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OBJECTIVE—Hepatic steatosis is common in type 2 diabetes. It
is causally linked to the features of the metabolic syndrome, liver
cirrhosis, and cardiovascular disease. Experimental data have
indicated that increased liver fat may impair hepatic perfusion
and metabolism. The aim of the current study was to assess
hepatic parenchymal perfusion, together with glucose and fatty
acid metabolism, in relation to hepatic triglyceride content.

RESEARCH DESIGN AND METHODS—Fifty-nine men with
well controlled type 2 diabetes and 18 age-matched healthy
normoglycemic men were studied using positron emission to-
mography to assess hepatic tissue perfusion, insulin-stimulated
glucose, and fasting fatty acid metabolism, respectively, in rela-
tion to hepatic triglyceride content, quantified by proton mag-
netic resonance spectroscopy. Patients were divided into two
groups with hepatic triglyceride content below (type 2 diabetes-
low) or above (type 2 diabetes-high) the median of 8.6%.

RESULTS—Type 2 diabetes-high patients had the highest BMI
and A1C and lowest whole-body insulin sensitivity (ANOVA, all
P � 0.001). Compared with control subjects and type 2 diabetes-
low patients, type 2 diabetes-high patients had the lowest hepatic
parenchymal perfusion (P � 0.004) and insulin-stimulated he-
patic glucose uptake (P � 0.013). The observed decrease in
hepatic fatty acid influx rate constant, however, only reached
borderline significance (P � 0.088). In type 2 diabetic patients,
hepatic parenchymal perfusion (r � �0.360, P � 0.007) and
hepatic fatty acid influx rate constant (r � �0.407, P � 0.007)
correlated inversely with hepatic triglyceride content. In a
pooled analysis, hepatic fat correlated with hepatic glucose
uptake (r � �0.329, P � 0.004).

CONCLUSIONS—In conclusion, type 2 diabetic patients with
increased hepatic triglyceride content showed decreased hepatic
parenchymal perfusion and hepatic insulin mediated glucose
uptake, suggesting a potential modulating effect of hepatic fat on
hepatic physiology. Diabetes 59:2747–2754, 2010

O
besity and type 2 diabetes have grown to
epidemic proportions in virtually all parts of
the world because of a sedentary lifestyle and
positive energy balance (1). Hepatic steatosis

is a common finding in type 2 diabetes, which is causally
linked to features of the metabolic syndrome, liver
cirrhosis, and cardiovascular disease (2,3). The pro-
atherogenic serum lipid profile associated with hepatic
steatosis is a consequence of an increased synthesis of
VLDLs (4). Moreover, hepatic steatosis is associated
with impaired insulin signaling in insulin responsive
tissues by promoting the formation of humoral factors,
(5) and it plays a role in atherogenesis via induction of
systemic inflammation (6).

The liver is the central organ for lipid and glucose
metabolism, both of which are additionally regulated by
insulin (7–9). Liver steatosis is associated with impaired
inhibition of hepatic glucose output, but also with im-
paired insulin clearance (10,11). Using splanchnic cathe-
terization in patients with type 2 diabetes and healthy
control subjects, glucose and fatty acid fluxes into the liver
have been characterized (12–15). However, those tech-
niques cannot discriminate between the effects of the liver
versus those of the other splanchnic tissues. More re-
cently, positron emission tomography (PET) was intro-
duced to noninvasively assess hepatic substrate fluxes
(16–18). To date, however, only a few studies have ad-
dressed effects of glucometabolic disorders on hepatic
disposal of glucose and fatty acids in humans using PET
(19–21).

Hepatic steatosis has also been associated with alter-
ations of hepatic hemodynamics. Using noninvasive Dopp-
ler sonography, decreased portal vein hemodynamics
were demonstrated in patients with fatty liver disease
(22,23). Human donor livers, studied during organ retrieval
using laser Doppler flowmetry, showed diminished micro-
circulation compared with control livers (24). Moreover,
animal data revealed that graded steatosis decreased
parenchymal microcirculation (25). In addition to these
highly invasive methods, noninvasive in vivo studies of
hepatic perfusion have also been performed using PET
(26–28). However, little is known about the relationship
between liver triglyceride content with hepatic perfusion
or substrate metabolism in human type 2 diabetes.

The purpose of the current study was to measure
hepatic perfusion and metabolism and to investigate the
relationship with hepatic fat content in type 2 diabetic
patients without diabetes-related complications and age-
matched healthy male subjects.
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RESEARCH DESIGN AND METHODS

Fifty-nine type 2 diabetic patients and 18 healthy control subjects participated
in this two-center study, which was approved by the Medical Ethics Review
Committees of both centers and performed in compliance with the Declara-
tion of Helsinki. All subjects signed informed consent prior to inclusion.
Patients and control subjects were recruited by advertisements in local
papers. Male type 2 diabetic patients, aged 45–65 years, without diabetes-
related complications were eligible. Inclusion criteria were glycated hemoglo-
bin A1c (A1C) level of 6.5–8.5% at screening, BMI of 25–32 kg/m2, and blood
pressure not exceeding 150/85 mmHg (with or without the use of anti-
hypertensives). In addition, only moderate alcohol intake was allowed.
Patients were excluded if they had a history of or current hepatic or
cardiovascular disease. Other exclusion criteria were the use of insulin,
fibrates, thiazolidinediones, or other hormonal replacement therapies. Healthy
males, aged 45–65 years, with normal glucose metabolism, as assessed by a
75 g oral glucose tolerance test, were eligible as control subjects. Inclusion
criteria were BMI of 25–32 kg/m2 and blood pressure below 150/85 mmHg.
Patients and healthy control subjects underwent a screening consisting of
medical history, physical examination, electrocardiogram, and fasting blood
and urine analyses. In addition, patients underwent dobutamine-stress echo-
cardiography to confirm absence of inducible ischemia. All eligible patients
entered a 10-week run-in period in which their blood glucose-lowering agents
were stopped. Subsequently, all patients were transferred to a comparable
dosing of glimepiride monotherapy. Data on myocardial perfusion and sub-
strate uptake have previously been published elsewhere (29).
Study design. The study protocol was performed during two visits, within the
same week. At one of the visits, hepatic triglyceride content was measured
using 1H-MRS. In addition, subcutaneous and visceral fat volumes were
measured using magnetic resonance imaging (MRI). At the other visit, hepatic
perfusion and metabolism were measured using PET. At both occasions,
patients visited the clinical research unit in the morning at 08:00 A.M. after an
overnight fast of �12–15 h and no glucose-lowering agents were taken on the
day of the assessments.
Magnetic resonance imaging and spectroscopy. All magnetic resonance
studies were performed at a single center (Leiden) on the same 1.5 Tesla
whole-body magnetic resonance scanner (Gyroscan ACS/NT15, Philips, Best,
the Netherlands) with subjects at rest and in supine position. Hepatic 1H-MR
spectra were obtained as described previously (30). In short, 1H-MRS (mag-
netic resonance spectroscopy) of the liver was performed with an 8 ml voxel
positioned in the right lobe of the liver, avoiding gross vascular structures and
adipose tissue depots. Sixty-four averages were collected with water suppres-
sion. Spectra were obtained with an echo time of 26 ms and a repetition time
of 3,000 ms. Data points (1,024) were collected using a 1,000 Hz spectral line.
Without changing any parameters, spectra without water suppression, with a
repetition time of 10 s, and with four averages were obtained as an internal
reference. 1H-MRS data were fitted using Java-based magnetic resonance user
interface software (jMRUI version 2.2, Leuven, Belgium), as described previ-
ously (31). Hepatic triglyceride content relative to water was calculated as
100 � (signal amplitude of triglyceride)/(signal amplitude of water). Type 2
diabetic patients were divided according to the median liver fat content in a
low (�8.6%; type 2 diabetes-low) and high (�8.6%; type 2 diabetes-high) liver
triglyceride group. Abdominal visceral and subcutaneous fat depots were
quantified using MRI (32). A turbo spin echo imaging protocol was used, and
imaging parameters included the following: echo time � 11 ms, repetition
time � 168 ms, flip angle � 90°, slice thickness � 10 mm. Three consecutive
transverse images were obtained during one breath hold, with the middle
image at a level just above the fifth lumbar vertebra. The volumes of the
visceral and subcutaneous fat depots of all slices were calculated by convert-
ing the number of pixels to square centimeters multiplied by the slice
thickness. The total volume of the fat depots was calculated by summing fat
volumes of all three slices.
PET. All PET studies were performed at a single center (Amsterdam) using an
ECAT EXACT HR� scanner (Siemens/CTI, Knoxville, TN). Patients received
three venous catheters: one in both antecubital veins and one in a hand vein
being wrapped into a heated blanket to obtain arterialized blood during the
[18F]FDG scan. Hepatic tissue perfusion was performed in 2D mode and
quantified using [15O]H2O (1,100 MBq). Hepatic glucose and fatty-acid uptake
were performed in 3D mode and quantified using [18F]FDG (170 MBq) and
[11C]palmitate (185 MBq), respectively. Perfusion and fatty acid uptake were
assessed in the postabsorptive state, whereas glucose uptake was performed
under hyperinsulinemic euglycemic conditions. The following scan protocol
was used for all studies. After a 10 min transmission scan for attenuation
correction, [15O]H2O was injected and a 10 min dynamic emission scan,
consisting of 40 frames with progressively increasing frame length, was
acquired. Subsequently, a 30 min dynamic emission scan, consisting of 34
frames with progressively increasing frame length, was performed after

[11C]palmitate injection. Next, a euglycemic hyperinsulinemic clamp proce-
dure was started using an insulin infusion rate of 40 mU�m�2�min�1 as
previously described (33). Euglycemia was maintained by adapting the
glucose infusion rate to maintain a plasma glucose level of 5 mmol/l.
Whole-body insulin sensitivity (M/I value) was calculated as the mean plasma
glucose level between 90 and 120 min from the start of the clamp procedure
and then divided by the mean plasma insulin levels in the same time interval.
The insulin clearance rate was estimated by dividing the exogenous insulin
infusion rate by the steady-state plasma insulin concentrations during the
clamp. Under these conditions, the described ratio corresponds to the
metabolic clearance rate of systemically administered insulin, minus a small
(though variable) part represented by residual insulin secretion. The posthe-
patic insulin delivery rate of insulin is then calculated as the product of the
insulin clearance rate and fasting plasma insulin levels. At steady state (�90
min after start of clamp) and after a second transmission scan, [18F]FDG was
injected and a 60 min dynamic emission of 40 frames with progressively
increasing frame length was acquired. Blood samples were collected during all
three scans at predefined time points to measure glucose, nonesterified fatty
acid, lactate, lipids, and insulin levels. In addition, 11CO2 was measured during
the [11C]palmitate scan (29,34).
PET data analysis. Emission data were corrected for physical decay of the
respective tracers and for dead time, scatter, randoms, and photon attenua-
tion. To generate myocardial time–activity curves, large regions (2 cm � 5 cm)
of interest (ROIs) were defined in the right lobe of the liver on 4–5 consecutive
planes of ordered subset expectation maximization (OSEM) reconstructed
(summed) images and then copied to the three dynamic images to obtain one
tissue time–activity curve per tracer for each subject. Additionally, circular
ROIs (15 mm diameter) were drawn on 10 consecutive planes on the
respective dynamic images in the aorta ascendens and grouped to obtain one
image-derived input function for each tracer. To quantify hepatic parenchymal
perfusion, it was assumed that [15O]H2O in liver can be described by a
single-tissue compartment model as proposed and validated by Kudomi and
coworkers (27,28).

dCT�t	

dt
� FACA�t	 � FPCP�t	 �

FA � FP

VT
CT�t	 (1)

Here, CT(t), CA(t), and CP(t) represent liver, arterial blood, and portal venous
blood time–activity curves, respectively, FA and FP are arterial and portal
venous perfusion, respectively, and VT is the partition coefficient of water in
liver. The model assumes that CP(t) can be described as a delayed and
dispersed version of CA(t) after passage though a notional gut compartment:

CP�t	 � kgCA�t � 
t	 � e�kg�t	 (2)

Finally, delay 
t, dispersion constant kg, and VT, FA, FP, and fractional hepatic
blood volume VB were determined by nonlinear regression using the following
operational equation in which the right-hand side of Eq. 2 was substituted for
CP(t):

CT�t	 � �1 � Vb	�FACA�t	 � FPCP�t		 � e
FA�FP

VT � Vb�FACA�t	 � FPCP�t	

FA � FP
�

(3)

Plasma and tissue time–activity curves for [18F]FDG and [11C]palmitate were
quantified using Patlak graphical analysis, as previously described (18–20)
and validated in a porcine model (16). In this analysis, a graph is produced by
plotting CT(t)/CP(t) against �CP(t)/CP(t), where CT(t) and CP(t)Ct are liver and
arterial plasma time–activity curves, respectively. The model presupposes
irreversible tracer kinetics, and, after exclusion of the first few min when
there is no equilibrium yet, a linear relationship is obtained. The hepatic influx
rate constant (Ki) is then derived from the slope of a linear fit of the latter part
of this plot (10–60 min). Hepatic glucose uptake (HGU) was calculated by
multiplying Ki with the plasma glucose concentration. Under hyperinsuline-
mic conditions, as used in the current study, hepatic glucose output and
dephosphorylation of FDG-6-phosphate are considered to be essentially
absent (21) and reflux will be minimal. Nevertheless, to account for reversible
tracer uptake, data were additionally analyzed by introduction of a rate
constant parameter (Kloss) accounting for tracer outflow as previously de-
scribed (21). The Ki of [11C]palmitate was not multiplied by fasting fatty acid
levels, as these may not accurately reflect portal vein concentrations; hence,
only Ki is provided. Patlak analysis of [11C]palmitate was confined to the
interval from 3 to 10 min after tracer injection, as a previous study in the liver
has shown that labeled triglyceride metabolites of [11C]palmitate become
detectable after 10 min (35). Although for this time interval no correction for
labeled triglycerides was necessary, a correction of [11C]palmitate image-
derived input functions for [11C]CO2 was still performed, as described
elsewhere (29,34). In addition, the validity of using the Patlak method for
analyzing [11C]palmitate data were assessed using spectral analysis (36).
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Spectral analysis allows for assessment of 1) the number of tissue compart-
ments identifiable in the data and 2) whether these compartments represent
irreversible or reversible tracer kinetics, without prior assumptions about the
underlying tracer kinetics. Use of this approach showed the validity of the
Patlak method, as in all scans only one irreversible compartment was detected
for the time interval selected (data not shown).
Biochemical analyses. Samples were analyzed at one certified central
laboratory (Amsterdam). Plasma glucose was quantified using a hexokinase-
based technique (Roche Diagnostics, Mannheim, Germany). A1C was deter-
mined by high-performance liquid chromatography (Menarini Diagnostics,
Florence, Italy; reference values: 4.3–6.1%). Plasma triglycerides, total choles-
terol, and HDL cholesterol were determined using enzymatic colorimetric
methods (Modular, Hitachi, Japan). Levels of LDL cholesterol were calculated
using Friedewald’s formula (reference values: 2.0–4.6 mmol/l). Plasma free
fatty acids were measured by an enzyme-linked immunoabsorbent assay
(Wako Chemicals, Neuss, Germany). Plasma insulin levels were quantified by
an immunoradiometric assay (Bayer Diagnostics, Mijdrecht, The Nether-
lands). Ultrasensitive C-reactive protein (us-CRP) was determined by ELISA
(DSL, Webster, TX). The sensitivity was 1.6 �g/l, and the interassay coefficient
of variation (CV) ranged from 3 to 5%. In duplo determinations of plasma
malondialdehyde, a marker of oxidative stress, were performed by high-
performance liquid chromatography after alkaline hydrolysis and reaction
with thiobarbituric acid (37). The intraassay CV was 5.7%.
Statistical analyses. Values are expressed as mean  SE or as median
(interquartile range) in case of skewed distribution. Nonnormally distributed
data were log-transformed. Comparisons between control subjects, type 2
diabetes-low, and type 2 diabetes-high patients were performed using ANOVA,
including the Bonferroni post hoc multiple comparisons test. Pearson and
Spearman (where appropriate) univariate correlation coefficients were calcu-
lated, and linear regression was used to control for covariates. Statistical
analysis was performed using SPPS for Windows version 15.0 (SPSS Inc.,
Chicago, IL). A two-tailed probability value � 0.05 was considered significant.

RESULTS

The 1H-MRS protocol was successfully completed in all
participants. For technical reasons, four [15O]H2O, two

[18F]FDG, and 12 [11C]palmitate scans in type 2 diabetic
patients were not available for analysis, as well as one
[15O]H2O and two [11C]palmitate scans in healthy control
subjects.
Subject characteristics. Baseline characteristics of pa-
tients, categorized according to liver fat content, and
control subjects are listed in Table 1. All groups were
similar with respect to age, and both type 2 diabetes
groups had comparable disease duration and medication
use. As expected, anthropometric and hemodynamic pa-
rameters (which were all in the normal range) differed
significantly between groups. Plasma lipid profiles and
liver enzymes were different among groups (Table 1).
Metabolic characteristics under postabsorptive and hyper-
insulinemic conditions are displayed in Table 2 and
showed differences between groups. Plasma fatty acids
(postabsorptive state) and plasma lactate (hyperinsulin-
emia), however, were similar between groups.
Hepatic and abdominal fat. Type 2 diabetes-high pa-
tients had, compared with type 2 diabetes-low patients and
control subjects, the highest hepatic triglyceride content:
21.6 (12.9–29.4) versus 2.6 (1.5–5.2) and 2.5 (1.0–4.2) %,
respectively, ANOVA, P � 0.001. Figure 1 shows a repre-
sentative MRI image and spectrogram. Subcutaneous and
visceral fat volumes were statistically different between
groups (736  47 vs. 572  39 and 598  52 ml, P � 0.020)
and (440 (333–578) versus 318 (248–404) and 264 (203–
340) ml, P � 0.001), respectively.
Hepatic parenchymal perfusion and substrate up-

take. Fig. 2 shows representative OSEM (summed) recon-
structed PET images of the liver for [11C]palmitate,

TABLE 1
Subject characteristics

Control
(n � 18)

T2DM-low
(n � 29)

T2DM-high
(n � 30)

ANOVA
P value

Demography
Age, years 54.7  1.3 57.1  0.9 56.8  1.0 0.304
Time since diagnosis of diabetes, years NA 4 (2–8) 4 (3–5) 0.426

Anthropometry and hemodynamics
BMI, kg/m2 27.3  0.6 26.7  0.5 30.0  0.5*,‡ �0.001
Body surface area, m�2 2.1  0.1 2.0  0.1 2.1  0.1 0.085
Waist circumference, cm 102  2 99  2 107  2‡ 0.005
Systolic blood pressure, mmHg 118  3 124  2 130  2* 0.002
Diastolic blood pressure, mmHg 72  2 73  1 78  1*,‡ 0.004
Heart rate, bpm 56  2 64  2† 66  1* 0.001

Metabolic characteristics
HbA1c, % 5.4  0.1 7.0  0.2† 7.3  0.2* �0.001
Total cholesterol, mmol/l 5.0  0.2 4.3  0.1† 4.5  0.2 0.006
LDL cholesterol, mmol/l 3.2  0.1 2.6  0.1† 2.7  0.7* 0.007
HDL cholesterol, mmol/l 1.24 (1.10–1.63) 1.05 (0.85–1.29)† 0.96 (0.82–1.09)* �0.001
Triglycerides, mmol/l 0.8 (0.6–1.2) 1.1 (0.8–1.6)† 1.8 (1.2–2.3)*,‡ �0.001
ALT, U/l 25 (18–33) 26 (21–33) 37 (30–51)*,‡ �0.001
AST, U/l 24 (20–30) 28 (21–36) 28 (24–38)* 0.139
�-GT, U/l 23 (17–29) 23 (18–37) 42 (35–48)*,‡ �0.001
usCRP, mg/l 3.0 (1.7–6.3) 2.9 (1.6–4.5) 4.7 (3.5–6.8) ‡ 0.007
Malondialdehyde, �mol/l 6.0  0.1 9.7  0.5† 10.0  0.4* �0.001

Medications, % (n/N)
Statins NA 38 (11/29) 47 (14/30) 0.497
Any antihypertensive medication NA 41 (12/29) 43 (13/30) 0.879

Data are mean  SE, median (interquartile range). NA indicates not applicable. T2DM-low indicates type 2 diabetic patients with liver
triglyceride content �8.6%. T2DM-high indicates type 2 diabetic patients with liver triglyceride content �8.6%. *indicates significant
difference between controls and T2DM-high. †indicates significant difference between controls and T2DM-low. ‡indicates significant
difference between T2DM groups. HbA1c, glycated hemoglobin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; �-GT,
�-glutamyl transferase.
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[18F]FDG, and fits on the data for the respective tracers.
Type 2 diabetes-high patients had, compared with type 2
diabetes-low patients and control subjects, the lowest
hepatic perfusion (0.647  0.038 vs. 0.795  0.042 and
0.850  0.047 ml�ml�1�min�1, ANOVA, P � 0.004, Fig. 3A).
Type 2 diabetes-high patients had, compared with type 2
diabetes-low patients and control subjects, the lowest
insulin mediated HGU (20.4  1.9 vs. 24.1  2.1 and 30.7 
3.0 �mol�ml�1�min�1, respectively, P � 0.013, Figure 3B).
No tracer loss from the liver could be detected during scan
time. The mean hepatic fatty acid influx rate constant (Fig.
3C) was lower in type 2 diabetes-high patients compared

with type 2 diabetes-low patients and control subjects, but
only reached borderline significance (P � 0.088).
Correlations between hepatic fat content, parenchy-
mal perfusion, and substrate uptake. In a pooled
analysis, hepatic triglyceride content correlated inversely
with hepatic perfusion (r � �0.402, P � 0.001; Fig. 3A) and
hepatic fatty acid influx rate constant (r � �0.335, P �
0.004; Fig. 3B), which both remained significant after
correction for diabetic status, A1C, BMI, visceral fat
content, plasma fatty acid, and lactate levels. Hepatic
triglyceride content also correlated inversely with HGU
(r � �0.329, P � 0.004; Fig. 3C), which remained signifi-

TABLE 2
Metabolic characteristics in control and type 2 diabetic patients with low and high hepatic triglyceride content

Control T2DM-low T2DM-high
ANOVA
P value

Metabolic characteristic (fasting state)
Plasma glucose, mmol/l 5.2 (4.9–5.4) 8.3 (6.7–10.1)† 8.0 (7.1–8.7)* �0.001
Plasma nonesterified fatty acids, umol/l 470 (360–540) 450 (410–570) 500 (370–590) 0.624
Plasma lactate, mmol/l 0.8 (0.7–0.9) 1.1 (0.9–1.3)† 1.2 (1.0–1.5)*,‡ �0.001
Plasma insulin, pmol/l 28 (19–33) 39 (28–62)† 78 (62–99)*,‡ �0.001

Metabolic characteristics (hyperinsulinemic state)
Plasma nonesterified fatty acids, umol/l 40 (20–48) 50 (30–85)† 115 (70–173)*,‡ �0.001
Plasma lactate, mmol/l 1.1 (0.9–1.3) 1.0 (0.9–1.2) 1.1 (1.0–1.4) 0.560
Plasma insulin, pmol/l 511  67 513  23 643  26*,‡ �0.001
M/I value, mg/(kg � min)/(pmol/l) 1.13 (0.73–1.66) 0.68 (0.46–1.0)† 0.37 (0.17–0.45)*,‡ �0.001
Insulin clearance rate, ml/min 1,101 (1,017–1,270) 1,029 (951–1,262) 945 (816–1,053)*,‡ 0.003
Post-hepatic insulin delivery rate, pmol/min 29 (21–40) 48 (30–77)† 78 (56–97)*,‡ �0.001

Data are mean  SE, median (interquartile range). T2DM-low � type 2 diabetic patients with liver triglyceride content �8.6%. T2DM-high �
type 2 diabetic patients with liver triglyceride content �8.6%. *indicates significant difference between controls and T2DM-high. †indicates
significant difference between controls and T2DM-low. ‡indicates significant difference between T2DM groups. M value, whole-body insulin
sensitivity; M/I value, M value adjusted for insulin during the steady state.
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FIG. 1. Representative images of OSEM (summed) reconstructed PET images of the liver with [11C]palmitate (A) and [18F]FDG (B) with ROIs
used for analysis indicated. Images show uptake in the liver on the left and uptake in the heart on the upper right. Time course of [15O]H2O
concentration (C) in the liver (circles), with hepatic perfusion model fit (straight line). Patlak plots of [11C]palmitate (D) and [18F]FDG (E) data
points, respectively. The blue dots in parts (D) and (E) were excluded from the analysis. The slope of the linear fits equals the net rate of influx
Ki. Note the correspondence between the respective Ki values and the uptake seen in (A) and (B), which is much higher for 11C-palmitate (fasting
state) than for 18F-FDG (hyperinsulinemic state). (A high-quality digital representation of this figure is available in the online issue.)
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cant after correction for diabetic status, A1C, BMI, and
visceral fat content, but not when additionally correcting
for plasma fatty acid or lactate. Hepatic triglyceride con-
tent, but not hepatic perfusion or hepatic fatty acid influx
rate constant, were correlated with M/I value (r � �0.684,
P � 0.001), malondialdehyde (r � 0.427, P � 0.001), usCRP
(r � 0.326, P � 0.005), insulin clearance rate (r � �0.459,
P � 0.001), and visceral (r � 0.612, P � 0.001) and
subcutaneous fat (r � 0.392, P � 0.001) volumes. The
hepatic glucose influx rate constant correlated inversely
with plasma fatty acid levels (r � �0.246, P � 0.036), A1C
(r � �0.310, P � 0.007), and malondialdehyde (r �
�0.434, P � 0.001).

In type 2 diabetic patients alone, hepatic fat content
correlated inversely with hepatic perfusion (r � �0.360,
P � 0.007) and hepatic fatty acid influx rate constant (r �
�0.407, P � 0.007), whereas borderline significant associ-
ations were found with HGU (r � �0.245, P � 0.057).

Hepatic fat content, but not hepatic perfusion or hepatic
fatty acid influx rate constant, correlated with M/I value
(r � �0.657, P � 0.001) and usCRP (0.375, P � 0.005),
insulin clearance rate (r � �0.436, P � 0.001), and visceral
(r � 0.540, P � 0.001) and subcutaneous fat (r � 0.375,
P � 0.003) volumes. The hepatic glucose influx rate
constant rate is inversely correlated with malondialdehyde
(r � �0.380, P � 0.004) and borderline correlated with
plasma fatty acids (r � �0.251, P � 0.059). None of these
correlations were observed in control subjects alone.

DISCUSSION

Using MRS and PET in the same patients, the current study
provides evidence for a potential modulating effect of
hepatic fat content on hepatic physiology in type 2 diabetic
patients. Reduced hepatic parenchymal perfusion, insulin-
mediated HGU, and a borderline decrease in hepatic fatty
acid influx rate constant were observed in type 2 diabetic
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patients with increased hepatic triglyceride content. More-
over, hepatic triglyceride content was directly and in-
versely related to hepatic perfusion, hepatic glucose, and
fatty acid metabolism.
Hepatic fat content and relationship with hepatic
parenchymal perfusion. Although flow through portal
vein and hepatic artery is readily accessible using Doppler
sonography, (22,23) in vivo studies on human hepatic
(parenchymal) perfusion are limited due to the often
(highly) invasive methodology required. Indirect methods
for measuring hepatic blood flow have been used and
include the assessment of clearance or dilution of a dye or
marker (gas or microspheres), which have a wider range
of clinical applicability than the direct methods (38).
Moreover, noninvasive measurements of hepatic perfu-
sion using PET with the freely diffusible flow tracer
[15O]H2O have been shown to provide reliable estimates
of hepatic blood flow, when taking into account the dual
input from hepatic artery and vena porta (27,28). In the
current study, decreased hepatic parenchymal perfusion
was observed in type 2 diabetic patients with increased
liver triglyceride content but not in those type 2 diabetic
patients with low liver triglyceride content, as com-
pared with control subjects, implying a potential mod-
ulating effect of liver fat per se.

These results extend data from previous studies sug-
gesting a modulating effect of increased hepatic fat con-
tent on hepatic blood flow velocity and perfusion. It has
been shown that the level of fatty infiltration in humans
alters portal vein hemodynamics in a graded way (22,23).
Especially under stress conditions, such as during isch-
emia-reperfusion or transplantation, the fatty liver has
shown decreased adaptability and hence increased risk of
failure (39). In addition to changes in hepatic macrocircu-
lation, alterations in the hepatic microvasculature have
been implicated. In steatotic livers of human donors, laser
Doppler flowmetry revealed a significant decrease in he-
patic parenchymal perfusion (24). In New Zealand white
rabbits with diet-induced hepatic steatosis, Seifalian et al.
(25) found that graded steatosis progressively reduced
hepatic blood flow velocity and hepatic parenchymal
perfusion. Moreover, they observed an inverse correlation
between the degree of fat infiltration and both total
hepatic blood flow and the hepatic parenchymal perfusion,
with the biggest on the latter.

The mechanisms by which increased liver fat affects
hepatic perfusion include factors like structural changes in
the liver, a microvascular inflammatory response, and
possibly vascular insulin resistance. Experimental studies
in several animal models of diet and genetically induced
hepatic steatosis have shown that reductions in sinusoidal
perfusion are initially due to enlarged hepatic parenchy-
mal cells overloaded with lipids (40–43). Consequently,
parenchymal cell plates become wider, which results in
narrowing and deformation of the lumen of sinusoids,
reducing their volume. This eventually leads to sinusoidal
dysfunction and impaired hepatic perfusion (42). In-
creased leukocyte adherence to endothelial cells, expres-
sion of adhesion molecules, and upregulation of NF-�B
have been shown to promote reactive oxygen species
generation, with subsequent inflammation and formation
of vasoactive metabolites, all of which may be implicated
in decreased hepatic parenchymal perfusion (44). More-
over, insulin resistance, one of the hallmarks of type 2
diabetes pathology and strongly associated with hepatic
steatosis, may additionally decrease hepatic microcircula-

tory flow by impaired insulin receptor signaling via the
PI3-kinase/Akt/eNOS cascade, which in turn may result in
decreased nitric oxygen synthesis by endothelial cells and
hence decreased nitric oxygen mediated vasodilation
(44,45). In addition, stimulated signaling through the insu-
lin-receptor mediated MAPK/ERK pathway may addition-
ally favor vasoconstriction and abnormal angiogenesis,
contributing to impaired microvascular hepatic perfusion
(46). Although in the current study no direct relationships
were found between hepatic parenchymal perfusion and
whole-body insulin sensitivity, oxidative stress, or usCRP,
the hepatic parenchymal perfusion was inversely corre-
lated with hepatic fat content. Therefore, more studies are
warranted to further explore these interrelations.
Hepatic triglyceride content and relationship with
substrate metabolism. Interestingly, only a borderline
significant difference was found in the fasting hepatic fatty
acid influx rate constant across groups, caused by the
lower uptake rate in type 2 diabetes-high, but not type 2
diabetes-low, patients. Depending on the condition, fatty
acid extraction or uptake has been reported to be unal-
tered (13,14), decreased (15,19), or increased (14,47).
Using PET with the fatty acid analog tracer 14(R,S)-18F-
fluoro-6-thia-heptadecanoic acid, Iozzo et al. found de-
creased fatty acid extraction in 10 fasting patients with
impaired glucose tolerance compared with eight healthy
control subjects (19). These findings were primarily ex-
plained by reverse substrate competition, as plasma glu-
cose sampled from arterialized blood correlated inversely
with fatty acid uptake. In the current study, during the
[11C]palmitate PET scan, only venous sampling was per-
formed and hence this relation could not be tested
reliably.

In the current study, previous findings were confirmed,
indicating that both type 2 diabetes and liver fat content
are inversely related to insulin-stimulated hepatic glucose
uptake (20,48). Hepatic glucose influx and output are
directly regulated by insulin through several enzymes.
Insulin initializes the upregulation of glucokinase and
glycogen synthase and conversely inhibits glucose-6-phos-
phatase and glycogen phosphorylase in hepatocytes (8). In
hepatic insulin resistance, impaired activity of these key
enzymes may therefore lead to decreased insulin-stimu-
lated HGU (49).

An indirect mechanism underlying the negative relation-
ship between liver fat and HGU may be increased fatty
acid fluxes related to increased lipolysis from insulin-
resistant adipose tissue. The inverse association between
plasma fatty acids and HGU rate is in line with this
assumption. Furthermore, other studies have shown that a
combined intralipid/heparine infusion increased plasma
fatty acids and reduced splanchnic and peripheral glucose
uptake in type 2 diabetic patients (50). Moreover, although
the current study is aimed at HGU, it should be mentioned
that hepatic glucose uptake only constitutes a small per-
centage of net change in glucose metabolism during the
clamp.

Finally, the liver is the main site involved in insulin
clearance and degradation (51). Recently, Kotronen et al.
(11) found that increased hepatic fat was associated with
impaired insulin clearance in 80 nondiabetic subjects. The
present inverse relationship between liver fat content and
insulin clearance is in line with those results.
Limitations. In the current study, we used 1H-MRS to
measure hepatic triglyceride content. To that purpose,
only three magnetic resonance slides of the liver were
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made for voxel localization, and hence, total liver volume
could not be calculated. Thus, the study’s conclusions are
limited to liver tissue studied within the volume of the
voxel. Although liver volume was probably increased in
the type 2 diabetes-high group, the effect of an increased
liver volume on our findings cannot be established. From
animal studies, however, it seems less likely that an
increase in liver volume substantially influenced our find-
ings (25,52). In addition to a decrease in the total number
of hepatocytes, many structural changes in the fatty liver
may negatively influence hepatic metabolism and paren-
chymal perfusion.

In conclusion, type 2 diabetic patients with high liver
triglyceride content have a poorer metabolic profile than
age-matched control subjects and type 2 diabetic patients
with a liver triglyceride content in the normal range. In
addition, type 2 diabetic patients with high liver triglycer-
ide content show decreased hepatic parenchymal perfu-
sion and insulin-mediated glucose uptake. Finally, hepatic
triglyceride content is inversely related to hepatic paren-
chymal perfusion, HGU, and hepatic fatty acid influx rate
constant, suggesting a potential modulating effect of he-
patic fat on hepatic physiology.

ACKNOWLEDGMENTS

This investigator-initiated study was supported by Eli Lilly,
the Netherlands. M.D. reports receiving consulting and
lecture fees from Eli Lilly, Merck, Novartis, Pfizer, and
sanofi-aventis and research grants from Eli Lilly, Merck,
Novartis, Novo Nordisk, and GlaxoSmithKline. R.J.H. is
employed by Eli Lilly & Company as of January 2008. No
other potential conflicts of interest relevant to this article
were reported.

L.J.R. conceived and designed the study, analyzed and
interpreted the data, and drafted and revised the manu-
script. R.W.M. conceived and designed the study, analyzed
and interpreted the data, and revised the manuscript. M.L.
analyzed and interpreted the data, modeled PET data,
provided technical assistance, and drafted and revised the
manuscript. H.J.L., J.A.R., and A.R. conceived and de-
signed the study and revised the manuscript. J.W.T. ana-
lyzed and interpreted the study and revised the
manuscript. R.J.H., A.A.L., and J.W.A.S. conceived and
designed the study and revised the manuscript. M.D.
conceived and designed the study, analyzed and inter-
preted the data, and drafted, cowrote, and revised the
manuscript.

REFERENCES

1. James WP. The epidemiology of obesity: the size of the problem. J Intern
Med 2008;263:336–352

2. Kotronen A, Yki-Järvinen H. Fatty liver: a novel component of the
metabolic syndrome. Arterioscler Thromb Vasc Biol 2008;28:27–38
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