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Anthracyclines are associated with risk of significant dose-dependent cardiotoxicity. Conventional heart failure therapies

have neither ameliorated declining cardiac function nor addressed the underlying cause. Gene therapy may confer long-

term cardioprotection by rendering the heart resistant to anthracyclines after 1 treatment, although the optimal thera-

peutic target remains to be elucidated. Recombinant adeno-associated virus is now clinically approved for the treatment

of lipoprotein lipase deficiency, spinal muscular atrophy, and hereditary transthyretin amyloidosis. High-throughput

methods allow selection of recombinant adeno-associated virus capsids that facilitate efficient gene delivery to specific

target cells. Vector safety is enhanced by incorporating cardiac-specific promoters into vector design and localizing

delivery to reduce off-target risk. Any cardioprotective transgene may bear a degree of risk as they may play as yet

unknown roles, which require careful assessment using clinically relevant models. The innovative technologies outlined

here make gene therapy a promising proof of principle, with potential further application to nonanthracycline chemo-

therapeutics. (J Am Coll Cardiol CardioOnc 2021;3:650–662) © 2021 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
A nthracyclines are a major group of chemo-
therapeutic drugs used to treat a range of
cancers. Although effective, long-term expo-

sure to these anticancer drugs causes cardiotoxicity,
putting cancer patients at high risk of developing
heart failure and other cardiac complications later in
life. Myocardial damage is dose dependent, with 9%
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of adult cancer patients exhibiting cardiotoxicity
within the first year after completion of chemotherapy
(1). Historically, a heart failure incidence of 4%-36%
was reported when the dose of doxorubicin ranged
from 500 mg/m2 to >600 mg/m2 (2). However, modern
dosing regimens use a lower anthracycline dose of 100-
385 mg/m2, which has resulted in a lower mean left
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HIGHLIGHTS

� Protection against anthracycline car-
diotoxicity may be achieved by gene de-
livery to the heart.

� The optimal cardioprotective target gene
remains to be identified.

� Targeted gene expression in human
myocytes can now be achieved with ad-
vances in AAV vectorology.

� It is critical to minimize risk of off-target
effects which may impede anthracycline
oncotherapy.

AB BR E V I A T I O N S

AND ACRONYM S

AAV = adeno-associated virus

FT = functional transduction

GFP = green fluorescent

protein

hiPSC-CM = human induced

pluripotent stem cell derived

cardiomyocyte

ITR = inverted terminal repeat

rAAV = recombinant adeno-

associated virus

RC = replication-competent

SERCA2A = sarcoplasmic/

endoplasmic reticulum calcium

ATPase isoform 2A

J A C C : C A R D I O O N C O L O G Y , V O L . 3 , N O . 5 , 2 0 2 1 Kok et al
D E C E M B E R 2 0 2 1 : 6 5 0 – 6 6 2 Gene Therapy-Mediated Cardioprotection Against Anthracyclines

651
ventricular ejection fraction decline (5.4%) compared
with 15 years ago (9%-17%) (3). Early echocardio-
graphic surveillance also allows stratification of pa-
tients who are at higher risk of developing
cardiotoxicity, thus allowing timely intervention to
address left ventricular dysfunction, particularly in
childhood cancer survivors (1,4).

Current preventative strategies require frequent
monitoring of heart function and use of the iron
chelating agent dexrazoxane, a U.S. Food and Drug
Administration–approved drug recommended by the
American Society of Clinical Oncology (5).
Dexrazoxane limits the formation of anthracycline-
iron complexes, which are believed to cause car-
diotoxicity by generating free radicals. However,
dexrazoxane administration has been associated with
a potential increase in the incidence of secondary
primary malignancies in pediatric oncology patients,
and may therefore require further evaluation and
consideration as a preventative therapy (6,7).

Current treatments for anthracycline-induced car-
diotoxicity are heart failure therapies such as
angiotensin-converting enzyme inhibitors and b-
blockers. However, a meta-analysis of cancer patients
who received neurohormonal therapies in conjunc-
tion with chemotherapy demonstrated that although
higher left ventricular ejection fraction was observed,
the decline in LV systolic function was not dramati-
cally improved (8). Therefore, an alternative strategy
may be desirable to protect against cardiotoxicity in
cancer patients.

The challenge of protecting organs from off-target
toxicity by gene therapy is an established paradigm.
In cancer cells, the DNA repair enzyme O6-DNA-
methyl-guanine-methyl-transferase (MGMT) has been
associated with high tumor grade and drug resistance
(9,10). Depletion of MGMT activity using O6-
benzylguanine before treatment with meth-
ylating chemotherapy drugs results in a fail-
ure to repair DNA lesions within tumor cells,
thus leading to apoptotic cancer cell death
(11). Although effective, this strategy inad-
vertently leads to toxicity in the bone marrow,
where endogenous MGMT is already low (12).

Chemoprotection has been demonstrated
by using gene therapy to specifically protect
the bone marrow compartment from toxicity
caused by brain cancer chemotherapy. A
strategy was developed to facilitate delivery
of a mutated gene for MGMT to the hemato-
poietic compartment. Due to a single amino
acid substitution, the protein is rendered
insensitive to depletion by O6-benzyguanine,

thus protecting hematopoietic stem cells from che-
motoxicity (13). Several studies have shown success-
ful chemoprotection in preclinical models using this
approach (14,15).

The advantage of gene therapy is that chemo-
protection can be achieved from a single treatment by
prevention of toxicity at the molecular level, rather
than prolonged management of the downstream
pathophysiology. Successful application of gene
therapy is dependent on identifying the underlying
molecular cause of toxicity. For example, sequence
variations in drug transporter genes such as ABCB1,
ABCB4, ABCC1 (MRP1), and ABCC2 (MRP2) identified
in a subset of patients have been associated with
reduction of function and subsequent increased sus-
ceptibility to cardiotoxicity (16-18). Overexpression of
human cDNA for the multiple drug resistance (MDR1)
gene in the hearts of transgenic mice led to car-
dioprotection against adriamycin (19). Transgenic
mice did not exhibit pathological changes in the heart
tissue, as was observed in control mice. By aug-
menting the drug efflux capacity of the heart, it is
possible to increase resistance against anthracycline
cardiotoxicity, at least in mice. However, drug
transporters may not be the ideal cardioprotective
target, because they are able to efflux a range of
drugs, which may subsequently lose their effective-
ness in patients who have received this therapeutic
transgene.

One of the key challenges of developing car-
dioprotective strategies is to restrict delivery and
expression of therapeutic genes to the heart, because
inadvertent delivery to cancer cells may impede the
anticancer activity of anthracyclines. The potential
for unknown unintended effects in the heart must
also be studied with care. This review aims to high-
light emerging technology that will enable



CENTRAL ILLUSTRATION Potential of Cardiac Gene Therapy to Protect Against Anthracycline Cardiotoxicity

Kok, C.Y. et al. J Am Coll Cardiol CardioOnc. 2021;3(5):650–662.

(1) Current therapies do not provide sufficient protection against anthracyclines, and require monitoring of heart function and subsequent intervention throughout

chemotherapy. (2) Adeno-associated virus (AAV) mediated gene therapy may provide a way to confer long-term cardioprotection after a single treatment, by targeted

delivery of therapeutics to the heart. This can be achieved by development of new capsids with the enhanced ability for (A) cell entry and (B) gene expression in the

target cells. (C) Application of the therapeutic vector can then be tested in clinically relevant small animal models to assess cardioprotection and cancer cytotoxicity.
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development of strategies for heart targeted delivery
of protective genes to prevent cardiotoxicity during
chemotherapy (Central Illustration).

TRANSLATION OF CARDIAC GENE THERAPY

FROM BENCH TO BEDSIDE

Gene therapy has shown promise for targeted gene
delivery in treating a variety of diseases. Over the last
decade, the field of gene therapy has taken significant
strides toward clinical application, driven by im-
provements in the vector technology and an array of
promising preclinical data. Nonviral and viral vectors
have been innovatively engineered, modified, and
applied in both pre- and clinical settings in an
endeavor to treat and prevent cardiac abnormalities
(20-24). With advancements in vector design and
delivery, which contributes to improved safety and
efficacy, viral vector-based gene therapies are now
cutting-edge tools at the forefront of medicine, and
are being used in clinical trials for a range of diseases
(25,26).

Currently, recombinant vectors based on adeno-
associated virus (rAAVs) are one of the most actively
investigated vectors for human gene therapy (27). The
properties of rAAV that render it favorable as a gene
delivery vehicle include its high safety profile, low
immunogenicity, longevity of transgene expression,
and distinctive capsid-dependent tissue tropism
(28,29).

Wildtype AAVs were first discovered in 1965 as
contaminants in an adenovirus-infected cell prepa-
ration. In its natural form, AAV is a single-stranded
DNA parvovirus that requires coinfection with a
helper virus to successfully replicate (30-33). The AAV
viral genome is w4.8 kb in length and is comprised of
2 genes responsible for viral replication and encoding
structural protein: the rep (Replicase) and cap
(Capsid). These genes are flanked by viral inverted
terminal repeats (ITRs), which are the only elements
required in cis for viral genome packaging and repli-
cation (Figure 1A).

Vectorization of AAV to produce recombinant
vectors (rAAV) involves removal of the wildtype rep
and cap open reading frames and replacing them with
an expression cassette encoding the therapeutic
transgene and all relevant regulatory elements
(Figure 1B). Recombinant AAV particles are then pro-
duced in packaging cells supplemented with the
required genes encoded on separate plasmids. In the
most commonly used method, the packaging con-
structs are divided between 3 plasmids that include:
1) the rAAV genome with ITRs in cis flanking the
selected therapeutic gene expression cassette; 2) the
packaging plasmid delivering wildtype AAV rep and
cap genes in trans; and 3) a helper plasmid encoding
necessary adenovirus genes to enable vector pro-
duction (28) (Figure 1B). Thus, the resulting rAAVs
lack the necessary viral coding sequences required to
replicate but retain the ability to deliver genomic in-
formation to the target cell.

The tropism and immunological characteristics of
a rAAV vector are influenced by its capsid, the pro-
tein shell which protects the viral genome (34). To
date, hundreds of capsids have been identified or
generated in laboratories via bioengineering tech-
niques. However, the first 13 naturally-occurring
AAVs (AAV1-13) to be identified remain the best
characterized. Cellular binding is mediated by pri-
mary receptor interactions between the capsid and
the target cell surface. Slight differences in capsid
amino acid sequences may therefore lead to signifi-
cant changes in tropism among AAV variants. This
provides a robust and extensive toolbox, which al-
lows tailoring of molecular therapies for delivery to
the target organ. A vector can be designed for
optimal heart-targeted gene delivery simply by
packaging the therapeutic construct into a cardio-
tropic capsid.

In particular, AAV9 capsid has shown efficient gene
delivery to the heart when tested in mouse and rat
models (35). Therefore, it is one of the more prolifi-
cally used serotypes for preclinical cardiac gene
therapy studies in rodents. However, AAV1 has been
shown to robustly transduce the sheep and pig
myocardium, as well as outperform AAV9 in human-
induced pluripotent stem cell derived car-
diomyocytes (hiPSC-CMs) (36,37).

Thus far, over 200 clinical trials have been con-
ducted using rAAV, leading to 3 market-approved
gene therapies in the United States and EU for the
treatment of lipoprotein lipase deficiency (Glybera,
uniQure), spinal muscular atrophy (Zolgensma,
Novartis), and hereditary transthyretin amyloidosis
(Luxturna, Spark Therapeutics) (38-42). The CUPID
(Calcium Up-Regulation by Percutaneous Adminis-
tration of Gene Therapy in Cardiac Disease) clinical
trials were the first cardiac gene therapy protocols to
employ rAAV (43). In these trials, a naturally occur-
ring cardiotropic AAV1 vector encoding sarcoplasmic/
endoplasmic reticulum calcium ATPase 2A isoform
(SERCA2A) administered by percutaneous intra-
coronary delivery was used to treat patients with
heart failure. AAV1.SERCA2A exhibited an excellent
safety profile as a human cardiac gene therapy vector.
In the initial phase 1 trial, patients receiving the
maximum dosage of 1013 total DNase-resistant parti-
cles presented with improved health outcomes



FIGURE 1 Vectorization of the Wildtype AAV Genome to Produce Recombinant AAV

(A) The 4.8kb wildtype adeno-associated virus (AAV) genome is comprised of replication

(rep) and capsid (cap) genes flanked by inverted terminal repeats (ITRs). (B) Vectori-

zation of AAV requires the expression construct containing ITRs in cis flanking the pro-

moter, transgene, pA (polyadenylation signal) and optionally the WPRE (post-

transcriptional regulatory element). Also required is a packaging plasmid and adeno-

viral helper plasmid which provide the required elements in trans for vector packaging.
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compared with those administered mid- and low-
range doses (44,45).

Disappointingly, however, treatment efficacy was
not observed when the trial progressed to Phase 2b
(45). Assessment of patient cardiac tissue showed
that lack of benefit was attributed to marginal uptake
of the AAV1.SERCA2a vector (<2%), approximately
1,000 times less than was achieved in preclinical
models showing significant overexpression of SER-
CA2a in the heart (21,45). This hinted at differences in
permissiveness of human and porcine car-
diomyocytes to the AAV1 capsid and highlights the
need for the development of human cardiac-tropic
variants to enable clinical development of novel
rAAV-based therapies.

The differences between preclinical models and
human outcomes are not limited to cardiac gene
therapy. This same phenomenon was observed in a
study that clearly demonstrated capsid-mediated
differences in the transduction efficiency of rAAV
between human and mouse cells using a xenograft
mouse model with a humanized liver (46). The AAV8
capsid, which is robustly liver tropic in rodents, was
shown to transduce human hepatocytes 20 times less
efficiently than mouse cells within the same liver.
The clinical data obtained with AAV8 provided
further evidence of significant misalignment of mu-
rine data and clinical outcomes. Therefore, there is
accumulating evidence indicating that permissive-
ness of human cardiomyocytes to AAV transduction is
not only capsid-dependent, but also fundamentally
different between primary human tissue and
nonhuman preclinical models. This has important
ramifications for the development pipeline of cardiac
gene therapeutics, in terms of capsid design and se-
lection for tropism to human cardiomyocytes.

METHODS OF SELECTION FOR

CARDIOTROPIC AAV VECTORS

An emerging approach to create vectors with
enhanced tropism is the use of directed evolution to
screen for cardiotropic AAV capsids (27). In its
simplest form, this technique relies on the generation
of an extensive library of replication-competent (RC)
AAV virions from plasmid library containing
randomly mutagenized AAV capsid gene. The capsid
mutagenesis can be generated via a number of
methods, ranging from DNA shuffling, error-prone
polymerase chain reaction, and short peptide in-
sertions, to targeted mutagenesis of selected resi-
dues. The final packaged library contains virions
enclosing full AAV genomes, ITR-rep-cap-ITR, in
which the cap gene is replaced with a unique mutated
variant that corresponds to a novel capsid. Libraries
can be generated at a complexity of >108 variants
(47). Directed evolution allows high throughput
screening of these variants for tropism, because pos-
itive selection pressure is applied by the model used
and allows isolation of capsids which mediate suc-
cessful cell entry.

As an additional step to improve stringency of cell
targeting, negative selection pressure can also be
applied to deplete variants which display unwanted
characteristics (48,49) (Figure 2A). Negative selection
has been successfully employed to generate vectors
that can evade the immune system, by rescue of
variants that retain infectivity after incubation with
human sera containing anti-AAV immunoglobulins
(50). It has also been demonstrated in the selection
of variants that have improved targeting toward
HIV-1 infected compared with uninfected H9 T cells
(51).

In general, positive selection is more commonly
used to screen for variants in target cells to isolate
capsids that exhibit superior cell entry (Figure 2B). As



FIGURE 2 Screening AAV Variants for Efficient Entry Into Target Cardiomyocytes

(A) Negative selection by incubating adeno-associated virus (AAV) library with human

sera or opposing cells. (B) Collection of AAV-containing media to use for positive se-

lection in target cells. (C) Adenovirus (Ad) mediated replication yields enriched AAV

capsid candidates.
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outlined in the previous text, one such approach uses
RC library design. Coinfection of cardiomyocytes with
such RC library and human wild-type adenovirus al-
lows for replication of AAV variants that were able to
enter the cells and complete intracellular journey to
the nucleus, where AAV replication takes place.
Following adenovirus-induced cell lysis, the virus
containing supernatant is collected and used to infect
cardiomyocytes in a subsequent round of selection.
Successive rounds of selection in fresh cultures of
target cells allow enrichment of tropic variants, which
can then be isolated and characterized by sequencing
(Figure 2C).

While directed evolution using adenovirus medi-
ated replication can efficiently enrich for
cardiomyocyte-tropic AAV variants, nonspecific cap-
sids may inadvertently be enriched if unwanted
contaminating cell populations are present in the
culture system. Dependency on adenovirus coinfec-
tion means that AAV selection may select for features
that are not necessary for a gene delivery vector, such
as efficient replication or cellular escape. It is there-
fore not possible to predict whether the enriched
capsids would subsequently exhibit functional
transduction as a packaged vector in the target cell
type (52). Finally, the requirement for adenovirus
coinfection limits RC approaches to cells that are
permissive to adenoviral infection, significantly
restricting the utility of the RC approach.

The functional transduction (FT) platform was
developed as an alternative method, which allows
simultaneous evaluation of cell entry and transgene
expression in the target cell type based on cell sorting
(53). The shuffled cap library is cloned into a
construct in which a green fluorescent protein (GFP)
expression cassette replaces the endogenous rep gene
(Figure 3A). The library is then packaged, with rep
supplied in trans, to obtain an AAV library which is
subsequently used to transduce target cells. Trans-
duction of target cells with this library will result in
fluorescent labeling of successfully transduced target
cells (Figure 3B). Sorting can then be performed using
cell surface markers to isolate cells of interest from
the GFP-positive cells (54), from which DNA can then
be extracted. The cap gene can subsequently be
rescued by polymerase chain reaction amplification,
then cloned back into the AAV plasmid backbone for
additional rounds of selection. Enrichment of car-
diotropic variants would then become evident at the
end of the selection process (Figure 3C). The FT plat-
form is highly flexible in that the GFP expression
cassette can be replaced with a reporter gene (fluo-
rescent protein or drug resistance gene) under the
control of a tissue-restrictive promoter, enabling
selection in specific cells without the need for FACS
sorting.

Although functional transduction requires a longer
period of time compared with adenovirus-mediated
replication because of the need for cloning steps be-
tween each round of selection, it provides an alter-
native method of capsid selection that is independent
of adenovirus-mediated replication, and allows eval-
uation of both cell entry and gene expression in target
cells.

Although each selection method has its advantages
and limitations, the choice of selection model used is
critical to the successful identification of cardiotropic



FIGURE 3 Screening AAV Variants for Entry and Gene Expression Into Cardiomyocytes

(A) Generation of the shuffled adeno-associated virus (AAV) capsid library using the functional transduction (FT) platform. The construct

contains both the shuffled cap gene and green fluorescent protein (GFP) under the control of a cardiac specific promoter (CSP). (B)

Transduction of cells, followed by sorting to isolate GFP-positive cells. DNA is then extracted and the cap gene recovered. The cap gene is then

recloned back into the library and taken for further rounds of sequencing. (C) Enriched AAV capsid candidates at the end of successive rounds

of selection. hiPSC-CM ¼ human-induced pluripotent stem cell derived cardiomyocyte; ITR ¼ inverted terminal repeat; PCR ¼ polymerase

chain reaction
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variants. Because AAV transduction is receptor-
mediated, the selection should ideally be performed
in the cell type ultimately targeted for therapeutic
gene delivery.

PRECLINICAL MODELS FOR TESTING GENE

TRANSFER TO HUMAN CARDIOMYOCYTES

Successful translation of novel gene therapeutics to
clinical application is difficult, and preclinical
assessment should ideally be done using the most
biologically relevant model systems. In choosing
models, whether for generation or functional valida-
tion of gene therapeutics, a balance of tissue avail-
ability, feasibility, and clinical relevance is required.
The most clinically relevant model would be to use an
intact human heart as this would retain the archi-
tecture and heterogeneity of the functional organ.
Although it is possible to assess gene delivery ex vivo,
as proven in a porcine model of ex vivo adenoviral
transduction, it is logistically difficult to maintain the
heart, for extended periods of time, under



FIGURE 4 Models for Assessing Clinical Utility of Cardiac Gene Therapeutics

Pros and cons of each model system as represented by sliding scales, showing a larger

value on the wider end and a smaller value on the narrow end. Colors represent

favorability of each characteristic, with green being most favorable, and red being the

least favorable. hiPSC-CM ¼ human-induced pluripotent stem cell derived car-

diomyocyte; rAAV ¼ recombinant adeno-associated virus.
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normothermic conditions without the use of special-
ized equipment that is not readily available (35).
Intact human hearts would also be difficult to obtain
because these would most likely be prioritized for
transplantation, and it would be even more difficult
to obtain a whole organ from the target population of
interest (Figure 4). An additional challenge would also
be the large amount of vector required to transduce
the whole organ.

It is also possible to obtain primary ventricular
tissue for generating organotypic slices, which can be
cultured for up to 5 days for transduction experi-
ments with rAAV (55). This is highly desirable because
capsid-dependent gene transfer can be tested using
primary cardiac tissue of human origin. The tissue
slices retain the cellular complexity of the whole or-
gan, although structural integrity of the intact organ
is sacrificed. However, as with the whole heart, it may
not be possible to readily source representative heart
samples from the same population demographics as
the target patients (Figure 4).

Cardiomyocytes derived from hiPSCs may provide
an alternative to primary tissues. A stem cell line can
be generated by first reprogramming isolated somatic
cells (eg, fibroblasts, PBMCs) from patients, then us-
ing established protocols to differentiate the multi-
potent cells into cardiomyocytes (56,57). Due to ready
availability of the cells, it would then be possible to
establish high throughput workflows to screen for
cardiotropic therapeutics (Figure 4). Inherently, the
most obvious risk of using hiPSC-CM as the selection
model is that these cells are not primary, and their
gene expression profile is not identical to bona fide
human cardiomyocytes (58). Thus, hiPSC-CM may
express receptors that are not present in primary
cardiomyocytes, and may therefore inadvertently
drive selection of variants that are ultimately unable
to bind to primary human myocardium.

Another risk of using hiPSC-CM for positive selec-
tion is that there will always be a noncardiomyocyte
fraction that may contaminate the target car-
diomyocyte population. Thus, it would not be
possible to ascertain whether enriched variants were
solely cardiomyocyte derived. To address this, it
would be necessary to eliminate nontarget cells from
the culture. In mammalian cells, glucose is a major
source of energy, but fetal cardiomyocytes are also
able to use lactate as an alternative (59). By making
use of this metabolic pathway, purity of differenti-
ated cells can be enriched by exposure to lactate
supplemented glucose depleted culture media (60)

An alternative method would be to label cells with
a selectable marker, which would enable temporal
control over selection of cells of interest using an
antibiotic selection cassette. Although potentially
more effective than metabolic selection, this would
require modification of cells prior to differentiation,
which may subsequently interfere with car-
diomyocyte formation.

It is also important to select candidate vectors us-
ing cardiomyocytes with a phenotype that is relevant
to the target patient population, because maturity can
significantly affect transduction efficiency of each
AAV variant (61). It is hypothesized that hiPSC-CMs
retain a fetal phenotype partly because of preferen-
tial use of glycolysis for energy metabolism, as
opposed to b-oxidation of fatty acids in mature adult
cardiomyocytes (59,62). To model patients from adult
populations, maturation of hiPSC-CM can be induced
by supplementing culture media with physiological
concentrations of the fatty acids palmitic, oleic, and
linoleic acid (63). This maturation process is designed
to mimic the transition from glycolytic to oxidative
metabolism in the developing heart and can therefore
be used to generate hiPSC-CM that are closer to an
adult phenotype.

HIGH THROUGHPUT SCREENING OF

AAV VARIANTS TO COMPARE

TRANSDUCTION EFFICIENCIES

Depending on the complexity of the AAV library and
the selection model used, the number of enriched
variants that will need to be vectorized and validated
may vary depending on the stringency of selection.
As the number of candidate variants increases, so
does the workload, cost, and time required to select
the final AAV variant for preclinical and clinical
studies. One approach to perform comparison of



FIGURE 5 Select AAV Variants With Cardiomyocyte Targeted Entry and Gene

Expression

(A) An adeno-associated virus (AAV) kit is generated by mixing green fluorescent protein

(GFP) expressing vectors with unique barcoding sequence (BC) and optional woodchuck

hepatitis virus post-transcriptional regulatory element (WPRE) for each capsid variant. (B)

The barcoded AAV library is used to transduce target cells, followed by sorting to isolate

GFP-positive target cells only. Nucleic acids (DNA and RNA) are then extracted. (C)

Next-generation sequencing (NGS) is then utilized to detect and quantify barcode

sequences.
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multiple vectors is to transduce target cell population
at the same multiplicity of transduction (MOT) with
each of the variants encoding a fluorescent marker
and to quantify the number of positive cells using
fluorescent readout. Although straightforward, this
approach becomes very time consuming and suffers
from lower accuracy when large number of vectors
are to be tested. To address this technical limitation, a
new approach that makes use of next-generation
sequencing for high-throughput screening and anal-
ysis of rAAV variants for both efficient target cell
entry and induction of gene expression has been
recently developed and validated (64,65).

Identical AAV cassettes containing green fluores-
cent protein (GFP) are designed to include short DNA
sequences known as a barcode. These barcoded vec-
tors are packaged into multiple AAV vector capsid
variants and mixed in equimolar ratio to obtain a mix
of packaged AAVs, in which each capsid is uniquely
labeled at the DNA level (Figure 5A). The AAV mix is
then used to transduce cells of interest, which can
subsequently be sorted based on GFP expression
(Figure 5B). DNA and RNA can be isolated from the
successfully transduced target cells. Analysis of
the relative prevalence of barcode sequences from the
extracted DNA provides subsequent insight into
the efficiency of cell entry for each variant, whereas
the RNA/cDNA shows the efficiency of gene expres-
sion (Figure 5C). Therefore, variants that show high
vector genome copy numbers at both DNA and RNA/
cDNA levels are likely to be highly efficient at gene
delivery to the cell target.

OPTIMIZING SAFETY BY PRE-EMPTIVE

RISK MITIGATION

The efficiency of gene delivery to the heart greatly
affects the dose required for cardioprotective effi-
cacy. This is an important consideration, because
nonhuman primates injected systemically with high
doses of AAV9 (2 � 1014 GC/kg) were reported to
exhibit acute systemic inflammation, coagulation
defects, and hepatic toxicity (66). Toxicity was hy-
pothesized to have resulted from hepatocyte damage
and activation of systemic inflammation. Although
the molecular mechanism is still unclear, the severity
of toxicity is clearly dose-dependent. Therefore, by
identifying high-performing AAV capsids with opti-
mized cardiomyocyte entry and gene expression in
the heart, lower vector doses may be sufficient to
reach a therapeutic threshold.

It is also important to screen all vectors for liver
transduction because the liver is the natural target for
most AAVs (67,68). A liver-specific enhancer-promoter
element exists in the 3’ untranslated region between
the cap gene and the right hand ITR (Figure 1), which is
evidence of a direct evolutionary link between AAV
and human liver and provides at least a partial expla-
nation of why AAVs naturally transduce human liver
with high efficiency. Therefore, if 2 capsids are other-
wise identical in function, clinical development
should be granted to the variant with lower liver
transduction, to reduce the risk of liver toxicity.
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In striving to protect the heart, care must be taken
to avoid interference with anthracycline-mediated
cancer killing brought on by inadvertent delivery to
tumors. Despite stringent selection for cardiotropism,
it is not possible to guarantee that the candidate
capsid is completely detargeted from tumors, because
they are comprised of a heterogeneous population of
cancer cells.

Systemic injection of a vector that exhibits homing
to the heart would be the least invasive. However, to
reduce the risk of gene transfer to cancer cells, the
route of vector administration can also be restricted
to localize vector delivery. Direct intramyocardial
injection can achieve strong gene expression,
although this method is relatively more invasive and
may not achieve global transduction of the heart
because of the focal nature of gene delivery (69).
Percutaneous intracoronary injection of AAV in a
porcine model was shown to induce strong transgene
expression in the heart, with only low levels detect-
able in the liver (70). This route is minimally invasive,
and therefore, would be more clinically applicable.

As a secondary strategy, cardiac muscle-specific
promoters can be incorporated into the rAAV vector
cassette, such that gene expression is activated in
cardiomyocytes only. Proof-of-concept studies have
shown that the cardiac sodium-calcium exchanger
(NCX1), ventricle-specific myosin light chain-2
(MLC 2-v) promoters can induce targeted expression
restricted to cardiomyocytes (22,71,72). By incorpo-
rating cell-specific promoters into the vector design,
the risk of off-target gene expression is further
reduced.

VALIDATION OF NOVEL THERAPEUTICS IN A

FUNCTIONING HEART

Cell culture models allow high-throughput screening
of capsid transduction performance and subsequent
functional validation of novel AAV variants. Howev-
er, they do not recapitulate the complex architecture
and physiological barriers presented by a whole or-
gan. Therefore, verification of treatment efficacy
would require both a functioning whole heart and a
quantifiable tumor burden in vivo.

Small animal tumor models have been developed
for preclinical validation of novel therapeutics, based
on the generation of orthotopic tumors in rodents. An
immunodeficient rodent could first be engrafted with
human tumor cells (Figure 6). Once the cancer cells
are seeded (eg, mammary fat pad to simulate breast
cancer) to form the tumor, gene delivery to the heart
can then be achieved by tail vein infusion (20). By
testing for efficient cardiac gene transfer in vivo, it is
then possible to determine whether there are off-
target effects related to both the route of adminis-
tration and inadvertent nonspecific transgene
expression. This is vital in ensuring that the putative
cardioprotective vector will not interfere with cancer
killing activity of anthracyclines.

LIMITATIONS OF CURRENT TECHNOLOGY

AND FUTURE CONSIDERATIONS FOR

VECTOR DEVELOPMENT

In this review, we have focused on cardioprotection
against anthracyclines as a proof of principle for car-
diac gene therapy. This illustrates how cell-targeted
therapies can confer protection without interfering
with the activity of anticancer drugs. However, cardiac
gene therapy is not limited to cardiomyocyte-targeted
delivery. Other investigators have pursued targeting
the toxic effects of doxorubicin in endothelial cells. An
AAV9 vector encoding vascular endothelial growth
factor-B was given as a prophylactic therapy to mice
7 days before commencement of doxorubicin treat-
ment (73). This study was promising, because the
therapy was shown to reduce doxorubicin-induced
cardiac atrophy and whole body wasting. Depending
on the molecular strategy, this gene transfer technol-
ogy could also be adapted to protect against other
cardiotoxic anticancer drugs, such as trastuzumab
(74). However, careful consideration must be given to
the disease-causing mechanism, timing of pathogen-
esis, and target patient population.

Gene therapy is suited for application to mono-
genic diseases, because gene addition can restore
normal protein levels in defective cells. Gene editing
can also be used to directly restore defects in the
genes directly. As previously described, sequence
variations in drug transporter genes may lead to
reduction of efflux function and increased suscepti-
bility to cardiotoxicity (16,17). These patients may
therefore benefit from gene correction, which would
restore normal transporter function and potentially
augment natural resistance to anthracycline
cardiotoxicity.

However, we also acknowledge the limitation of
lack of specificity regarding efflux of anthracyclines
by drug transporters. They may also efflux non-
anthracycline cardiac drugs such as statins, which
may affect the efficacy of treatment for nonmalignant
diseases (75). Drug transporters such as MRP1 may
also efflux glutathione conjugates, which may have as
yet unknown biological consequences for redox bal-
ance within cells with supraphysiological transporter
activity (76,77). The long-term potential for side ef-
fects of the gene therapy must therefore be



FIGURE 6 Dual-Targeted Raav for Cardioprotective Chemotherapy

Sequence of events for treatment of a hypothetical breast cancer preclinical model.

Tumor burden will be established in a rodent model, followed by pretreatment with the

cardiac-targeted adeno-associated virus (AAV) to deliver a cardioprotective gene to the

heart. The animal model will then be treated with anthracycline at a cardiotoxic dose.

Control animals that receive only vehicle or empty vector should exhibit left ventricle

dysfunction, whereas animals that receive the therapeutic vector should retain normal

heart function while the tumor is eliminated. PBS ¼ phosphate buffered saline.
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considered together with initial cardioprotection
during chemotherapy.

Although various cardioprotective genes have been
explored in preclinical models, our knowledge of
what genes would be most suited for protection
against anthracycline-induced cardiotoxicity in
humans are as yet unknown. Regardless of the gene
that is ultimately used, the long-term risks of vector
induced gene expression in the heart need to be
acknowledged and screened.

One way to address this limitation is to design an
AAV vector that allows transgene expression to be
switched off at completion of chemotherapy. A
unique “Cre-off” method was tested for switching
off transgene expression in the mouse brain in vivo
(78). By creating a vector where the open reading
frame is flanked by lox sites, it becomes possible to
regulate gene expression to ensure that the trans-
gene is not expressed in cells that also express Cre
recombinase (Cre). Using this system, it could be
possible to switch off the protective transgene
expression in a temporally controlled manner by
transient induction of Cre expression. To our
knowledge, this has not been tested in the context of
cardiac gene therapy and would be a novel method
of reducing the risk of long-term expression of car-
dioprotective targets. However, there is then the
challenge of not only specifically delivering Cre
recombinase to the heart, but also to do so in a
strictly transient manner so that neither the Cre nor
the original therapeutic transgene will be expressed
at the end of cancer therapy.

The rapid evolution of rAAV development may
result in vectors that can incorporate both efficiency
of cardiac targeting and also mitigation of long-term
risks of permanent transgene expression.

CONCLUSIONS

Although application of AAV-mediated gene therapy
for cardioprotection is still in its research infancy, it
will be exciting to see how emerging vector technol-
ogies will guide the development of novel therapies.
Improvements in AAV vectorology and big data
analysis have enabled innovative evolution of this
promising gene delivery system to maximize gene
delivery and transduction efficiency in target cells.
The versatility of this technology allows cardiotropic
delivery of any gene that is within the packaging size
constraints of the AAV genome. Accumulating evi-
dence of key differences between available preclini-
cal models has highlighted the importance of testing
therapies in relevant cell types. Being able to tailor
therapies to target the heart while minimizing off-
target effects will improve the safety of AAV vectors
and increase the feasibility of its use in
cardioprotection.
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