 3rd degree 77X
B II-2 F 0 grandmother (maternal) 2nd degree 63X
C IV-1 F 36/20 proband proband 49X
C III-6 F 45 first cousin once removed (maternal) 4th degree 52X
C IV-2 M 35/70 second cousin (maternal) 5th degree 38X
D III-1 F 32/47 proband proband 52X
D III-5 F 78/42 cousin (paternal) 3rd degree 44X
D II-5 F 12/8 aunt (paternal) 2nd degree 49X
E IV-1 F 50/60 proband proband 55X
E III-3 F 50 aunt (paternal) 2nd degree 40X
E II-3 F 22/35 great aunt (paternal) 3rd degree 38X
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based on radiographic findings of a spinal curvature $10�. Exome
sequencing, followed by variant detection and filtering, was completed
for 16 individuals (3 to 4 individuals per family). Sequencing coverage
ranged from 36 to 91X, with an average of 53X. Filtering resulted in a
list of variants for each family, where each variant was an insertion/
deletion, nonsense, missense, or splice-site change with a predicted
functional consequence and was present at a minor allele frequency
(MAF) of 5% or less in the ExAC database. We used anMAF cut-off of
5% due to the relatively high prevalence of IS in the general population
(up to 3% when defining scoliosis as a Cobb angle$10�). In addition,
to be considered for further study, we required variants to be present in
all sequenced individuals in the family, as described in detail in the
Methods section.

A total of 270 variants in 246 genes were identified across the five
families after this filtering process, with a range of 19 to 89 variants
identified in each family (File S2). Eight genes were shared by two
families (XRRA1, ANKRD11, ANKRD30B, DNHD1, ERN2, MYBPC3,
NPY4R and TNFRSF10C) and no genes were shared by three or more
families. Even with our stringent familial analysis that required the
identified variants to be present in every sequenced family member, a
large number of potentially causal variants remained in each family.

To further understand and interpret these large variant lists, we
completed Gene Ontology (GO) term enrichment analyses. These
analyses allowed us to investigate the hypothesis that IS is caused by
variants inmultiple genes, and that those geneswill showenrichmentsof
certain functional annotations or pathways. We used the programs
PANTHER, DAVID, and BiNGO to complete these analyses and
explore this hypothesis in relation to our data.

We completed PANTHER GO term overrepresentation analysis
whichallowedus tocompare thenumberofgenes inourdatasetannotated
with eachGO term to the number expected by chance. The input was our
combined gene list from all five families (246 genes). The only cellular
component GO term in our dataset that passed significance with a
Bonferroni multiple testing correction was “stereocilium” (P = 0.0209
with Bonferroni correction, P = 1.55E-05 without Bonferroni correction,
11.70 fold enrichment, n = 6 genes), which is an actin-based cellular
projection that is important for both hearing and balance.

Two major themes emerged when we examined the other enriched
GO terms that were significant without Bonferroni multiple testing
correction (File S3). The prominent theme from the PANTHER results
are terms related to cellular projections, which represent 18 of the top
20 most significant GO terms without Bonferroni correction. The two
terms in the top 20 that are not specifically related to cellular projections
are “phagocytic vesicle lumen” (P = 6.23E-04, 55.89 fold enrichment,
n = 2 genes) and “intrinsic component of plasma membrane”
(P = 6.20E-03, 1.59 fold enrichment, n = 32 genes). Both actin-based
and microtubule-based cellular projections are included in the top
20 GO terms. Actin-based cell projections in this list include two terms

related to the stereocilium and two terms related to general actin-based
cellular projections. The microtubule-based cellular projection terms in-
clude seven cilia-related terms, including “ciliary part” (P= 4.69E-03, 2.42
fold enrichment, n = 12 genes) and “axoneme part” (P = 8.01E-04, 9.86
fold enrichment, n = 4 genes). The term “kinocilium” (P = 5.35E-03,
18.63 fold enrichment, n = 2 genes) is also present in the top 20
PANTHER list. Kinocilia are a specialized type of cilia present in vestib-
ular hair cells, and work with stereocilia to sense and respond to spatial
orientation. The term “neuron projection” (P = 2.15E-03, 1.87 fold en-
richment, n = 25 genes) is also present in the top 20 list, and includes
projections that are composed of both actin and microtubules. This cell
projection theme is also carried beyond the top 20 GO terms.

The second major theme from our PANTHER results (beyond the
top 20 terms) is the extracellular matrix (ECM), with specific terms of
“proteinaceous ECM” (P = 1.36E-02, 2.28 fold enrichment, n =
10 genes) and “ECM component” (P = 1.62E-02, 3.44 fold enrichment,
n = 5 genes). Additionally, our PANTHER results include multiple
terms related to collagen and collagen trimers, which are major com-
ponents of the ECM. Overall, we identified themes of related GO terms
from our PANTHER results, including cellular projections and ECM.

The DAVID Functional Annotation Clustering Tool is an unbiased
method for clustering significantly enriched GO terms. This tool works
by identifying the genes in our dataset that are shared among the GO
terms. We applied this algorithm to our data, again using the Cellular
Component GO terms. DAVID identified clusters in our data that
loosely correlate with stereocilium/actin-based cell projections/primary
cilium (Annotation Cluster 1), extracellularmatrix/collagen (Cluster 2),
cellprojection/cilium(Cluster 3), plasmamembranecomponents (Clus-
ter 4), and neuron part/synapse (Cluster 5) (Table 2 and File S4).

We used BiNGO visualization software to further investigate and
understand these clusters.Overall, we found that there were nine overall
“groups” of GO terms that are loosely clustered (Figure 1). The raw data
are reported in File S6. We manually annotated these nine groups as
GO terms related to muscle, ECM/collagen, microtubule cytoskeleton,
cilium, stereocilium, neuron/synapse, plasmamembrane,mitochondri-
al membrane, and nucleus. The genes annotated to the significant GO
terms included in each of the nine overall groups are listed in Table 3.
Of note, only one gene underlies the significant result in three of the
nine groups (muscle, mitochondrial membrane, and nucleus). How-
ever, the significant results in groups related to our major themes
(ECM/collagen, microtubule cytoskeleton, cilium, stereocilium, and
neuron/synapse) are driven by at least four genes. These overall results
and themes are consistent with the manual clustering we used for our
PANTHER results and the algorithmic clustering used by DAVID.

As cilia have been described as a potential factor in IS etiology
(Grimes et al. 2016; Patten et al. 2015; Buchan et al. 2014b; Andersen
et al. 2017; Einarsdottir et al. 2017), we further investigated the cilia
connections identified in our dataset. Cilia components and functions

n Table 2 Functional annotation clusters identified by DAVID. Functional annotation clustering analysis was completed as described in the
Methods. In brief, the GOTERM_CC_All annotation category was used, with an input of the 246 genes identified in our dataset. Five
clusters were identified, and higher enrichment scores represent clusters that are more enriched. Detailed results, including underlying
genes for each GO term, are presented in Supplemental File 4

Cluster Enrichment Score GO Terms

Cluster 1 2.47084939 stereocilium, stereocilium bundle, actin-based cell projection, cluster of actin-based cell
projections, brush border, nonmotile primary cilium, primary cilium, microvillus

Cluster 2 0.549760389 extracellular matrix component, complex of collagen trimers, proteinaceous extracellular matrix
Cluster 3 1.470776063 cell projection, cilium, cell projection part, ciliary part
Cluster 4 1.268556732 intrinsic component of plasma membrane, integral component of plasma membrane, plasma

membrane part
Cluster 5 1.058855585 synapse, neuron part
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are still under active exploration by many groups, and as a result the
cilia-related GO term annotations are not always up to date. Therefore,
we chose to use a different pipeline for annotating our cilia genes to
generate a more inclusive list. We compared our gene list to the cilia
gene databases (SYSCILIA [van Dam et al. 2013] and CCDB [Gupta
et al. 2015]) and cilia-related GO terms, and also incorporated confir-
matory literature searches. These annotations are included in File S2.
We then used literature searches to annotate the location within the
cilium for each cilia protein identified in our dataset (Table 4 and File
S5). Overall, we have found that 6.3 to 8.8% of the genes identified in
our five IS families encode proteins that localize to the cilium.

We next investigated our results at the level of individual IS families,
rather than combining the results from all five families together. We
compared each family’s gene list with the three functional categories
identified in our analyses (stereocilia and other actin-based cellular pro-
jections, cilia and other microtubule-based projections, and the ECM,
File S2). Three families had at least one gene annotated to each of these
three functional categories (Families A, B, and E). Family C had genes
annotated to actin cytoskeleton and microtubule cytoskeleton, but did
not have an ECM gene. Family D had genes annotated to microtubule
cytoskeleton and ECM, but did not have an actin cytoskeleton gene.

When these results are examined together, three themes emerge.Our
IS families show enrichments of variants in genes related to stereocilia

and other actin-based cellular projections, cilia and other microtubule-
based projections, and the ECM. We have identified these three func-
tional categories of genes in both the combined family dataset and in
individual families with IS.

DISCUSSION
In this study, we report exome sequencing results for five multigener-
ational IS families. We identified a total of 270 variants in 246 genes
across all 5 families. No genes were shared by all families, indicating that
there is not a singleMendelian cause for ISwithin this sample group.We
performed GO term enrichment analyses, with the hypothesis that
certain functional annotations or pathways would be enriched in the
246 genes identified in our IS families. Using complementary programs
tocomplete these analyses,we identifiedenrichedcategories that include
stereocilia and other actin-based cellular projections, cilia and other
microtubule-based cellular projections, and the extracellular matrix
(ECM). These results suggest that familial IS is a polygenic disorder
with multiple genes and pathways involved in the pathogenesis of the
disease.

Genes related to actin-based cellular projections were the first
enriched category in our dataset. These actin-based structures include
stereocilia, neuronal projections, microvilli, and other actin-related
genes that are not specific to cellular projections. The only GO term

Figure 1 BiNGO visualization of Cellular Component GO terms. BiNGO was used to determine and visualize GO terms that are significantly
overrepresented in our dataset, as described in detail in the Methods. Blue represents more significant GO terms, teal is P = 0.05, and white are
non-significant first degree relatives. The size of the node is proportional to the number of genes in the dataset that are annotated to that GO
term. The data used to generate this figure are presented in Supplemental File 6.
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that passed significance with Bonferroni multiple testing correction in
our data were “stereocilium” (PANTHER, P = 2.09E-02, n = 6 genes).
Stereocilia are actin-based cellular projections that are important for
both the auditory system (hearing) and the vestibular system (balance
and spatial orientation). Multiple studies support an association be-
tween IS and vestibular dysfunction (Hawasli et al. 2015). Individuals
with IS have been described to have differences in vestibular function
and/or anatomy (Hawasli et al. 2015) and altered sensorimotor inte-
gration (Pialasse et al. 2015). These functional studies in individuals
with IS, coupled with our genetic findings, suggest that vestibular genes
may play an important role in the development of the abnormal spinal
curvature that is the defining characteristic of IS.

Genesrelated tomicrotubule-basedcellularprojectionswereanother
enriched category in our dataset. These microtubule-based structures
include cilia, neuronal projections, and othermicrotubule-related genes
that arenot specific tocellularprojections.Cilia genes are enriched inour
data, with significant PANTHER results for both “ciliary part” (P =
4.69E-03, n = 12 genes) and “axonemepart” (P= 8.01E-04, n = 4 genes).
We found that 6.3–8.8% of the genes identified in our five IS families
encode proteins that localize to the cilium, and found that all major
regions of the cilium were represented (axoneme, basal body/centriole,
and base of cilia). The primary cilium is a microtubule-based structure
that is important for cell signaling, mechanosensation, and develop-
ment, and has a significant role in the skeletal system (Anderson et al.
2008; Nguyen and Jacobs 2013; Temiyasathit and Jacobs 2010). Our
findings are supported by several studies that suggest that ciliary

dysfunction has a role in the pathogenesis of IS. Defects in motile cilia
(which generate the flow of extracellular fluid) can cause a late-onset
scoliosis without vertebral malformations in zebrafish (Hayes et al.
2014; Grimes et al. 2016), which was attributed to defects in cerebral
spinal fluid flow (Grimes et al. 2016). Additional studies have also
implicated basal body and cilia genes in IS etiology in humans and
zebrafish (POC5, kif6, VANGL1, and CELSR2) (Patten et al. 2015;
Buchan et al. 2014b; Andersen et al. 2017; Einarsdottir et al. 2017).
Longer cilia were observed on osteoblasts from IS individuals when
compared to controls, although the functional significance of this find-
ing has not yet been determined (Oliazadeh et al. 2017). Therefore, the
genetic findings from our group and others are supportive of a func-
tional role for cilia in IS etiology.

Clinicalobservationsalso suggestaplausible role for ciliadysfunction
in the pathogenesis of IS. Ciliopathies are a diverse class of human
diseases that result fromdefects inbothprimary andmotile cilia (Waters
and Beales 2011). Importantly, ciliopathy patients, including those with
Joubert, Jeune, Bardet-Biedl, Alstrӧm, and primary ciliary dyskinesia
(PCD), show an increased incidence of scoliosis (Brancati et al. 2010;
O’Brien et al. 2015; Ramirez et al. 2004; Marshall et al. 2011; Engesaeth
et al. 1993; Schlösser et al. 2017; Knowles et al. 2013) Furthermore,
55 of the 303 genes from the SYSCILIA annotated list of cilia genes
(vanDam et al. 2013) were associatedwith human syndromes that have
clinical reports of scoliosis (Oliazadeh et al. 2017). This overlap suggests
sharedmechanisms in the etiologies of ciliopathies and IS. Additionally,
cilia are crucial for both bone and cartilage development through their

n Table 3 BiNGO GO term annotations and gene lists. BiNGO was used to determine and visualize GO terms that are significantly
overrepresented in our dataset, as described in detail in the Methods and Results. Nine overall groups of clustered GO terms were
manually annotated. This table lists the number of significant GO terms included in the overall group, the number of genes annotated to
those significant GO terms, and the corresponding gene names. In addition, three significant GO terms were not clustered with the nine
overall groups: non-membrane-bounded organelle, intracellular non-membrane-bounded organelle, and organelle part. The non-
redundant list of genes annotated to those three GO terms are included, as are the genes from our five families that were not
annotated by BiNGO

Overall Group
# Significant
GO Terms # Genes Genes Annotated to the Overall Group

Muscle 2 1 MYBPC3
ECM/ Collagen 6 8 COL6A3, SERPINA1, TNXB, FLRT2, DST, COL5A2, COL6A5, TINAG
Microtubule Cytoskeleton 6 12 DNAH8, DNAH6, DNHD1, DST, KIF15, MACF1, SULT1C2, C2CD3, AKAP9,

MCM3, NPHP4, CEP290
Cilium 4 5 PCDH15, C2CD3, CEP290, DNAH8, NPHP4
Sterocilium 3 4 LOXHD1, PCDH15, USH1C, LRP2
Neuron/ Synapse 7 15 EPS8, CPEB1, DLG1, GRID2, SEMA4C, EPHA7, LRRK2, SEMA3A, CHAT, PCDH15,

USH1C, ARID1A, LOXHD1, SACS, CEP290
Plasma Membrane 4 31 EPHB6, SELPLG, CSF3R, NPY4R, LRP2, AQP2, ATP12A, EPS8, SLC22A14,GNGT2,

FLRT2, STAB1, PCDHA4, EPHA7, GRID2, ABCC1, DST, MGA, SEMA4C,
TNFRSF10C, PCDHA11, ATRN, CPEB1, PTPRB, DLG1, GJB4, CCKBR, NEDD4,
SCNN1A, SLC26A7, FGFR1

Mitochondrial Membrane 1 1 LRRK2
Nucleus 2 1 MLH1
Three Significant GO Terms

That Are Not in the Nine
Overall Groups

3 47 HIST1H2BJ, CHD9, NOP2, CHD6, NAT10, ZNF22, RRBP1, PPM1E, AKAP12,
ORC4, MRPL3, CLSPN, LRRFIP1, FARP1, DDX11, KRT2, ELMOD3, DDX54,
EBNA1BP2, TADA2A, TSR1, VCL, ECE2, GOLGA2, JPH3, GALNT8, TET1,
CDC25A, ERN2, NDUFS8, MMRN1, MED20, PPIE, UQCRC2, GOLGA8A,
POM121, SLC25A27, ATXN3, MAN2A2, UBN1, DHX38, SSR1, ATRIP, B3GAT2,
DNAJC11, SON, QARS

Not Annotated by BiNGO N/A 49 FASTKD1, ULK4, DDX60L, FAM216A, C16ORF71, C6ORF223, EVA1A, HENMT1,
EPG5, IAH1, C21ORF58, TET2, RNF208, JOSD2, KIF7, PALD1, ATAD3C,
PATL2, FCHSD1, THAP3, POM121L2, KIAA1257, CCDC42B, METTL20, DXO,
NUTM2G, TRABD2A, TRUB1, TRIM51, STAMBPL1, DCDC2B, BCO1,
C16ORF52, FAM83C, LEKR1, HELQ, FBXO39, TYW1B, DNAJC13, FAM111B,
BPIFB1, NOL4L, ST5, KANSL3, R3HCC1, GNB3, CEP162, KBTBD8, CCDC173
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roles in mechanosensation, and are also responsible for directional
ECM production and endochondral ossification at the growth plate
(Seeger-Nukpezah andGolemis 2012). However, it is important to note
that IS appears to specifically affect the spine, while most currently
defined ciliopathies affect multiple tissues and organ systems. These
distinct phenotypes may be explained by differences in either mutation
severity or tissue-specific gene expression, which will need to be ex-
plored in functional studies.

The third functional category enriched in our data are the ECM (P =
1.36E-02, n = 10 genes), which is clearly evident in our BiNGO clus-
tering (Figure 1). The ECM is a dense network of fibrous proteins that
provides structural support to cells and provides tissue organization,
and has been identified as important for IS etiology by multiple groups.
IS patients have a significant burden of rare variants in the fibrillin
genes (FBN1 and FBN2) [Buchan et al. 2014a], which are important
components of the ECM. Additionally, our group previously reported
similar results for rare variants in the ECM component perlecan
(HSPG2) [Baschal et al. 2014]. Finally, in a larger scale IS study, Haller
et al. identified an increased burden of rare variants in ECM genes in IS
patients, with a specific association to the musculoskeletal collagen
genes. This study found that the risk of IS increases proportionally with
the number of rare variants in ECM genes [Haller et al. 2016]. In
addition, scoliosis is often a phenotypic element of diseases caused by
defects in the ECM, such asMarfan syndrome and several of the Ehlers-
Danlos syndromes. Therefore, our results support and expand upon the
previously published literature that implicates an involvement of the
ECM in IS etiology.

Actin and microtubules are both essential components of neuronal
projections, and therefore neuronal projectionsfit into both thefirst and
second functional categories identified from our data. The GO term
“neuron projection” was significantly enriched in our dataset (P =
2.15E-03, n = 25 genes) and this category is evident in our BiNGO
clustering (Figure 1). These genes are related to both actin-based and
microtubule-based neuronal projections, encoding proteins located in
the axon growth cone and dendritic spine, and also encoding proteins
involved in axon guidance and neuronal growth. The axon growth cone
tip and dendritic spines are actin-rich structures, while the axon growth
cone central domain is a microtubule-based structure. Neuronal
growth relies heavily onmicrotubules, and both actin andmicrotubules
are important for the axon guidance process. Previous studies have
identified neuronal genes that may be important for IS. A GWAS for
IS identified significant associations near the CHL1 andDSCAM genes,

which both encode axon guidance proteins (Sharma et al. 2011).
GPR126, replicated in multiple IS genetic studies (Kou et al. 2013; Xu
et al. 2015; Karner et al. 2015; Qin et al. 2017), is important for normal
myelination of axons but does not have an obvious role in the cyto-
skeleton (Mogha et al. 2013). Damaging variants in these genes may
lead to mild neurological defects that give rise to IS in some patients.

IS is nowbelieved tobe a complexpolygenicdisease,wheremultiple
variants, acting in a polygenic fashion, are needed to develop the
phenotype.We propose twomainmechanisms that could underlie the
polygenic nature of IS. Thefirst is thatmore than one variant in a single
cellular structure or pathway could be required for IS development
(e.g., multiple variants in cilia genes are required in one family and
multiple variants in ECM genes are required in another family). A
second possibility is that a combination of variants in several cellular
structures or pathways could be required for IS development (e.g., at
least one variant is needed in a stereocilia gene, cilia gene, and ECM
gene). Our data seems support the second possibility, as three of the
five families have at least one variant in each of the three enriched
functional categories identified in this study (File S2). This suggests
that a combination of variants in all three functional categories may
be important for the development and progression of IS. This inter-
pretation is based on only five families, and will need to be investi-
gated further in larger familial studies. Overall, we believe that there
are multiple mechanisms that can lead to IS and that our identifica-
tion of variants in three enriched functional categories supports this
theory.

To summarize, we identified three interconnected categories of GO
terms that are enriched in our dataset of five IS families: actin-based
cellular projections, microtubule-based cellular projections, and the
ECM. The ECM is important for both stereocilia (actin-based cellular
projections) and cilia (microtubule-based cellular projections), tying
together the three functional categories identified in our dataset (Seeger-
Nukpezah and Golemis 2012; Collins and Ryan 2014; Deans 2013).
Previous studies support the involvement of each of these individual
categories of genes and GO terms in IS etiology. Functional studies of
the variants identified in these families will ultimately be needed to
strengthen the link between IS and these associated genetic changes.
Our data provides additional genetic support for the involvement of
these functional categories in IS etiology. Once the genetic causes of IS
are known, IS may be classified into multiple sub-diseases, each with a
different genetic cause and different disease pathogenesis. This infor-
mation will hopefully lead to further clinical insights into IS, including
risk of curve progression or response to bracing, which could eventually
lead to personalized disease treatments.
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n Table 4 Location of proteins in the cilium. Literature searches
were used to identify the location within the cilium of the cilia-
related genes/proteins identified in our study. Genes were
classified as encoding cilia proteins (“yes”) if the gene was listed
in at least one cilia gene database, or had published evidence
localizing the protein product to the cilium (see Methods). Genes
were classified as potential cilia genes (“potential”) if published
evidence suggested the protein interacted with the cilium, but
was not confirmed to be related to cilia function. Cilia
annotations are presented for all variants in Supplemental File
2 and for cilia-localized variants in Supplemental File 5

Location
Number of

Variants (“Yes”)
Number of

Variants (“Potential”)

Axoneme 7 0
Basal body/centriole 2 0
Base of cilia 6 0
Other/unknown 2 7
Total 17 7
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