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Abstract

The performance of Watson & Ahumada’s model of human visual motion sensing is compared against human
psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular
annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate
some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of
observer performance with frame duration of the display. Associated with the concept of rotary motion is the notion of a
center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center
must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm
this result, and may explain the position invariance of MST(d) cells. Position invariance is the experimental finding that rotary
motion sensitive cells are insensitive to where in their receptive field rotation occurs. When all the dots in the display are
randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake
previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported
concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of
motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in
perceived direction is lognormally distributed (mode<2 s). These findings suggest the omega effect fits in the category of a
typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie
much of other bistable phenomenon.
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Introduction

Many models of visual motion perception have been proposed

[1,2,3,4,5]. Although much research has since been done on

studies of human visual motion perception, little work has been

done to psychophysically characterize the performance of these

models. This is important for obvious reasons. A correct model of

motion sensing should match human psychophysical performance

on motion detection, and also agree with what is known currently

about the neurophysiology of motion sensitive cells in the brain.

This paper presents a psychophysical performance character-

isation of Watson & Ahumada’s model of visual motion sensing

[3], the first one to do so in my knowledge. The ability of Watson

Ahumada motion detector to detect motion in random dot

kinematograms is compared against human psychophysical

performance. The stimulus, termed the racetrack, consists of

random dots displayed in a circular annulus. The dot pattern is

refreshed periodically, and a certain fraction of dots are correlated

to move either clockwise (CW) or counter-clockwise (CCW) in the

next frame. By varying the fraction of dots to be correlated, the

amount of motion signal in the display can be controlled (see

Movies S1, S2, S3 for illustration). There are many other

parameters that can be varied, and performance of both the

model and human observers is measured.

The model is able to match human performance with respect to

most, but not all, stimulus parameters. For example, it is found

that human observers are insensitive to the dot density in the

display. The model shows similar behavior. The invariance of

observer performance to dot density provides strong evidence

against motion models based on matching dots to their nearest

neighbors in the next frame [6,7]. Such models predict that

observer performance should decrease with increase in dot density,

according to the probability of mismatch formula [8]. This is

because as the dot density increases, the chances that the nearest

neighbor is not in fact the correlated partner from the previous

frame increase. Another experimental finding is that a frame

duration of about 30 ms is found to be optimal for motion

perception. I explain this result in terms of the spatiotemporal

receptive field (STRF) structure of motion sensitive cells. At any

time instant t, the response of such cells is roughly based on the
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value of the spatiotemporal stimulus from time t-T to t, with T of

the order of 200 ms. When the frame duration is of the order of T

or higher, the input is mostly constant within a window of T ms

and therefore the cells fail to detect any motion. On the other

hand if frame duration is very low the input may be changing at a

rate that the cells cannot handle. This will again result in failure of

cells to respond optimally.

The motion in racetrack is rotary as opposed to the more

commonly encountered translational case. Associated with the

concept of rotary motion is the notion of a center about which

rotation occurs. One might think that for accurate estimation of

rotary motion in the display, this center must be accurately known. A

simple vector analysis presented in this paper reveals that this need

not be the case. Numerical simulations confirm this result, and may

explain the position invariance of MST(d) cells. Position invariance is

the experimental finding that cells that are sensitive to rotary motion

are insensitive to where in their receptive field rotation occurs [9].

A special case of the racetrack is when all dots are randomly

drawn from a uniform distribution in each frame, i.e., there are no

correlated dots. One would expect that in this case the perception

would be that of random twinkling noise, since there is no motion

embedded in the stimulus. However, about two-thirds of observers

report perception of rotary motion. This illusory motion was

investigated by Rose & Blake previously, who termed the

phenomenon the omega effect [10]. The omega effect is a classic

example of paternicity, the tendency of the brain to find meaningful

patterns in meaningless noise [11]. Two important results

concerning this effect are reported in this paper. First, although

the display of random dots evokes perception of rotary motion, the

direction of motion perceived does not depend on what dot pattern

is shown. Second, the time interval between spontaneous flips in

perceived direction is lognormally distributed (mode<2 s).

It may be worthwhile to mention some aspects of the ‘‘Materials

& Methods’’ in this paper that are distinct from the traditional

psychophysics paradigm. In the experiments described here, each

trial has a 60 s duration. During this time, the direction of rotation

changes randomly and the observer is faced with the task of

continuously tracking the direction of rotation. Observer perfor-

mance is calculated by cross correlating observer response with

actual direction of rotation. The maximum value of the

normalized cross correlation function denoted by x is taken to

be a measure of observer performance. This method is distinct

from traditional psychophysics paradigm, in which the display is

shown to observer for fraction of a second, and the observer has to

judge if motion was perceived CW or CCW. After many trials the

confusion matrix and d9 is calculated [12]. The reason for the new

method is none, except that it naturally occurred to me. Also it is

my opinion that sub-second trial duration may not provide enough

time for visual system of observer to reach steady state. One would

expect that trial duration should be such that the percent correct

and d9 should be independent of trial duration. This can only

happen if the system is in steady state. A side-benefit of the new

method is that it enables the calculation of reaction time of the

observer. This is the time delay at which the normalized cross

correlation function reaches its maximum value. It is found that

for most observers, reaction time ranges from 0.5–2 s depending

on how easy it is to detect motion in the display.

In summary, the paper can be said to have three main

contributions:

1. It presents a psychophysical performance characterisation of

Watson & Ahumada’s model of visual motion sensing. The

model is found to provide a good fit to the experimental data

for most, but not all, stimulus parameters.

2. It shows that for accurate estimation of rotary motion in a

display, it is not necessary that the center of rotation be

accurately known. This may explain the fact that rotary motion

sensitive cells found in MST/MSTd areas of the brain are

insensitive to where in their receptive field rotation occurs.

3. It presents two experimental findings concerning the omega

effect. First, observer response is irreproducible. Second, the

time interval between spontaneous flips in perceived direction

is lognormally distributed (mode<2 s). These findings suggest

the omega effect fits in the category of a typical bistable illusion,

and therefore the processes that give rise to this illusion may be

the same processes that underlie much of other bistable

phenomenon.

Previous Work
Visual motion perception has been a heavily researched topic

and hence this paper will necessarily limit itself to a discussion of

the most relevant work. Reviews reflecting the state-of-the-art in

this area can be found in [13,14,15,16]. Three seminal models of

visual motion perception were proposed by Adelson and Bergen

(1985), van Santen and Sperling (1985), and Watson and

Ahumada (1985) [1,2,3]. Central to the Adelson Bergen & Watson

Ahumada models is the concept that the entire power spectrum of

an image undergoing coherent translation lies on a plane in the

spatiotemporal frequency domain [17]. Determining this plane is

therefore equivalent to determining the motion of the image. In its

original form the Adelson Bergen motion detector is limited to

detecting motion in 1D. Its extension to 2D was provided by

Heeger (1987), Simoncelli and Heeger (1998) [18,19]. The model

has been refined further in Rust, Mante, Simoncelli, and Movshon

(2006) where it is shown that it can capture the full range of

pattern motion selectivity found in MT [20]. Emerson, Bergen,

and Adelson (1992) did a study in which it was shown that the

responses of V1 complex cells from cat’s striate cortex were well

fitted by the Adelson Bergen model [21]. Moreover, cell responses

were found to be inconsistent with the van Santen and Sperling

model. Cells sensitive to rotary motion have been discovered in

areas MST/MSTd of the brain [22,23,9]. These cells have large

receptive fields compared to cells in V1/MT. Also, they are not

sensitive as to where in their receptive field rotation occurs, a

phenomenon termed position invariance [9].

Random dot kinematograms (RDKs) have been widely used in

studies of visual motion perception [6,7,8,10,24,25,26,27,28].

Newsome & Pare (1998) have remarked that random dot displays

are useful because they stimulate primary motion sensing

mechanisms while minimizing familiar positional cues [24].

Newsome, Britten, & Movshon (1989) found that a dot correlation

of at least six percent is required for monkeys to be able to detect

motion in RDKs undergoing translational motion [25]. The

present study gives a similar result for human observers. The effect

of time-sampled displays on motion perception has been

previously researched by Morgan (1980), Watson, Ahumada, &

Farrell (1986) [29,30]. Williams & Sekuler (1984) had studied the

effect of dot density on observer performance [8]. They

formulated the probability of mismatch formula according to

which observer performance should decrease with increase in dot

density, a view challenged by the present paper.

A special case of the racetrack is the omega effect, in which a

display of dynamic uniformly distributed random dots in a circular

annulus evokes perception of illusory rotary motion. This

phenomenon was discovered by Rose & Blake (1998) [10]

although they trace its origin to as far back as Mackay (1965)

[31]. Recently several papers studying illusory motion from Glass

Performance Characterisation
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patterns have appeared in the literature [32,33,34,35]. Motion

perception in such cases, where the spatial form of the stimulus is

believed to guide motion perception, has generally been termed as

implied motion in order to distinguish it from real motion, in which

the display itself contains non-zero motion energy. Geisler (1999)

had suggested motion streaks as providing a spatial cue that guides

motion perception [36]. Barlow & Olshausen (2004) have explained

the phenomenon of motion streaks and flow seen in Glass patterns

by pointing out that the power spectrum of a motion blurred image

or a Glass pattern exhibits strong anisotropy, which is a

characteristic property of a moving image, and therefore excites

the mechanisms that normally detect the distortions of local power

spectrum caused by motion [37]. It is to be noted that the omega

display does not display the anisotropy in power spectrum

associated with Glass patterns, yet rotary motion is seen in it.

Materials and Methods

The experimental stimulus used in this study is termed

racetrack. Three movies of the stimulus are included with this

paper. A Java applet is also available online at http://purl.oclc.

org/NET/racetrack. The racetrack stimulus consists of a random

dot pattern displayed in a circular annulus. The dot pattern is

refreshed periodically. A certain fraction c of the dots, referred to

as correlated dots, are rotated by an angle h in the next frame. The

remaining dots have their positions generated randomly and

uniformly in Cartesian (x,y), and are representative of noise. The

algorithm for generating dots is such that if a dot is correlated in

the present frame, it is guaranteed not to be correlated in the next

frame. This eliminates the appearance of multiple dot trajectories,

and thus the only motion cues in the stimulus are two dot apparent

motion cues. Observers see a swarm of dots that appears to rotate

clockwise (CW) or counter-clockwise (CCW). The direction of

rotation changes randomly according to the polarity of a coin that

flips every 3 s. They are instructed to click the left mouse button

for CCW motion, and the right mouse button for CW motion. By

cross correlating the observer response with the actual direction of

rotation of the correlated dots, an estimate of observer

performance and reaction time denoted by x and t respectively

is obtained. This process is illustrated in Figure 1. x is defined as

the maximum value of the normalized cross correlation function. t
is the time delay at which x occurs. A x value of 1 indicates perfect

detection of the embedded motion. At c = 0 the observer response

can still be cross correlated with the input signal, which would

have dictated the rotation of correlated dots if there were any in

the stimulus. The x value obtained in this case reflects chance, or

zero, detectability of embedded motion. Response reproducibility

is quantified by cross correlating observer response curves in

response to the same stimulus in multiple trials.

Definitions and default values of some parameters are as follows:

dot correlation c = number of correlated dots/total number of

dots; frame duration fd = length of time for which a frame stays on

screen, default = 30 ms; dot density dd = dots per unit area,

default = 5 dots/degrees2; angle of rotation h = angle by which

correlated dots are rotated, default = 5u, the spatial hop size of a

correlated dot = rh where r is distance of dot from center, h in

radians; inner circle diameter ic = angle subtended by inner circle

diameter at the eye, default = 7u; outer circle diameter oc = angle

subtended by inner circle diameter at the eye, fixed at 10u in all

experiments; dot diameter = 59, fixed in all experiments; duration

of a trial = 60 s. Stimuli were displayed on a NEC MultiSync

FP1370 220 (200 viewable image size) CRT monitor with display

resolution = 6406480@100 Hz; black dots (luminance<0) against

a background luminance of 10.8 cd/m2 were displayed; viewing

distance = 1.65 m. The range and default values of some

parameters is summarised in Table 1.

The study was conducted over a period of several years, and

new observers were recruited as old ones dropped out. In all

experiments the number of observers is at least four, and number

of trials $20 for each data point shown in the figures. Error bars in

the figures equal one standard deviation (s.d.), unless otherwise

stated. Custom software was written by the author in C# to

generate the stimuli. The study was approved by Committee for

Protection of Human Subjects (CPHS), UC Berkeley. Written

informed consent was obtained from subjects.

Model Description
The following steps and Figure 2 describe the complete pipeline

used to model observer responses to the racetrack:

Figure 1. The dotted curve is the motion generated by the
computer, and the solid curve is the motion reported by the
observer. x is the maximum value of the normalized cross correlation
function and t is the time delay at which x occurs.
doi:10.1371/journal.pone.0004536.g001

Table 1. Default values and range of various parameters used
in experiments.

Parameter Range Default value

Dot correlation c 0–0.5 -

Frame duration fd 10–100 ms 30 ms

Dot density dd 1–25 dots/degrees2 5 dots/degrees2

Angle of rotation h 1–20u 5u

Inner circle diameter ic 1–9.5u 7u

Outer circle diameter oc - 10u

Dot diameter - 59

Duration of a trial - 60 s

Dot luminance - <0

Background luminance - 10.8 cd/m2

Monitor resolution - 6406480 pixels

Viewing distance - 1.65 m

doi:10.1371/journal.pone.0004536.t001
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N Step 1: Stimulus is input to the Watson Ahumada motion

detector, which at time t gives the instantaneous optical

flow.

N Step 2: The optical flow is easily converted into a measure of

rotary motion signal by taking cross products with radial

vector, followed by weighted averaging. The weights are

obtained in Step 1; for each velocity estimate the Watson

Ahumada detector is able to provide a confidence/error

measure which is used as the weight. Area MST(d) in the

brain is believed to carry out this type of processing, where

the local motion signals from stage MT are pooled to estimate

global patterns of rotation and expansion that guide in

heading estimation [9,38,39]. The output of this step is

denoted by e(t).

N Step 3: The human visual system must integrate information

over a certain interval of time to compute a reliable estimate of

Figure 2. (a) Block schematic of the model (b) Optical flow output by Watson Ahumada motion detector (c) Model response at
various other stages in the pipeline.
doi:10.1371/journal.pone.0004536.g002

Performance Characterisation

PLoS ONE | www.plosone.org 4 February 2009 | Volume 4 | Issue 2 | e4536



motion. This is achieved by passing e(t) through a moving

averages filter, with window size of half a second. The output

of this step is denoted by I(t).

N Step 4: While doing psychophysical experiments with

human observers, the only information available is the

direction in which the observer is perceiving motion.

Therefore in order to compare model response with

experimental psychophysics, I(t) is passed through a level

crossing detector (LCD) with thresholds 6B. B = 2s(I) at

c = 0 under default parameters. This choice of B makes the

events when I(t) may cross detection threshold, given there is

no rotary motion in the stimulus, unlikely. The behavior of

level crossing detector is as follows: when input crosses +/

2B the detector signals CCW/CW motion respectively, and

continues to do so until the input crosses threshold in the

opposite direction. When that happens, the LCD flips to the

opposite state.

x, t can now be computed for the model, and values compared

to experimental psychophysics. In its present form the model is

strictly deterministic. However, the human visual system neces-

sarily exhibits some variability, characteristic of any real world

physical system. In fact as shown in the results section, it is found

that at c = 0 observer responses are not reproducible. This

variability in response is incorporated into the model by adding

Gaussian White Noise (GWN) n(t) to e(t), until the model response

reproducibility also drops to zero at c = 0. This occurs for

k = s(n(t))/s0$approximately six, where s0 stands for s(e) at

c = 0 under default parameters. Accordingly k was fixed at six.

Model simulations were run at a resolution of 1286128 pixels,

unless otherwise stated. Circular dots in psychophysical experi-

ments were approximated as squares of equal area in model

simulations. In all results, Watson Ahumada sensors are tuned to a

center frequency of 0.64 cycles/degrees, unless otherwise stated.

The reason for this setting is that it gave acceptable results. It may

also be noted that most of the energy in power spectra of natural

images is concentrated at relatively low spatial frequencies [40].

Default values of model parameters are summarised in Table 2.

My source code for the Watson Ahumada component of the

model is publicly available [41].

Results

We begin with a discussion of the omega effect (c = 0 case of

racetrack), and present two important results. First, although the

display triggers perception of rotary motion, the direction of

motion perceived is not dependent on what dot pattern is shown.

Second, the time interval between spontaneous flips in direction

exhibits a lognormal distribution.

Omega effect: Response Reproducibility and distribution
of spontaneous flips in perceived direction

As mentioned earlier, the omega effect is the c = 0 case of the

racetrack. About two-thirds of observers report perception of

rotary motion at c = 0, even though there is no motion embedded

in the stimulus [42]. The perceived direction of motion changes

randomly from time to time. After prolonged viewing most

observers can usually choose the perceived direction of motion at

will. For some observers the direction of motion switches when a

sudden attention grabbing stimulus is given (such as a sudden tap

on the back of the head). Some observers have even remarked that

mere pressing of a mouse button causes the perceived direction of

motion to reverse.

An important characteristic of the omega effect is that an

observer gives different responses to the same stimulus in multiple

trials. This is quantified in the following way. The observer

response curves in response to the same stimulus in two separate

trials are cross correlated. Let f denote the maximum value of the

normalized cross correlation function. f is taken to be the measure

of response reproducibility. It is found that the value of f when the

same stimulus is shown in multiple trials is no different than the

value of f when different stimuli are shown in multiple trials. Thus,

the response reproducibility of the omega effect is zero. This may

happen because the display is inherently ambiguous like most, if

not all, bistable illusions. Both interpretations are equally likely

and the brain randomly chooses a configuration at any time

instant. It is found that f= m16s1 = 0.14560.1048 (mean6s.d.)

based on 47 trials in which same stimulus is shown from trial to

trial. Further, f= m26s2 = 0.11860.1359 based on 67 trials in

which different stimuli are shown in multiple trials. One sided t-

test to test the null hypothesis m1 =m2 against the alternate

hypothesis m1.m2 gives t = 1.196. At a= 0.05 level of significance

the null hypothesis cannot be rejected (P value = 0.1158).

The foregoing discussion has shown that the reproducibility of

response is zero for the omega effect (c = 0). However, intuitively

we expect if c is not zero, i.e., some dots are deliberately correlated

to undergo rotary motion, then observers should start responding

in direction of motion of correlated dots. Figure 3 shows the

response reproducibility increases with c as expected (f= 1 reflects

perfect reproducibility).

Figure 4(a) shows the histogram of the inter flip interval (IFI),

which is the time interval between spontaneous reversals in

perceived direction of motion, at c = 0. The mode of the histogram

occurs at IFI<2 s. The histogram is well approximated by a

lognormal distribution which is evident in Figure 4(b), where the

pdf (probability density function) of ln(IFI) is plotted together with

a Gaussian fit. The IFI of many bistable illusions is lognormally

distributed. Such distributions are common in biology, and one

way to interpret them is in terms of the noise driven motion of a

state point [43].

The mechanisms underlying omega effect are not clear. When

dots are displayed in a circular annulus their freedom of

movement is restricted. The dots at the boundary cannot move

in all 360u directions. In the limit when the annulus width tends to

zero, the dots can only move tangentially. This suggests an

increase in the omega effect with decrease in annulus width which

is experimentally true [10]. When the annulus has appreciable

width the dots at boundary are more likely to bounce normal to

the boundary. Some observers do report perception of a radial

pulsating motion in the omega display [42]. Rose&Blake (1998)

postulated that the omega effect arises because of interaction

Table 2. Default values of model parameters used in
simulations.

Parameter Default value

Spatiotemporal
filters

As in Watson & Ahumada (1985) [3]

Center frequency 0.64 cycles/u

Noise s(n(t))/s0<6

LCD threshold B 2s(I) at c = 0

Moving averages
filter

Impulse Response h tð Þ~ 1=T if 0vtvT~0:5 s
0 otherwise

�

Resolution 1286128 pixels

doi:10.1371/journal.pone.0004536.t002
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between cells that are sensitive to curvature in the display, and

cells that are sensitive to motion [10]. For its part, the Watson

Ahumada model outputs a zero mean white noise like signal in

response to the omega display, since there are dots bouncing off in

all directions randomly. This signal combined with the intrinsic

noise n(t) (which at c = 0 is six times stronger than the Watson

Ahumada signal) results in rapid zero mean fluctuations. Because

of their stochastic nature, these fluctuations become large enough

at times to cross the LCD thresholds. The IFI distribution resulting

from such stochastic fluctuations is also shown in Figure 4(b) for

comparison.

Effect of dot correlation c
Figure 5(a) shows variation of signal detectability x vs. the dot

correlation c. A x value of 1 means perfect detection, and x at c = 0

reflects the baseline zero level of x corresponding to chance

detectability. The increase in x with c is easy to understand, as the

value of c directly controls the amount of motion embedded in the

stimulus. As can be seen from the figure, the model fits the

experimental data very closely. If the threshold for motion

perception is defined as the value of c for which x is one standard

deviation higher than the x value at c = 0, then this gives a

threshold of c in the range of 0.03 to 0.06. This is comparable to

thresholds reported elsewhere [24,25]. The experimental method

described in this paper allows the measurement of the reaction

time t of an observer. Figure 5(b) shows a graph of the reaction

time t vs. c. For c<0, t is about 1.5 s, and decreases steadily with

increase in c. It takes less time to recognize the motion signal as the

signal gets stronger. At high values of c, t is about half a second.

The model is seen to fit the experimental data well. In general x
and t are inversely correlated as shown in Figure 5(c). Parameters

that tend to increase x tend to decrease t and vice-versa.

Effect of frame duration fd
Figure 6 shows that fd<30 ms is optimal for motion perception.

The same sequence of frames that evoke perception of vivid

motion at fd<30 ms, fail to evoke any perception of motion at fd

&30 ms. The explanation proposed for the fd effect seen here is as

follows. The motion computed by local motion detectors at time t

is based on the spatiotemporal signal from time t-T to time t,

where T<200 ms is the temporal size of receptive fields of simple/

complex cells found in the primary visual cortex [44]. When fd is

too large the input is mostly constant within a window of 200 ms

and so motion sensitive cells will fail to detect any motion. On the

other hand, if fd is too small the input may be changing at a rate

that the cells cannot handle. The bandwidth of the stimulus,

viewed as a continuous-time signal, is directly proportional to the

rate at which the individual racetrack frames are played. When fd

is too low, the correlated dot will stay in the receptive field (RF) of

a motion sensitive cell for a very brief interval of time, and will not

excite the spatiotemporal RF profile of the cell.

The model results are close to that of experiment, except for the

x values at fd = 10 ms. This may be because of the high bandwidth

of neurons used in the model. It is interesting to note that without

Figure 3. Response reproducibility f vs. c. Both model and
humans show zero reproducibility at c = 0, and the reproducibility
steadily increases with c, because the motion signal gets stronger.
doi:10.1371/journal.pone.0004536.g003

Figure 4. (a) histogram of Inter Flip Interval (IFI) at c = 0 (mode<2 s) (b) normalised histogram of ln(IFI) together with a Gaussian fit.
The pdf of ln(IFI) given by the model is also shown.
doi:10.1371/journal.pone.0004536.g004
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noise, x at fd = 100 ms is at the baseline zero level. If noise is added,

x rises above zero level, and matches value given by human

observers. This is reminiscent of the beneficial effect noise may

sometimes play in a system, by stochastically boosting a subthresh-

old signal in the manner of stochastic resonance [45,46,47].

Effect of dot density dd
Figure 7 shows the effect of varying the dot density dd in the

display. Humans display a remarkable indifference to the dot

density in the display. This shows that it is the relative proportion

of the correlated dots that matters, not their absolute number. The

experimentally observed independence of observer performance

on dot density cannot be explained by models of motion

perception based on matching dots or features to their nearest

neighbors in the next frame [6,7]. Such models display a marked

dependence on dot density in the display according to the

probability of mismatch formula [8]. As the dot density increases

there are more dots per unit area, and the chances that the nearest

neighbor is not the correlated partner increase.

A derivation of the probability of mismatch formula follows. A

correlated dot is displaced by a distance h in the next frame. A

nearest neighbor model operates by matching dots to their nearest

neighbors in the next frame. The matching directly gives the local

motion vectors, which is the output of the model. Therefore, for

the correlated dot to be matched correctly to its partner, no dot

should fall within a circle of radius h in the next frame. The

probability of this happening, which is equal to the probability of

no mismatch equals:

P no mismatchð Þ& 1{
ph2

A

� �N

where A is the area of display, N is total number of dots in the display,

N = A?dd, and we assume that dots are uniformly distributed.

Approximating 12x as exp(2x) for x sufficiently small, and

substituting A?dd for N,

P no mismatchð Þ&exp {ph2dd
� �

therefore,

P mismatchð Þ~1{P no mismatchð Þ~1{exp {ph2dd
� �

ð1Þ

which the formula given in Williams & Sekuler (1984) [8]. The

Figure 5. (a) x vs. c (b) t vs. c (fd = 30 ms, ic = 7u, dd = 5 dots/degrees2) (c) t vs. x scatter plot and piecewise linear fit for experimental
data.
doi:10.1371/journal.pone.0004536.g005

Figure 6. x vs. frame duration fd. c = 0.1, ic = 7u, dd = 5 dots/
degrees2.
doi:10.1371/journal.pone.0004536.g006

Figure 7. x vs. dot density dd. c = 0.2, ic = 7u, fd = 30 ms. Model
simulations done at 2566256 pixel resolution for dd.10.
doi:10.1371/journal.pone.0004536.g007
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probability of mismatch values for the dot density range used in

Figure 7, are tabulated in Table 3. This formula makes it explicit

that as the dot density increases, there would be more and more

mismatches, and therefore observer performance should decrease

with increase in dot density. In reality, however, observer

performance is independent of dot density in the display. The

Watson Ahumada motion detector is able to capture this

independence as shown in Figure 7.

It may be noted that if some of the assumptions leading to the

formula in equation (1) do not hold, the analytic form of

P(mismatch) may no longer be given accurately by 12exp(2ph2dd).

However, the central thesis of the formula that observer

performance should decrease with dot density will still remain true.

This is because as the dot density increases, there are more dots per

unit area, and therefore the expected separation between dots would

decrease. When the expected dot separation becomes less than the

hop size h, the matching would be dominated by mismatches, and

performance would decline. It may be appropriate here to remark

on the study of Grzywacz, Watamaniuk and McKee (1995) (figure 1

in their paper) [48]. It appears to me that the authors correctly

simulated the Adelson Bergen model and found that it is insensitive

to dot density. However, they concluded incorrectly, misguided by

the probability of mismatch formula, that psychophysical results

should depend on dot density.

Effect of spatial hop size h
The hop size is the amount of displacement given to the

correlated dots. By default the correlated dots are rotated by an

angle of 5u. With ic = 7u, and angle subtended by outer circle fixed

at 10u, this translates to average displacement of
7z10

2
|5|

p

180
~0:370 visual angle on the eye. Figure 8

shows the effect of varying the hop size for the model and

humans, at different dot densities. The correlated dots were

rotated by angles of {1,5,10,15,20} degrees, corresponding to

average displacements of {0.074, 0.37, 0.74, 1.11, 1.48} degrees

visual angle on the eye. The curves for the model and humans are

approximately similar. Note in particular that changing dot

density does not produce any change in x. The figures show that

as the hop size is increased, motion disappears in the display even

though the dot correlation is very high (c = 0.4). This is because if

the hop size becomes greater than the RF size, motion sensitive

neurons will fail to register motion. Also important is the decrease

in x if the hop size becomes too small. In this case, the

spatiotemporal profile of the stimulus will not cross-correlate well

with the spatiotemporal RF of motion sensitive cells.

Effect of inner circle diameter ic
The angle subtended by the outer circle diameter is fixed at

10u in all the experiments. Figure 9 shows the effect of varying

the angle subtended by the inner circle diameter ic (c = 0.1). It is

seen that observer performance falls off as the angle subtended by

the inner circle diameter ic is changed from 7u to 9.5u. At

ic = 9.5u the annulus is very thin, and appears like a 1D ring

rather than a 2D annulus. When ic is small, the noise in the

display is uniformly distributed in the sense that if h is the angle

made by the noise vector, then h is uniformly distributed from

2p to +p. Denote the cross product of noise vector with the

radial vector by x = sin(h). Then E x½ �~0, and the amount of

noise is given by

Table 3. Probability of mismatch values for dot densities in
Figure 7.

Dot density (dots/
degrees2)

Probability of mismatch = 12exp(2ph2dd)
(up to 4 decimal places) h = 0.37u

1 0.3495

2 0.5769

4 0.8210

8 0.9680

16 0.9990

25 1.0000

doi:10.1371/journal.pone.0004536.t003

Figure 8. (a) x vs. hop size h for human observers (b) x vs. hop size for model. c = 0.4, fd = 30 ms, ic = 7u.
doi:10.1371/journal.pone.0004536.g008
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E x2
� �

~

ðzp

{p

sin2h
1

2p
dh~

1

2

On the other hand, when icRoc, h is either –p/2 or +p/2 with

equal probability. E x½ � is still zero but

E x2
� �

~ {1ð Þ21

2
z z1ð Þ21

2
~1

so the amount of noise has apparently doubled in this case. Model

performance is seen to partially match psychophysical perfor-

mance. The curve with center frequency equal to 1.28 cycles/u
shows a better fit than the curve with center frequency equal to

0.64 cycles/u. Unfortunately I cannot say why the former curve

shows a better fit.

Effect of reverse contrast
If the stimulus is modified such that the correlated dots flip their

polarity as they rotate, meaning black dots change to white and

vice-versa, then the reverse-phi motion [49,50,1] takes place. It is

found that the motion perceived by an observer is opposite to the

physical displacement of the correlated dots. If the correlated dots

move CCW(CW), observer perceives motion in CW(CCW)

direction respectively. The Watson Ahumada model is able to

capture this phenomenon as shown in Figure 10. If the observer

perceives motion in a direction opposite to rotation of the

correlated dots, the observer response is negatively correlated with

the embedded motion. For this reason x in Figure 10 is defined as

the minimum value of the normalized cross correlation function

between the response and input function.

To understand why motion may be perceived in the opposite

direction when dots reverse their contrast, consider the signal

I x,y,tð Þ. It is well known [17] that the Fourier Transform

of an image undergoing coherent translational motion lies

on a plane, i.e., if I x,y,tð Þ~I x{vxt,y{vyt,0
� �

then

I vx,vy,vt

� �
~J vx,vy

� �
d vxvxzvyvyzvt

� �
where J vx,vy

� �

is the 2D Fourier Transform of I x,y,0ð Þ, and vx,vy

� �
is velocity.

The equation of plane is vxvxzvyvyzvt~0. This observation

yields following algorithm to determine motion in a signal I x,y,tð Þ:
find the best fitting plane to I vx,vy,vt

� ��� ��2
that passes through the

origin. The velocity can be read off the equation of the plane. Now

consider what happens when I x,y,tð Þ reverses its contrast every T s.

The modified signal is given by L x,y,tð Þ~I x,y,tð Þf tð Þ, where f tð Þ
is a square wave alternating between +1 and 21 every T s. The

Fourier Series of f tð Þ is given by
Pz?

n~{?
an exp jnv0tð Þ, with

an~
0 n even

c=n n odd

� 	
, c being a constant, and v0~2p=T . This gives

L vx,vy,vt

� �
~

Pz?

n~{?
anJ vx,vy

� �
d vxvx zvyvy zvt {nv0

� �
.

Note that a0~0. Thus, the Fourier Transform of L x,y,tð Þ does not

lie on a plane passing through the origin. Instead, the Fourier

Transform of L x,y,tð Þ consists of infinitely many planes given by

vxvxzvyvyzvt~nv0 as illustrated in Figure 11. Assuming

J vx,vy

� �
is mostly constant, the best fitting plane to

L vx,vy,vt

� ��� ��2
(that also passes through the origin) is H to

vxvxzvyvyzvt~0. If a,b,1ð Þ is normal of the best fitting plane,

then avxzbvyz1~0. a,bð Þ is velocity of I x,y,tð Þ under reverse

contrast. Letting v!~ vx,vy

� �
, and w!~ a,bð Þ we have

v!.w!~{1

This equation can be satisfied by many w!. In particular

w!
�� ��~ 1

v!
�� �� , %w!~% v!zp is a solution, which is motion in

opposite direction to v!. Note that w!
�� ��~ 1

v!
�� �� suggests that a

faster moving particle should actually appear to move slower! This

surprising prediction appears to be true within appropriate range.

A display of alternating black and white stripes was made. The

width of a stripe was 0.25u. The stripe pattern was translated to the

right, and the stripes reversed their contrast after a time interval T.

On viewing the display, motion was perceived in the leftward

direction instead of right. With fd = T = 30 ms and a hop size of

0.125u, the pattern appeared to be moving slower than with hop

Figure 9. x vs. angle subtended by inner circle diameter ic.
Angle subtended by outer circle diameter is fixed at 10u. c = 0.1, dd = 5
dots/degrees2, fd = 30 ms. Model simulations at 2566256 pixel resolu-
tion. f0 denotes center frequency of Watson Ahumada sensors.
doi:10.1371/journal.pone.0004536.g009

Figure 10. x vs. c for contrast reversing dots. fd = 30 ms, ic = 7u,
dd = 2.5 dots/degrees2.
doi:10.1371/journal.pone.0004536.g010
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size of 0.0625u. Further experiments need to be done to gather

numerical data to quantify the effect.

Model sensitivity to center position
By definition of rotation, any measure of rotary motion has to

be specified with respect to some center of rotation (more

accurately the axis of rotation has to be specified). In all the

results presented up till now, the center position used in the

simulations was the true center of rotation of the dots. What

happens if the true center of rotation is not accurately known, as

must be the case in reality? Figure 12 shows a schematic in which

point O is the true center relative to which the correlated dots are

rotating, and point C is the center relative to which rotary motion

is computed by the model. vi
! is a motion cue. The rotary motion

relative to the true center O is given by
P

i ri
!| vi
!, whereas the

rotary motion relative to C is given by
P

i r’i
!

| vi
!. We have

S~
X

i
r’i
!

|vi
!

~
X

i

CO

!

z ri
!� �

|vi
!

~
X

i

CO

!

| vi
!z

X
i

ri
!| vi
!

~CO

!

|
X

i

vi
!z

X
i

ri
!| vi
!

~
X

i

ri
!| vi
! provided

X
i

vi
!~0

The condition
P

i vi
!~0 is true in case of the racetrack. The

uncorrelated dots are uniformly distributed and generate motion

cues in all directions with equal probability. The correlated dots

generate motion cues in tangential direction, which when summed

over the entire 360u annulus add up to zero. The expected value ofP
i vi
! is thus zero. Therefore it seems accurate knowledge of

position of the true center relative to which rotation occurs is not

needed. Figure 13(a) shows model sensitivity to knowledge of true

center position. The rotary motion is computed by the model

relative to a point C that is offset from the true center O. The

offset is given by
OC


!��� ���
Ri

where Ri is radius of inner circle. Two

curves are shown: in one there is no noise added to the model, i.e.,

n(t) = 0, and in the other GWN equal to the default value of

s(GWN)/s0 = 6 is added to the model. It can be seen that the x
values are not affected much by uncertainty in knowledge of true

center position, and start to deteriorate only when the offset

becomes very large. This may explain the experimentally observed

position invariance of MST(d) cells, the fact that the cells are

insensitive to where in their RF rotation occurs [9].

It seems that when only a sector of the racetrack is made visible,

the condition
P

i vi
!~0 may not hold true because of the

correlated dots. However, if two sectors located diametrically

opposite to each other are displayed then
P

i vi
!~0. Figure 13(b)

shows x vs. offset for the two cases: type1 when only a single 90u
sector is made visible, and type2 when two sectors located

diametrically opposite to each other, and each 45u in size, are

displayed. Interestingly the model is still robust enough to the

offset even when only a sector of the racetrack is displayed,

irrespective of whether it is type1 or type2.

Effect of displaying only a sector
Figure 14(a) shows the effect of displaying only a sector of the

complete annulus on human observers. Two cases are considered. In

type1, a single sector is shown that is randomly positioned. In type2,

two sectors located diametrically opposite to each other, and each

half the size of the sector in type1, are displayed. It is seen that x
increases monotonically as the sector size increases. It is interesting to

note that there is a significant difference in x for the two cases, even

though the total area displayed is the same in the two cases. The

Figure 11. The Fourier Transform of an image undergoing
coherent translational motion + periodic reverse contrast lies
on infinitely many planes of the form vxvxzvyvyzvt~nv0,
with n being an odd number. The dashed lines denote the window
of visibility [30].
doi:10.1371/journal.pone.0004536.g011

Figure 12. Point O represents the true center of rotation,
whereas point C is the center relative to which rotary motion is

computed by the model. The offset is given by
OC


!��� ���
Ri

where Ri is
radius of inner circle.
doi:10.1371/journal.pone.0004536.g012
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corresponding data for the model is shown in Figure 14(b). The

model shows an increase in x with sector size. However, there is no

difference between type1 and type2 for the model.

Effect of inserting random frames
Figure 15 shows effect of inserting K random frames between

every pair of correlated frames in the stimulus. It is seen that

observer performance does not fall to zero abruptly, but decreases

in a graceful manner showing that the human visual system takes

multiples frames into consideration when estimating motion. The

model performance also does not fall to zero abruptly, but

degrades much more rapidly than human performance.

Dipoles
Instead of displaying dots in an annulus, each dot can be split

into two dots – one black and one white forming a dipole. This

results in what has been termed as the anti-Glass pattern [51]. The

c = 0 case creates a powerful motion illusion that has been

previously investigated [35]. The addition of dipoles introduces

several new parameters:

Figure 13. x vs. center relative to which rotary motion is computed (a) full 360u annulus is visible (b) only 90u of annulus is visible.
Type1 – a single 90u sector is visible. Type 2 - two sectors located diametrically opposite to each other, and each 45u in size, are visible. Both curves
are for the model.
doi:10.1371/journal.pone.0004536.g013

Figure 14. x vs. sector. In case of type 1 only one sector is displayed, whereas in case of type 2 two sectors located diametrically opposite to each
other, and each half the size of sector in type 1, are displayed. (a) human performance (b) model performance.
doi:10.1371/journal.pone.0004536.g014
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1) the dipole spacing s,

2) the black to white intensity ratio bwir defined as I0{Ib

Iw{I0
where

I0, Ib, Iw are luminance of background (fixed at 10.8 cd/m2),

black and white dots respectively,

3) the dipole orientation: tangential or radial as in Figure 16

Complex patterns of motion are perceived with dipoles in the

display, e.g., if dipoles are oriented radially there is tendency to

observe radial pulsating motion, even if dipoles are actually

rotating with significant rotary motion. Depending upon the

parameter settings, motion in opposite directions is also seen. It

can become difficult to assign a single motion direction to the

whole display, although there is no doubt that there is motion in it.

Let RC (reverse contrast) ON denote the setting that if a dipole is

correlated, then black changes to white and vice-versa in the next

frame. With RC ON, the perception of motion can switch from

normal phi to reverse phi depending upon dipole spacing. This

section reports results of an experiment investigating x vs. bwir

with center-to-center spacing equal to six minutes, c = 0, and RC

ON. The results are summarised in Figure 17. As can be seen the

model is able to capture some aspects of psychophysical behavior,

but not all of it. In Figure 17, the definition of x is modified as

follows. Let x+ denote maximum value of normalized cross

correlation function, and x2 denote minimum value of normalized

cross correlation function. If |x+|.|x2|, x= x+, otherwise

x= x2. When |x+|.|x2|, observer perceives motion in the

direction of displacement of correlated dots and therefore x is

defined to be equal to x+ in this case. By similar reasoning, x is

defined to be x2 for the other case.

Discussion

Although this paper shows that the Watson Ahumada motion

detector does a good job at detecting motion in random dot

kinematograms (RDKs) consonant with human psychophysical

performance, it remains to be seen how well it would perform on

real world imagery. The challenge here is that although it is

straightforward to run the model on real world test cases, how do

we accurately measure the optical flow perceived by humans on

these test cases? Computer vision papers characterise optical flow

performance of a model by either using synthetic image sequences

designed to mimic the real world, or using real world image

sequences in which the motion of the camera is carefully calibrated

[52]. However, as we have already seen in this paper: 1. the same

sequence of image frames can produce different perception

depending on frame rate, 2. the human visual system takes

multiple frames into consideration when determining motion. In

the light of these remarks, it is not immediately obvious what the

ground truth optical flow (ground truth being defined as the flow

perceived by a human) would be for the test cases mentioned

above. These caveats should be borne in mind while attempting a

performance characterisation of the Watson Ahumada model

using the computer vision paradigm. I have placed some

preliminary work running the Watson Ahumada model on real

world imagery online as a proof of concept [41].

The neurophysiological plausibility of a model is likely to attract

heavy debate. Krekelberg (2008) has provided a comprehensive

discussion on the biological plausibility of the Reichardt, Adelson

Bergen, and gradient based motion detectors [13]. With respect to

the Watson Ahumada model, DeAngelis et. al. (1995) and others

have found that the Watson Ahumada filters provide an accurate

model of simple cell receptive fields (RFs) [44]. Quoting DeAngelis

et. al. [53]:

‘‘Rather, simple cell RFs in the joint space-time domain appear

to be fit well by a model first proposed by Watson and Ahumada

… Based on the Watson-Ahumada formulation, we have modelled

space-time RFs of simple cells, as the weighted sum of two space-

time separable subunits in a quadrature relationship. This model

formulation provides a remarkably good fit to the data from most

cells, regardless of their degree of space-time inseparability … In

conclusion, to account for space-time RFs of simple cells that differ

widely in the degree of space-time inseparability, at least two

separable subunits appear necessary as modelled by Watson and

Ahumada.’’

Although there are similarities between the Watson Ahumada

motion detector and the Adelson Bergen motion detector, which is

usually the de facto motion detection mechanism used in studies of

visual motion perception, there are also some differences. The

Adelson Bergen motion detector measures how much power the

stimulus has within a spatiotemporal frequency band. Thus a

detector tuned to (vx0,vy0,vt0) effectively samples the power

spectrum of the stimulus within the vicinity of (vx0,vy0,vt0). Such

detectors have been proposed as models of V1 complex cells

[1,21]. The responses of multiple such detectors tuned to different

spatiotemporal frequencies are pooled to determine the best fitting

plane in the frequency domain [18,19]. The best fitting plane

defines the motion of the stimulus [17]. This processing, although

still debatable, is believed to occur in MT. In contrast, with respect

to the Watson Ahumada motion detector, information about the

Figure 15. Effect of inserting K random frames between
correlated frames. c = 0.5, fd = 30 ms, dd = 5 dots/degrees2, ic = 7u.
doi:10.1371/journal.pone.0004536.g015

Figure 16. (a) tangential dipoles (b) radial dipoles. Center-to-
center spacing = 179 in both cases.
doi:10.1371/journal.pone.0004536.g016
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motion of the stimulus is encoded in the (most dominant) temporal

frequency of oscillation of detector response as per the equation:

vt~{ vxvxzvyvy

� �

The temporal frequencies of oscillation of different detectors

tuned to different (vx,vy) are measured, and then above

relationship is used to determine the motion of the stimulus.

The neural locus of the stages that perform this computation is

unclear. Also unclear is the relationship of the model to what we

do know about motion processing in the brain beyond the first

stage of spatiotemporal filtering. For example, the model does not

state how simple V1 neuron outputs could be combined to

generate speed tuned V1 complex and MT cells [54,55]. Perrone

(2005) has put forward a model that explains how the magnitude

of the Fourier transform of simple V1 neuron responses can be

combined to generate the magnitude of the Fourier transform of a

speed tuned neuron [56]. The input V1 neurons that Perrone’s

model uses are based on the Watson Ahumada filters.

It may be worthwhile to mention that the Watson Ahumada

model has been proposed as a model of primary motion sensing

mechanisms, what Cavanagh (1991) called passive motion

detectors in his paper [57]. The human visual system is a complex

parallel distributed system in which modules interact with each

other and do not function in isolation, e.g., it is widely accepted

now that motion perception interacts with form perception, a view

that was not always held in this field. The interactions between

modules can give rise to phenomenon that cannot be explained by

either module alone. Benton, O’Brien, & Curran (2007) have

recently provided example of a fractal rotation stimulus in which

rotation is perceived within any arbitrary window applied to the

stimulus [58]. The authors assert that the fact that observers can

readily perceive fractal rotation is a clear example of a stimulus in

which motion extraction is dependent upon the prior analysis of

some spatial property (which happens to be the orientation in case

of fractal rotation). The omega effect itself is believed to occur

because of interactions between form and motion processing

circuits in the brain. Although there are growing examples of such

stimuli that point to interactions between form and motion, little is

known about how these interactions occur. To my knowledge no

quantitative model has been put forward to explain these

interactions.

In conclusion, the contribution of this paper is to present a

performance characterisation of the Watson Ahumada model of

human visual motion sensing. The model performance is seen to

match human performance with respect to most parameters. It is

able to explain some key and important parts of the psychophys-

ical data such as independence of observer performance to dot

density in the display, and decrease of observer performance with

frame duration of the display. The model insensitivity to the center

position relative to which rotary motion is computed, together

with the vector analysis presented in the paper, may explain the

experimentally observed position invariance of MST(d) cells. In

addition, this paper shows that the omega effect of Rose & Blake

(1998) is a truly bistable illusion. Although the display of random

dots triggers perception of rotary motion, the direction of motion

perceived is independent of what dot pattern is shown. The time

interval between spontaneous reversals in perceived direction is

lognormally distributed as is the case for most bistable illusions.

Therefore the processes that give rise to this illusion may be the

same processes that underlie much of other bistable phenomenon.

Supporting Information

Movie S1 A movie of the racetrack for c = 0.

Found at: doi:10.1371/journal.pone.0004536.s001 (8.63 MB AVI)

Movie S2 A movie of the racetrack for c = 0.3.

Found at: doi:10.1371/journal.pone.0004536.s002 (8.02 MB AVI)

Movie S3 A movie of the racetrack for c = 0.5.

Found at: doi:10.1371/journal.pone.0004536.s003 (8.94 MB AVI)
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