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The present discussion reviews the minimal require-
ments for germinal center (GC) production. Among
the components needed to produce these typical in

vivo structures are (1) antigen (Ag with epitopes
recognized by T cells), (2) B cells specific for the Ag,
and (3) CD4 T cells.
The fact that Ag is a determining factor in the

induction of GCs has been clear since the observation
that GCs are absent or very much reduced in germ-
free guinea pigs (Glimstedt, 1936), chickens (Thor-
becke et al., 1957), and rats (Thorbecke, 1959).
Particularly striking is the enormously reduced num-
ber of GCs in gut-associated lymphoid tissue in the
germ-free chicken (Thorbecke et al., 1957). However,
an important question concerning the need for Ag is
whether it has to be presented on follicular dendritic
cells (FDC) for the initial induction of GCs or

whether other dendritic cells and/or activated B cells
themselves can serve as APCs on this occasion.
An interesting model that could be used to evaluate

this question is presented by murine mammary tumor

virus (MMTV) LTR-encoded superantigens (vSAgs),
which are only expressed on the surface of cells,
primarily on B cells. The lymphomas of SJL mice

express such a vSAg, encoded by Mtv29. These
lymphomas are GC-derived and totally dependent for
their growth on the V/316+CD4 T cells that their

vSAg stimulates (Tsiagbe et al., 1993). The early
lymphomas are clearly PNA/, as may be seen in
sections of (grossly normal-looking) Peyer’s patches
from occasional 6- 12-month-old SJL mice (Fig. 1).
In similarly aged SJL mice bearing a Bcl-2 transgene
(targeted to B cells), there appear abnormal GCs as
well as hyperplasia of normal-looking GCs, even in
the medullary cords of lymph nodes where FDCs are
not expected to be present (Secord et al., 1995; Ponzio
et al., 1996). This form of GC hyperplasia is not seen

in similarly aged BALB/c mice bearing the same Bcl-
2 transgene. We have interpreted these findings to

indicate that there is synergy between the expression
of Mtv29-vSAg on the surface of GC cells and a

prolonged survival of GC cells due to enhanced BCL-
2 expression. However, this interpretation is based on
the presumption that surface presentation of vSAg by
B cells can lead to GC formation.

Another interesting aspect of the role of Ag in GC
formation is that persisting Ag or immune complex on
FDCs (long after the initial primary response) by
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FIGURE Abnormal germinal centers in Peyer’s patch of middle-aged SJL mouse. Note the irregularly shaped areas of PNA large blast
cells in the lower part of the mucosa of this Peyer’s patch. Staining was with peoxidase-labeled PNA and methyl green. Magnification:
80.

itself, although apparently capable of influencing the
fate of circulating (resting) memory B cells, does not

cause GC formation unless renewed activation of T
cells is induced (Baine et al., 1981).
With respect to the need for B cells, an important

unresolved question remains: Is there a subset of B
cells that is particularly good at giving rise to GCs? In
previous work performed in collaboration with Linton

and Klinman (Linton et al., 1992), we have shown
that unprimed HSA (J11D) B cells are much more

proficient at producing GCs in SCID recipients in the

presence of excess-carrier-primed helper T cells (2
106) than are HSAhi B cells. As few as 105 transferred
JllD BALB/c B cells gave rise to 9.4 GCs per
spleen section within 7 days after cell transfer, as

compared to 0.2 GC per spleen section in recipients of
an equivalent number of J11Dhi B cells.

It should be noted that the data from these cell
transfer studies also suggest that functionally
developed FDCs are not required for GC formation,
since SCID mice are not reconstituted to exhibit such
FDCs within a week after B- and T-cell transfer
(Kapasi et al., 1993). The HSA GC precursor cells

are also IgDi, which is in line with other findings
from our laboratory in which we have found that the

presence of receptors for IgD on T cells, induced by
injection of oligomeric IgD, facilitates both GC
production (Swenson et al., 1988) and the induction

of early memory for antibody responses (Coico et al.,
1983). Thus, the presence of IgDi on B cells might
facilitate T-B cell interaction leading to GC forma-
tion. Indeed, the augmenting effect of IgD-R
expression on T cells is not observed in IgD-/- mice

(Swenson et al., 1995). Moreover, the intravenous

injection of monomeric IgD, which cannot cross-link

IgD-R, prevents any immunoaugmenting or IgD-R
upregulating effect of oligomeric IgD. In addition,
monomeric IgD prevents the induction of IgD-R on T
cells, which is observed after injection of Ag in vivo,
and inhibits the early phase of priming for a

secondary Ab response (Swenson et al., 1995). On the
basis of these findings, we have suggested that T-B-
cell interactions leading to GC formation and Ab
maturation are facilitated by the presence of cross-

linked IgD on the B-cell surface interacting with IgD-
R on CD4 helper T cells (Amin et al., 1994; Swenson



COMPONENTS OF GERMINAL CENTERS 327

et al., 1995). However, in view of the observation that
GC formation does occur in IgD-/- mice (Nitschke et

al., 1993; Roes and Rajewsky, 1993) as well as in
mice treated with anti-IgD from birth (Jacobson et al.,
1981), such an interaction is clearly not required for
GC formation.
With respect to T cells, older observations have

established that GC formation is T-dependent (de
Sousa and Pritchard, 1974; Jacobson et al., 1974;
Stedra and Cerny, 1994), but the nature of the T cells
required has not been established. It has become clear
from recent studies by Fuller et al. (1993) and by
Zheng et al. (1994) that a large portion of the CD4 T
cells found in newly produced GCs are specific for the
Ag that induced those GCs, as judged by the V/3 and
Vc used to make up their TCR. It has recently been
reported, in agreement with our own unpublished
observations, that TCR/3-/- mice fail to produce GCs
in response to most immunization procedures (Dianda
et al., 1996). Nevertheless, Wen et al. (1996) have

obtained GC production in SCID mice receiving B
cells from TCR/36-/- mice and 78 T cells from a T-
cell line of Th2 phenotype (IL-4+, IFN-y-) that could
express CD40L on its suface. In contrast to the

paucity of GC production in V/3-/- mice, however,
GCs are frequently observed in Vc-/- mice in
association with CD4 T cells bearing a variety of

V/3s but no Vc on their surface (Dianda et al., 1996).
The nature of the antigens recognized by these
abnormal T cells needs further clarification.
With respect to the role of individual cytokines, the

importance of IL-4 in the production of GCs was

recently suggested by the reduced numbers of GCs in

gut-associated lymphoid tissue from IL-4-/- mice

(Vajdy et al., 1995; L. Rizzo, W. J. Simmons, and G.
J. Thorbecke, unpublished observations). However,
these same studies clearly showed that GCs are

produced in IL-4-/- mice and are therefore not totally
dependent on IL-4. On the other hand, a stringent
requirement for the production of LT-c and/or its
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FIGURE 2 Effect of KLH-specific Thl and Th2 clones on germinal center formation to TNP-KLH in nu/nu BALB/c mice. Mice received
i.v. and s.c. (in the front feet) injections of 5 106 cloned T cells (Thl clone D3 or LV3M and Th2 clone DC10). TNP-KLH was injected
in the front feet in complete Freund’s adjuvant 4 hr before the cells. Mice were boosted with TNP-KLH in saline on day 10 and killed on
day 15. On the left, GCs expressed as the percentages of follicles in brachial lymph nodes exhibiting GCs; on the right is the number of GCs
per splenic cross-section. Evaluation of GC numbers was performed on sections stained with PNA-peroxidase followed by counterstaining
with methyl green. Data are adapted from Secord et al., (1996).
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receptor TNF-RI in GC formation has been reported
(Matsumoto et al., 1996), but it is not clear whether
this is due to a requirement for a secreted product or

for cell-surface interactions involving these mole-
cules.
We have now asked the question whether Ag-

specific CD4 cq3 T-cell clones with typical Thl or
Th2 cytokine profiles are all capable of providing help
for GC production (Secord et al., in press). Well-
characterized KLH-specific BALB/c T-cell clones
were injected i.v. and into the front foot pads of
BALB/c nu/nu recipients around the same time as the
Ag (TNP-KLH). The overall results (Figure 2)
indicate that Thl clones are not very capable of
providing help for GC formation, whereas Th2 cells

alone are capable. The most surprising result of these
studies, however, is that the two clones together are
more effective than either clone alone. At the previous
GC meeting, we reported that IFN-y + IL-5 syner-
gized in supporting B-cell CFU production in soft
agar by GC B cells in response to stimulation with
LPS and dextran sulfate, whereas IFN-y completely
abolished the IL-5-induced CFU formation by perito-
neal B cells (Tsiagbe et al., 1992, 1994). Thus, the
results in Fig. 2 indicate that positive interaction
between Thl- and Th2-derived cytokines may not

only be important for proliferation of GC cells in

vitro, but also for GC proliferation in lymph nodes
and spleen in vivo. Another possible contributory
factor to the additive effect could be that the
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FIGURE 3 Effect of KLH-specific Thl and Th2 clones on antibody formation to TNP-KLH in nu/nu BALB/c mice. The same mice as
shown in Fig. 2 were bled on day 15 and their sera were analyzed by ELISA for anti-TNP of various isotypes. Data are adapted from Secord
et al., (1996).
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cotransfer of Thl and Th2 T-cell clones may result in
increased functional survival of both subsets (Rizzo et

al., 1995).
The effect on the isotype distribution of the anti-

TNP produced in the recipients shows a different

pattern (Figure 3). Typical Thl-type helper effects are
obtained with the Thl clone, that is, high IgG2a and
low IgG1, and typical Th2 helper effects with the Th2
clone, that is, high IgG1 and low IgG2a, whereas the
two clones combined gave intermediate levels for
both isotypes. With respect to the total number of
anti-TNP-producing isotype switched cells the effect
of the two clones may have been additive, but with

respect to the kind of isotype produced, their effects
appear antagonistic. It should be noted, however, that
the cotransfer of both Thl and Th2 clones resulted in
increased production of IgA anti-TNP (data not

shown).
The other question about GC T cells to which we

have at this time no answer concerns the role of the
NK-like CD4 T cells that occur in human GCs, the
CD57 T cells (Poppema et al., 1981), and the non-

H2-restricted CD4 T cells seen in follicles of the
class II-/- mice (Cosgrove et al., 1991; Cardell et al.,
1995). Do the latter represent the NKI.1 CD4 T
cells that are CD-l-restricted (Bendelac et al., 1995),
and if so, where is the CD-1 expression in the B-cell
follicles and/or GCs? Since the ce/3-TCR repertoire of
these T cells is quite restricted, it is not likely that
these T cells are responding to the Ag inducing the
GC. In view of the recent demonstration that the
murine NKI.I/CD4 T cells are an important source

of IL-4 (Yoshimoto et al., 1994; Emoto et al., 1995),
whereas the human CD57+CD4 T cells, isolated from
tonsils, contain mRNA for IL-4 (Butch et al., 1993), it

seems possible that interaction between these cells
and Thl cytokine-producing Ag-specific T cells under
certain conditions may play an important role in the
induction of GC formation during the primary
response.
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