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Abstract
The absence of recent research on dispersion in engineering applications indicates the need for a description that is more

focused on field and modeling practice. Engineers may benefit from simple calculation tools allowing them to understand the
processes encountered in the field. Based on a conceptual model for advective transport through an elongated conductivity zone,
for example, in fluvial sediments, explicit expressions are presented for macro-scale phenomena: (1) the different travel distances
of water particles traveling in laminar flow through and adjacent to a single zone with conductivity higher or lower than that of
the aquifer; (2) the affected thickness of the bundle of flowlines; (3) the distinction of inflow, outflow, and through-flow sections;
(4) the development of a plume front vs. that of a tail; (5) conservation of mass causing water particles to travel both slower
and faster than the aquifer average velocity while passing a single zone. The spread derived from a spatial distribution in a field
experiment relates to the geometric mean of the spreads of the plume front and tail. The results obtained for a single conductivity
zone are expanded for a general aquifer that is characterized by stochastic parameters. A fundamental new expression describes the
dispersive mass flux as the product of the advective volume shift and the related local concentration difference. Contrary to Fickian
theory, the dispersive mass flux in both the front and tail of a plume in highly heterogeneous aquifers is limited. In modeling, the
advective volume shift is proportional to the cell size.

Introduction
Recent discussions (Hadley and Newell 2014; Neu-

man 2014; Molz 2015) show the need for a better under-
standing of dispersion phenomena in field experiments
and modeling practice. Although stochastic theory and
research modeling has been strongly developed over the
years (Neuman and Tartakovsky 2009; Fiori et al. 2017),
most is not applied in engineering practice (Fiori et al.
2016). Applications of transport modeling generally stick
to Fickian theory combining dispersivity with the local
concentration gradient as described in the manual by
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Zheng and Wang (1999) and in the handbooks from Bear
and Verruijt (1987), Appelo and Postma (1993), and Batu
(2006). Dual domain concepts (Feehley et al. 2000) are
rarely used in practice. Insights obtained from research
modeling by Jankovic et al. (2003) and Fiori et al. (2006,
2013) on the role of advective transport at macro scale has
not yet landed in applied modeling. It is also well known
that the concentration gradient is not the driving force for
dispersion (Konikow 2011) but is still interpreted as such.
Molz (2015) mentions that fieldworkers need a realistic
concept of transport in groundwater. Engineers may bene-
fit from simple expressions to better understand dispersion
phenomena encountered in the field before considering a
significant modeling effort such as needed for stochas-
tic simulations (Fiori et al. 2016). Hadley and Newell
(2014) quote Theis (1967) mentioning that “ . . . we need
a new conceptual model, containing the known hetero-
geneities of natural aquifers to explain the phenomenon
of transport in groundwater.” Fiori et al. (2013) modeled
explicit geological features in combination with local dis-
persion in the highly heterogeneous aquifer at the MADE
test site. They conclude that “local advection and the
conductivity spatial variability are apparently the only
mechanisms needed to explain and predict the MADE
findings.”
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In these footsteps, the present work shows that
longitudinal dispersion can be generated by advective
transport phenomena that are fundamentally different from
diffusive dispersion as described by Fick’s law.

The macroscale phenomena addressed are the follow-
ing: (1) the different travel distances of water particles
traveling in laminar flow through and adjacent to a sin-
gle zone with conductivity different from that of the
aquifer; (2) the thickness of the bundle of flowlines that
is affected by such a single conductivity zone; (3) the
inflow, outflow, and through-flow sections distinguished
in such a zone; (4) the differences in the development of
a plume front vs. that of a tail; (5) conservation of mass
causing water particles to travel both slower and faster
than the aquifer average velocity while passing a single
zone.

The phenomena are explored in aquifers characterized
by horizontal conductivity zones of limited extent, as
encountered in fluvial sediments. Along the main direction
of groundwater flow, water particles travel with different
velocities while passing different conductivity zones. This
process is observed in a vertical section along a flow line.

In the first step, we observe the deformation of a
front of water particles as it passes through a single
conductivity zone in a homogeneous aquifer. The front
is deformed over a length (spread) and thickness (wake)
which are described by simple expressions that include
the dimensions and conductivities of the aquifer, the
zone, and the thickness of the observed plume (if
known).

The second step expands this single zone concept for
an aquifer defined by stochastic parameters. The spread
and wake of the deformation are used to determine the
advective volume shift, a fundamental new parameter
for dispersion in groundwater. The dispersive mass flux
equals the product of the advective-volume shift and the
local mass gradient.

Issues relevant for modeling and field practice are:
(1) the differences in the spread of the front and the
tail of a plume; (2) the impact of a plume being thin;
(3) the differences in dispersed mass between a Fickian
and advective process; (4) the new dispersion parameter,
the advective volume shift, being proportional to the cell
size.

The present work elaborates on previous research
by Eames and Bush (1999) and Dagan and Lessoff
(2001) who derived expressions for dispersion of water
particles flowing through multiple circular and elliptic
inclusions with a bimodal conductivity distribution in a
homogeneous aquifer. Fiori et al. (2003) and Jankovic
et al. (2003) expanded the analysis by using two-
dimensional (2D) and three-dimensional (3D) models with
thousands of inclusions.

Figures 1 and 3 show flow lines in vertical cross
section and are generated with analytic elements (Strack
1989) by using line-doublets for the boundary of the
zone and line-dipoles for the aquifer boundary at top and
bottom.

Expressions for Water Particles Flowing
through a Single, Elongated Zone

Case Description
We will explore the phenomena in theory and quantity

by means of a case study with a single elongated zone
with conductivity higher (but can be lower) than that of the
aquifer (Figure 1). The parameter values and dimensions
occur in fluvial sediments such as those found in sandpits
in the Netherlands (W. Westerhof 2009), Germany (Heinz
and Aigner 2003), and the MADE aquifer (Rehfeld et al.
1992, Figure 7).

Figure 1 shows flow lines in blue and equipotential
lines in green. The predominantly horizontal conductivity
zone or heterogeneity (index h) has a length Lh = 29 m and
a thickness Dh = 0.8 m with a conductivity kh = 10 m/d
that is 10 times higher than that of the aquifer (index a)
ka = 1 m/d. In the aquifer, with thickness Da = 12.5 m,
the heterogeneity is essentially parallel to the virtually
horizontal bulk flow in the aquifer.

The Spread of Water Particles Caused by Flowing
through a Single Conductivity Zone

The spread (�s [m]) is defined as the change in travel
distance (s [m]) after passing though the conductivity
zone where water particles return to the same horizontal
position as they were prior to entering the conductivity
zone. Water particles traveling in the conductivity zone
are shifted forward (or backward in case of a low conduc-
tivity zone) with respect to water particles in the aquifer.
The spread of water particles after passing through
the conductivity zone can be quantified by integrating
the difference of the advective velocities [m/d] along
flow lines inside (vh) and outside (va) the zone over a
time T [d]:

�s =
∫

T

[vh (s) –va (s)] dt (1)

The time (T) needed for a particle to travel over the
length (Lh) inside the zone is expressed by:

∫
T

dt =
∫

Lh

[
1/vh (s)

]
ds (2)

Combination of Equations 1 and 2 leads to

�s =
∫

Lh

[vh (s) –va (s)]

vh (s)
ds (3)

The particle velocity v i in the aquifer (i = a) and
inside the zone (i = h) is expressed by:

vi (s) = −ki/n∗
i ∂φi/∂s (i = a, h) (4)

Here, n is the porosity [−] and φ [m] is the head.
Along the main part of the conductivity zone in Figure 1,
the head gradient is about equal inside and outside.
Neglecting the differences in the gradient, the velocity
ratio becomes va (s)/vh (s) = (ka /na )/(kh /nh ). Substitution
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Figure 1. Vertical cross section: flow (blue) and equipotential (green) lines in the case of a high conductivity zone in a bounded
aquifer.

in Equation 3 yields the following simple expression for
the particle spread:

�s = ( 1–κ/η) Lh (5)

where η = na /nh [−] is the porosity ratio and κ = ka /kh

[−] is the conductivity ratio that is the reciprocal to that
presented in previous work (Eames and Bush 1999; Dagan
and Lessoff 2001), which was defined as κ* = kh /ka

[−]. Dagan and Lessoff (2001) mention a ratio of 8 for
high conductivity and 1/100 for low conductivity when
referring to κ* values. In their Equation 15, the position
of the conductivity ratio is similar to that of Equation 5
presented above, so κ (=1/κ*) should be used instead.

For a path length (s [m]) smaller than Lh, the spread
follows from the linear growth inside the zone and can
simply be calculated by replacing s for Lh in Equation 5.
In the case of a low conductivity zone �s can be larger
than s. The latter is the physical maximum and replaces
�s in that case. In case of a high conductivity zone, �s
is limited to Lh.

Low and high conductivity values can be assessed as
follows. In practice, the variation of the conductivity in
the aquifer is ideally known by the stochastic parameter
σ 2

lnk [−]. Figure 2 shows a log normal distribution with
the conductivity ratio κ* along the x-axis. The standard
deviation σ lnk may be considered to represent a high and
a low value of κ*.

Figure 2. Schematic logarithmic probability distribution of
κ* = kh/ka with κ*high and κ*low being the values at standard
deviation.

Because σ lnk is positive, it follows from Figure 2 that:

σlnk = ln
(
κ∗

high

)
− ln (1) = ln

(
κ∗

high

)
= ln

(
1/κhigh

)
(6a)

σlnk = ln (1) − ln
(
κ∗

low

) = − ln
(
κ∗

low

) = ln (κlow) (6b)

The conductivity ratios κhigh and κ low can be
determined from σ 2

lnk by using:

1/κhigh = κlow = e

(√
σ 2

lnk

)
(7)

Implying that κhighκ low = 1, Equation 7 provides a
straight forward relation between σ 2

lnk and the two values
of κ representing zones with high and low conductivities.
These two values can be attributed to the spread in the
front (for zones with high conductivity) and in the tail
(for zones with low conductivity).

The Wake of a Conductivity Zone
The vertical distance denoted by Ih [m] in Figure 1

covers the flow lines entering and leaving the conductivity
zone and is called “the wake” after Eames and Bush
(1999). The expression for Ih follows from considering
continuity of flow in the undisturbed aquifer and at the
center of the zone:

Ihuana = Dhvhnh (8)

where, ua [m/d] is the undisturbed uniform velocity in
the aquifer (Figure 1). In the aquifer outside the wake,
continuity of flow yields:

(Da –Ih) ua = (Da –Dh) va (9)

Combining Equations 8 and 9, rewritten as the ratio
of ua/vh and using Equation 4 as in the derivation of
Equation 5 yields the expression for the wake:

Ih = Da/
[
1 + κ (Da/Dh –1)

]
(10)
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By this expression, the thickness over which a plume
front is distorted by passing through a single high-
conductivity zone is determined. For the case described
above, the resulting value Ih = 5.08 m agrees well with
Ih depicted in Figure 1. Typical relationships that may
be found are Ih = Dh/κ for zones of low conductivity
(κ>> 1), Ih = Dh for weakly heterogeneous aquifers
(κ ≈ 1) and Ih = Da for zones of high conductivity
(κ < < 1). This latter limitation to Ih implies a limitation
of the flux in a high-conductivity zone and so to
a limitation of the velocity inside. The wake does
not depend on the porosity ratio as it describes mass
conservation rather than particle spread. This is also
mentioned by Lessoff and Dagan (2001).

Particle Spread during In/Outflow vs. Plume Shift during
Through-Flow

The flow lines (Figure 1) contract and expand near
the tips of the conductivity zone in the so-called “inflow
and outflow sections” with the combined length LIO

[m]. Between these sections the flow is virtually one-
dimensional (1D) in the “through-flow section” LT [m].
The length LIO can be assessed in an “ideal” situation of
unlimited flow into the conductivity zone in an infinite
aquifer as derived by (De Lange 1996, equation 5.40).
Adapted in this paper by using different symbols, it can
be written as:

η ua/vh = Dh/LIO + κ (11)

This expression has been derived by inverse modeling
and also can be derived from an analytical solution by
Strack (1981). By combining Equations 8, 10, and 11 LIO

becomes:

LIO = Da/ (1 − κ) for LIO < Lh (12)

The length of the through-flow section LT (Figure 1)
is described by:

LT = Lh − LIO for LIO < Lh (13)

Using the values of the example case as input, cal-
culated values for LIO = 13.89 m and LT = 15.11 m agree
well with Figure 1. If Lh ≥ Da/(1 − κ) then a through-flow
section establishes meaning in high conductivity zones
that are longer than the thickness of the aquifer.

Water particles in adjacent flow lines are shifted
relative to each other while crossing the boundary of the
high-conductivity zone (Figure 1) causing spreading along
the flow lines. In the inflow and outflow sections, water
particles travel over different path lengths generating
particle spreading in the plume. In the through-flow
section, water particles travel parallel to each other with
equal velocity. In this zone, the part of the plume that is
captured in the wake is shifted as a whole relative to the
water particles outside the wake, generating a so-called
“block-shift.” Inside the high conductivity zone, this part
of the plume is also stretched due to the high velocity.

Figure 3. Vertical cross section: a thin plume entering the
high conductivity zone of Figure 1.

Spreading of Thin Plumes
In field experiments such as those performed at Bor-

den (Rajaram and Gelhar 1991), Cape Cod (Hess et al.
2002), and MADE (Adams and Gelhar 1992) the defor-
mation of a plume has been measured in 3D along the
travel path showing the thickness of the injected volume.
In the cases where the plume thickness is thinner than
the wake, the lengths of the inflow section (being half the
length of the combined inflow outflow section) Lp/2 will
be reduced (Figure 3).

The length (Lp) is assessed by using proportionality
with the plume thickness (Dp) over the maximum
thickness of flow lines that enter the conductivity zone,
so the wake Ih:

Lp = θLIO with θ = Dp/Ih (≤ 1) (14)

Using the values from the example case and Dp = 1
[m], the calculated values Lp = 2.74 m and θ = 0.20 [−]
agree well with Figure 3. The reduced spread of a plume
thinner than the wake passing through a high conductivity
zone results from using Lp instead of LIO in Equation 5.

At test sites in Denmark (Jensen et al. 1993) and
Horkheim (Ptak and Teutsch 1994), measurements in
filters have been interpreted by using break-through
curves. In the filters, only a “thin plume” is measured,
that easily may by inside a conductivity zone. In a
high (or low) conductivity zone, the plume is stretched
(or compressed) as compared to when flowing in the
undisturbed aquifer. This may cause an overestimation
(or underestimation) of the spread or dispersion, which
can be corrected by multiplying the spread by the ratio of
velocities in the undisturbed aquifer (ua) and in the zone
(vh) as follows from Equations 8 and 10:

ua

vh
= Dh

Ihη
= Dh

Da

(1 − κ)

η
+ κ

η
(15)

In the example case of Figure 1 the ratio equals
0.16, which is significant. The scaling of Equation 15 is
different from using the conductivity ratio (κ) as often
done in practice.
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Figure 4. Calculated deformation of a water particle front after passing the conductivity zone of Figure 1.

Forward Shift (Drift) vs. Lagging Behind (Reflux)
Figure 4 shows the simulated deformation of a

straight vertical front of water particles after passing
through the conductivity zone of Figure 1. The shape of
the deformation is similar to that obtained by Dagan and
Lessoff (2001) in the case with an ellipsoidal inclusion.

The water particles inside the wake (Ih in Figure 4)
have been shifted forward and those outside lagged behind
compared with the aquifer-average displacement (vertical
dashed line in Figure 4). Eames and Bush (1999) call the
flow in these zones, the drift and the reflux, respectively.
The spreads caused by the drift (�sdrift [m]) and the reflux
(�sreflux [m]) follow from the velocities of vh and va

relative to ua (see Figure 1). Using Equations 2, 8, and
10 these spreads become:

�sdrift =
(

1 − κ

η

)
∗

(
1 − Dh

Da

)
Lh (16)

and

�sreflux =
(

1 − κ

η

)
∗ Dh

Da
Lh (17)

The ratio between these shifts �sdrift/�sreflux =
Da/Dh − 1 does not depend on κ/η or Lh because
it describes mass conservation. The closed mass
balance of this phenomenon is expressed by
�sdriftDh = − �sreflux(Da − Dh). The back shift is
significant in cases where heterogeneities fill up a
significant part (>30%) of the aquifer thickness. The
distinction between drift and reflux also applies in the
case of low conductivity heterogeneities but in directions
opposite to those in Figure 4.

Using values from the case of Figure 1, the calculated
values for �sdrift = 24.43 m and �sreflux = 1.67 m are
smaller than occurring in Figure 4. This is due to the
spread of water particles occurring along the contracting
flow lines just outside the conductivity zone. Simulations
suggest that this length is about equal to Ih both for
the inflow and outflow sections. The adapted spread
in Equation 5 �s (Lh + Ih) = 35.24 m is closer to the
result of the analytic element simulation in Figure 4. This
correction can immediately be applied to the previous
expressions. Future research may result in additional
corrective terms.

Expressions for a Heterogeneous Aquifer

Expansion to a Stochastic Characterized Aquifer
Next, the results obtained above for a single conduc-

tivity zone will be expanded for a general aquifer. This
is done in two steps: (1) We show the similarity between
the spread Equation 5 and the standard deviation of a par-
ticle distribution derived from the expression of (Gelhar
and Axness 1983) for the classic dispersivity. (2) The
expressions for a single zone are applied in a specified
domain that is repeated to fill up the general aquifer, while
the parameters applying to a single conductivity zone are
replaced by stochastic parameters applying to the general
aquifer.

Similarity between the Expressions for the Spread
(Single Conductivity Zone) and for the Standard
Deviation from Classic Dispersivity (General Aquifer)

In applied transport modeling, the (longitudinal)
dispersivity (α [m]) is used in a Fickian expression
for the mass flux. Gelhar and Axness (1983) relate
α to the log conductivity variance (σ 2

lnk) and the
characteristic length (Iy [m]) pertaining to the structure
of the aquifer. We combine their expression (using λ = 1
[−] in their convention) with the general relation between
the dispersivity and the variance (σα

2 [m2]) of the particle
distribution at travel distance (s) to:

α = σ 2
α (s) /2s = σ 2

lnkIy (18)

The characteristic length Iy is the radius of a zone
around an observation point over which conductivity is
related to the value at that point. In 2D space, the length
of the conductivity zone Lh equals 2Iy, which is in the
footsteps of Fiori et al. (2003). Using this equality, the
last two terms in Equation 18 can be rewritten into:

σα (s) =
√

(σlnkLh)
√

(σlnks) (19)

The standard deviation following from classic disper-
sivity (σα) equals the geometric mean of two others. The
first term (σ lnks) increases with travel distance similar to
the spread of a tail as explained with Equation 5, while
the second term (σ lnkLh) is limited with travel distance
similar to the spread of the front a plume also explained
with Equation 5, in a strongly heterogeneous aquifer. The
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variance (σα
2) can be interpreted as the product of the

standard deviations or the spreads of the front and tail of
the plume. Such a variance has been determined from the
3D particle distribution in field experiments such as those
at Borden (Rajaram and Gelhar 1991), Cape Cod (Hess
et al. 2002), and MADE (Adams and Gelhar 1992).

For weakly heterogeneous aquifers (σ lnk < 1), we
may write:

σlnk = − ln (κ) = − ln (1 − χ) ≈ χ = (1 − κ) (20)

Using this, the standard deviation Equation 19 after
passing a single conductivity zone (s = Lh) in weakly
heterogeneous aquifers becomes:

σα (Lh) = (1 − κ) Lh (21)

This expression for the standard deviation is similar
to that for the spread Equation 5, except for the porosity
ratio. This similarity supports the expansion described
in the following section. The meaning of the spread in
Equation 5 for a single zone is similar to that of the
standard deviation in Equation 21 for an aquifer with
multiple heterogeneities. For simplicity, �s is used from
now on for both situations.

Expressions for a General Aquifer Characterized
by Stochastic Parameters

A general heterogeneous aquifer is represented
by many sub-aquifers (Figure 5, top), each with a single
high or low conductivity zone. Each sub-aquifer covers a
“domain A” in which deformation of a particle distribu-
tion occurs as represented by the gray fronts in Figure 5
(bottom). All domains A’s together generate a distribu-
tion of conductivity zones meant to be similar to that
as used by Eames and Bush (1999), Dagan and Lessoff
(2001), and Lessoff and Dagan (2001). In these studies,
they derived expressions for the dispersivity from 2D inte-
gration of the local displacement in water particles passing
through individual inclusions described by mathematical
functions. Their inclusions are assumed not to interfere
with respect to spreading. This is simplified in this study
as stacked domain A’s as sketched in the top image of
Figure 5. Boundaries are created by horizontal flow lines
between these domains. This complies with the imperme-
able top and bottom as sketched in Figure 1 generating
independency of spreading in each domain.

The specification of domain A and the conductivity
zone are based on the following.

Jankovic et al. (2003) used the stochastic parameters
σ 2

lnk and Iy to parameterize the numerous circular and
spherical inclusions in a homogeneous aquifer to repre-
sent a general heterogeneous aquifer. For weakly het-
erogeneous soils, their result [α = σ lnkNIy] is equal to
Equation 18 except for the volume fraction of hetero-
geneities N. We use N to determine the dimensions of
the periodic domain A by L = Lh/N and D = Dh/N. In line
with Equations 18 through 21, the result of Jankovic et al.
(2003) means that the value of σα in a general aquifer can

be calculated by using the stochastic values in Equation 21
as well as in Equation 5 as if there were properties for a
single conductive zone. Vice versa, a single conductivity
zone with stochastic parameter values may represent a het-
erogeneous aquifer with respect to the resulting spreading
in each domain A in Figure 5. This is the basis of our
“working model.”

As described with Equation 19, the stochastic param-
eter Iy is directly related to Lh and the same applies to
the vertical characteristic length Iz and Dh. The value of
N can be assessed from the stochastic characterization of
the aquifer or from expert knowledge of geologists and
is assessed to range from 0.1 to 0.3 (N ≈ 0.16 in the case
of Figure 5). Using this and the expressions for L and
D above, the dimensions of both the conductivity zone
and domain A are directly related to stochastic parameters
describing the general aquifer. The stochastic parameter
σ lnk leads to κhigh and κ low with the use of Equation 7. The
porosity ratio θ can be related to κ for instance by using
Table 2.1 as presented in Dominico and Schwarz (1990).
These stochastic parameters can be used in Equation 5 to
compute the change in the standard deviation or spread
of the particle distribution caused by dispersion in each
domain A, by:

�sj
∣∣
A = (

1 − κj/ηj
)

Lh (22)

In which j denotes the high or low conductivity and
represents the front or tail of a plume. In our “working
model,” all zones are high-conductive when calculating
spread of a front and low conductive when calculating
spread of a tail.

Expressions for Dispersive Mass Transport
The bottom image of Figure 5 shows the computed

distortion of a plume front in which all water particles
have passed through the conductivity zone. In each
domain A, the change of mass (�M) consists of a
spread over the distance (�s) of the water particles
within the wake (Ih), with the concentration difference
�cA = (c1 − c0) yielding:

�Mj
∣∣
A = �cA �sj

∣∣
A Ih,j (23)

where j is defined with Equation 22. This change of mass
occurs during period TA that is needed to pass length L
at the average velocity in the aquifer. This leads to the
dispersive mass flux (FA) in domain A:

FA,j = �Mj
∣∣
A

�TA
= �Mj

∣∣
A

L
ua (24)

The specific dispersive mass flux (f) per unit volume
becomes:

fj = FA,j

A
= �Mj

∣∣
A

AL
ua = �sj

∣∣
A

L

Ih,j

D

�cA

L
ua (25)

where j is defined in Equation 22. This expression
represents the advective transport per unit volume in the
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Figure 5. Vertical cross sections. Top: periodic domains filling up an aquifer; bottom: domain A (gray area) with a single
conductivity zone.

general aquifer. The classic expression for longitudinal
dispersion applies to the spreading of a plume in the
equilibrium phase. In our case, this occurs to a plume
after passing a complete domain A or distance L. In prac-
tice, the dispersive mass flux Equation 25 is transferred
in a Fickian-like expression for the mass flux (Fj|L) that
is valid over any distance L. The unit concentration
gradient follows from �c/�x = �cA/L yielding:

Fj
∣∣
L = fj L = ωj

�c

�x
ua (26)

where ωj is called the advective volume shift expressed by:

ωj = βj �sj
∣∣
A = βj (1 − κi/ηi) Lh (27)

Here β is the wake fraction Ih/D that can be reworked
using Equation 8 with Da = D to:

βj = Ihj/D = 1/
[
1 + κi (1/N − 1)

]
(28)

The wake fraction (β) limits the dispersive mass
of a long tail by accounting for the wake (Ih) being
thin. For low conductivity ratios (κ>> 1) and if N < <1,
Equation 28 simplifies to β = − N/κ . For high conductiv-
ity ratios (κ < <1) and if N is of order 10−1, Equation 28
reduces to β = 1. The shifted concentration gradient
�c/�xin Equation 26 represents the mass that is shifted
by the advective transport through each domain A. It
is not considered to be a driving force as it is in
the common, similar expression for diffusive or Fickian
dispersion.

The dispersive mass flux (f) in Equation 26 is affected
by the four parameters used to describe ω in Equation 27.
In brief, f and ω increase without limits when Lh is

increased. In the case of a thin plume, Dp replaces Ih in β j

Equation 28 and (Lp + LT) replaces Lh in �s Equation 22
leading to a reduction of the values of f and ω. The
ratio N is reciprocally related to D which determines the
maximum value of Ih in the case of a high conductivity
zone. In a case with a high conductivity zone, a decrease
of N will lead to an increase of D, f and ω. The impact
of κ on ω is discussed next.

Comparison between the Advective Volume Shift ω

and the Dispersivity α

The position of ω in Equation 27 is the same as that
of α in Fick’s law. Figure 6 shows how α, ω, β, and �s
vary with σ ln(k). As α presumes symmetric spreading, it is
shown also for the tail. The parameters values underlying
this figure are Lh = 10 m, Dh = 1 m, Dp = 1 m, η = 1 and
N = 3, while κ varies along the x-axis.

The values of α and ω behave differently with
changing σ ln(k). In highly heterogeneous soils, ω is
limited in the front due to the limitation of the spread
following from Equation 22. This is caused by the limited
velocity inside the conductivity zone and due to a long
tail becoming thin, as accounted for in Equation 28.
A comparison of Equations 21 and 26 shows that the
values of ω and α are about equal if the values of σ

and N are about equal in weakly heterogeneous aquifers
(σ lnk < 1).

Application in Modeling: Adaptation to Cell Size
Both f and ω apply to a length (L) as described

in Equation 26. In numerical modeling, longitudinal
dispersion is 1D in the direction of flow. The cell size
determines the path length X [m] over which dispersion
or spread occurs in a cell and should be accounted for
in that cell. In a cell with size X, this spread occurs X/L
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Figure 6. Variation α (black), ω (blue), β (brown) and �s
(green) with σ ln(k) for front and tail.

times in which case the 1D dispersive mass flux in a cell
fcell becomes:

Fcell,j = Fj
∣∣
L

X

L
= ωcell,j

�c

�x
ua (29)

So:

ωcell,j = ωjX/L (30)

The parameter ωcell is called the cell advective volume
shift and is proportional to the cell size. Because of the
similarity between ω and α in the expression for the mass
flux, Equation 30 might also apply to α. The ratio X/L
may give support to the common practice of using large
dispersivities in large models because of the use of large
cells rather than the travel distance.

Discussion
In field experiments such as those at Borden (Rajaram

and Gelhar 1991), Cape Cod (Hess et al. 2002), and
MADE (Adams and Gelhar 1992), travel distance is
often not sufficient to fulfill ergodicity and the plume
development is strongly asymmetric. The present theory
enables engineers to quantify the transport phenomena
as they occur to a plume passing through a single
conductivity zone as it travels in a heterogeneous aquifer.
Dispersion at this scale has a strong advective transport
component and is hardly Fickian. The limited growth in
the plume front and the growth of the tail over a long
distance causes asymmetric deformation of the plume,
contrary to the results from Fickian dispersion.

The value of ω can strongly differ with travel distance
s from that of α, especially in highly heterogeneous
aquifers as illustrated in Figure 7 which shows α, β, �s,
and ω varying with s when σ ln(k) = 4. The underlying
parameters are the same as those used in Figure 6. For

Figure 7. Variation of α (black), ω (blue), β (brown) and �s
(green) with s for σ ln(k) = 4; dotted lines denote computed
values without correction for �s > s.

path lengths shorter than Lh, �s increases linearly with
a distance that follows from Equation 22. It is known
(Gelhar 1993) that α increases approximately linearly in
the initial spreading phase, which is assumed to occur over
the length Lh in this comparison. The spread in the tail
calculated from Equation 22 is larger than the path length
over the first 500 m. The path length then determines the
actual spread and reduction of ω.

Porosity differences matter in dispersion because they
affect the velocities of water particles with dissolved
mass. For instance, in a zone with low porosity where
the conductivity is equal to that of the aquifer, the
Darcy velocity is equal inside and outside but the water
particles travel faster inside than outside. When the water
particles then leave the zone, they become adjacent to
water particles having traveled slower outside the zone,
causing dispersion to occur. Porosity is known to be
relevant to dispersion (Konikow 2011). Because large
pores between cobbles are often filled with smaller grains,
porosity generally decreases with increasing conductivity,
strengthening dispersion (see table 2.1 from Dominico
and Schwarz (1990)). This relation is opposite to that
described without proof by Dagan and Lessoff (2001). For
field situations, Gelhar (1997) mentioned that “porosity
differences easily can account for differences between
the observed geometric mean and the effective hydraulic
conductivity derived from the velocity of the center of the
mass in the field experiments of Borden (Sudicky 1986).”
The porosity ratio is significant in transport calculations
when κ ≤ η and vanishes when κ is high, which is also
mentioned by Lessoff and Dagan (2001).

Conclusions
The present theory enables engineers to quan-

tify the advective transport phenomena that underlie
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non-ergodic and asymmetric dispersion. These phenom-
ena occur at macro scale to a plume as it passes through
a single conductivity zone. Simple expressions describe
the spread of water particles in that plume, the thick-
ness of the bundle of flowlines entering and leaving
the zone (the wake), the lengths of the zones of inflow,
outflow and through-flow, the ratio between the forward
and backward part of the shift of water particles in the
plume, and the reduction to particle spreading when a
plume is relatively thin.

Asymmetric dispersion is caused by the different
spreads of the front and tail of a plume. These spreads
can be calculated by using the high and low conductivity
values at the standard deviation in the log conductivity
distribution, which are substituted in the simple expres-
sion for the spread (in the case of a single conductivity
zone) or for the standard deviation (in the case of a
heterogeneous aquifer).

The spread derived from a spatial distribution in a
field experiment can be interpreted as the geometric mean
of the spreads of the front and tail of the plume.

Break-through measurements in field experiments
apply to a thin part of the injected plume which is often
inside a conductivity zone. In this case, an expression is
presented to scale up the spread that is representative of
the overall aquifer.

The fundamentally new expression for the dispersive
mass flux represents advective transport phenomena only.
In this Fickian-like expression, the advective volume shift
ω replaces the classic dispersivity α and the concentration
gradient is a measure of the mass that is shifted instead
of being the driving force. The advective volume shift
ω equals the spread of the front (or tail) of the plume
multiplied by the wake fraction. The wake fraction
accounts for a long tail being thin.

The advective volume shift is a function of the cell
size. The similarity between the new expression for the
dispersive mass flux and Fick’s law may give support to
the common practice of using large dispersivities in large
models.
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