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Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system.
Currently, there is a lack of specific and effective interventions for PC; thus, further
exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein
family, a collection of calcium-binding proteins expressed only in vertebrates, comprises
25 members with high sequence and structural similarity. Dysregulated expression of
S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these
proteins are associated with the regulation of multiple cellular processes, including
proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion,
Ca2+ homeostasis, and energy metabolism. This review highlights the significance of
the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell
metastasis, invasion and proliferation. A further understanding of S100 proteins will
provide potential therapeutic targets for preventing or treating PC.
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INTRODUCTION

Members of the S100 protein family were first discovered in the brains of certain species by Moore
in 1965 (1). This family is a group of calcium-binding proteins expressed only in vertebrates (2, 3),
including 25 known members in humans. The genes of 21 S100 family members (repetin,
trichohyalin, filaggrin, and S100A1-S100A18) map to chromosome 1q21, while others share
chromosomes 5q14 (S100Z), 4p16 (S100P), Xp22 (S100G), and 21q22 (S100B) (4–6). All S100
proteins have a certain degree of sequence and structural similarity, but each protein is encoded by a
specific gene that has distinct differences in protein-expressing cells and biological functions (7, 8).
Some members of the S100 protein family play an important role in the pathophysiology of certain
cancer types (2, 9–12).

Pancreatic cancer (PC) is a common malignant tumor of the pancreas, and its early clinical
symptoms are relatively insidious (13–15). Most patients are diagnosed at an advanced stage,
usually accompanied by tumor cells spreading beyond the pancreas, and the prognosis is poor (15,
16). Data provided from 2009 to 2015 by the American Cancer Society estimate that the total
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survival rate of PC patients is only 9%, and the number of deaths
from PC ranks 4th among malignancies (17). PC is expected to
become the second leading cause of cancer-related deaths by
2030 (13). There is currently a lack of clinically effective cures,
and surgical resection may be the only chance to cure PC (15,
18). Recently, advances in adjuvant chemotherapy have led to a
relative improvement in the prognosis of PC patients; however,
the 5-year survival rate is only 20% for patients undergoing
complete resection, chemotherapy, and radiation (19–21). Thus,
it is of great importance to understand PC onset, which will
contribute to early diagnosis and improve prognosis.

Many studies have shown that certain members of the S100
family are associated with PC (22–24). Although several excellent
reviews on the partial association of the S100 protein family with
PC have been published (2, 25, 26), here, we try to fully focus on
the role of certain members of the S100 protein family in PC
based on the latest studies. In this review, we critically study the
role of the S100 protein family in PC diagnosis or treatment and
the contribution of S100 signaling to the biology of PC-related
cells, providing a relatively comprehensive reference for the S100
protein family as a target for prevention or treatment of PC.
S100 PROTEIN FAMILY LINKS TO PC
DIAGNOSIS AND PROGNOSIS

Although some progress has been made in imaging techniques
and tumor markers, early diagnosis of PC is still challenged by the
absence of precise biomarkers. At present, serum carbohydrate
antigen 19-9 (CA19-9) is the sole diagnostic marker in PC
authorized by the U.S. Food and Drug Administration, but it is
also sensitive to the host’s inflammatory response and obstructive
jaundice; thus, it is not specific for PC (27). Therefore, it is
necessary to develop new biomarkers for early PC diagnosis,
patient selection for optimal management, and prognosis
determination. To date, with the gradual deepening
understanding of S100 proteins as diagnostic, treatment-
predictive and prognostic biomarkers in PC, physicians are
interested in the S100 protein family.

S100A2: A Biomarker of PC Progression or
Negative Prognosis
There is controversy about the actions of S100A2 in tumor
development. It is documented to be a candidate tumor
suppressor and has also been found to be a promoter of
certain cancer types (28–30). The pathological process of PC
progresses from pancreatic ductal epithelial hyperplasia to
dysplasia to carcinoma in situ to invasive carcinoma (31, 32).
PC has 3 typical precursor lesions, including mucinous cystic
neoplasm (MCN), intraductal papillary mucinous neoplasm
(IPMN), and pancreatic intraepithelial neoplasia (PanIN) (33–
35). S100A2 expression in PanIN and invasive ductal carcinoma
(IDC) cells is higher than that in normal ductal cells,
pancreatitis-affected epithelial cells (PAEs), and IPMNs and is
upregulated in IDC cells from poorly differentiated
adenocarcinoma compared to IDC cells from normally
Frontiers in Oncology | www.frontiersin.org 2
differentiated adenocarcinoma (36). S100A2 is commonly
considered to be a sign of PC progression due to its
significance in differentiation of adenocarcinoma (36, 37).
Pancreatic ductal adenocarcinoma (PDAC) accounts for more
than 90% of all pancreatic malignancies (38) and can be divided
into 4 molecular subtypes: pancreatic progenitor, immunogenic,
aberrantly differentiated endocrine exocrine (ADEX), and
squamous (39). The hypomethylation and increased expression
of S100A2 determine the prognosis of the “squamous” (also
known as QM or basal) subtype driven by TP53 and KDM6A
mutations (39–41). Meanwhile, studies have linked abnormal
expression of S100A2 protein to the poor survival rate of PDAC
patients (42). High S100A2 expression has been observed in the
metastatic site but not in the primary tumor, suggesting that it
may be a marker of tumor metastasis (42). Moreover, S100A2 is a
good resectable marker of PC, and measuring its expression in
biopsy samples has potential clinical application value (42, 43).
Samples from patients with survival <1000 days after PC
resection express high levels of S100A2 compared with those
from patients who survived >1000 days. Even after surgery,
S100A2 functionally promotes the expression of tumorigenesis
and metastasis molecules, whose high expression is an
independent marker of poor prognosis (36, 42, 44). Ohuchida
et al. predicted that S100A2 expression is correlated with longer
overall survival (OS) and disease-free survival (DFS) in patients
treated with adjuvant therapy (37). Overall, the current research
suggests that S100A2 overexpression is a biomarker of tumor
progression or negative prognosis in PC patients (36).

S100A4: A Risk Factor for PC
S100A4, also known as Mt1 or Fsp1, is mostly not expressed in
normal tissues but is highly expressed in various tumors. In
particular, the S100A4 level in PC cells is higher than
in nonmalignant tumors or nontumor epithelial cells, and
S100A4 is carcinogenic in PC (45–47). S100A4 expression is
positively related to the tumor-node-metastasis (TNM) staging
and tumor size in PC; the larger the tumor size or the higher the
TNM stage, the higher S100A4 expression is (48). S100A4 may
be a key regulator in liver metastasis of PC (49) and a potential
marker of lymph node metastasis, but there is no obvious
correlation between S100A4 and histological type or distant
metastasis status (50). In addition, Tsukamoto et al.
emphasized the important role of S100A4 in the invasiveness
of PC, particularly with perineural invasion and invasion
patterns (51). A meta-analysis of 474 patients with PC
indicated that S100A4 is a potential adverse factor in PC
prognosis, whose positive expression is considerably related to
a lower 3-year OS rate (50), suggesting that S100A4 may be a
potential indicator to predict the survival rate of patients (44, 48).
Lee et al. performed immunohistochemical analysis of epithelial-
to-mesenchymal transition (EMT)- and metastasis-related
proteins in PDAC and confirmed that the expression of CD24
and S100A4 are important independent predictors of early
recurrence and a low survival rate of PDAC patients (52). In
addition, S100A4 knockdown increased the sensitivity of a
PDAC cell line to gemcitabine (the first-line drug for advanced
PC) treatment (53), thereby improving the therapeutic effect of
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the drug or the survival time of the patient. Radiation therapy is
also an important strategy for treating PC patients. The
expression level of S100A4 increases with continuous radiation
and is positively related to the radiation resistance of PC cells
(47). Whole-tumor evaluation with magnetic resonance imaging
(MRI) and texture analysis have established a model that predicts
S100A4 overexpression as an imaging biomarker of PDAC (54).
S100A4 can also be combined with other tumor biomarkers for
early PC diagnosis and determination of PC prognosis (55–59),
and the combinations can improve the accuracy of
distinguishing PC from normal tissues to varying degrees. In
conclusion, high S100A4 expression is not only a sign of
pancreatic tumor malignancy but also a potential marker of
PC metastasis and poor prognosis.

S100A6: A Biomarker for PC Lesions
Higher S100A6 mRNA expression levels were discovered in PC
tissues than in noncancerous tissues (60–63), and S100A6
expression was mainly restricted to the nuclei in PC cells (64).
A significant difference in S100A6 expression has also been
detected in pancreatic juice between PC patients and non-PC
patients, and the survival time of PC patients with high nuclear
S100A6 is shortened (62, 64). The expression of S100A6
gradually increases in the process of PC carcinogenesis and
may be a biomarker of high-risk lesions in PC (65). Compared
with pancreatitis-affected epithelial or normal cells, S100A6 is
overexpressed in IDC and IPMN cells, supporting the idea that
measurement of S100A6 might help distinguish PDAC or IPMN
from CP (60, 65). The upregulation of S100A6 may be an early
event in PC; therefore, detecting the S100A6 mRNA level may be
a promising tool for diagnosing PC, which will benefit early
diagnosis and increase the chance of cure (64). EUS-FNA is a
relatively accurate technique for assessment and staging of PC;
however, it also has uncertainties in up to 20% of cases (66). The
S100A6 mRNA levels in EUS-FNA samples quantified by real-
time PCR have higher specificity and sensitivity for PDAC
diagnosis, which can reduce false-negative diagnoses via EUS-
FNA cytology and improve the accuracy of decision-
making (67).

S100A8/S100A9: Potential Promoters of
PC Development
S100A8 and S100A9 are overexpressed in acute pancreatitis (AP),
CP, and PC tissues (68, 69), but they are rarely expressed in CP
tissues with severe fibrosis, normal pancreatic tissues, and ductal
cells (69, 70). CP is a well-known independent risk factor for PC
(71–73).The absence of S100A9 can alleviate AP, thereby reducing
the risk of recurrent AP evolving into CP (74). The poor prognosis
of PDAC patients is related to the high expression of S100A8 or
S100A9 in pancreatic duct fluid. S100A8 or S100A9 may be
potential prognostic biomarkers of PC (75). Samonig et al.
analyzed more than 400 proteins in stem cell-like pancreatic
tumor-initiating cells (TICs) and nontumor-initiating cells (non-
TICs) through differential proteomics (PTX) and then nominated
S100A8, S100A9, and galactin-3-binding protein LGALS3BP
(MAC-2-BP) as putative driver genes for pancreatic TICs,
Frontiers in Oncology | www.frontiersin.org 3
but this conclusion needs further verification (76). In summary,
the expression of S100A8 or S100A9 has a certain indirect effect on
PC occurrence and development and has a certain positive effect
on PC prevention and treatment.

S100A11: A Two-Way Regulatory Factor
for PC
S100A11 expression is upregulated in PC (77–79), breast cancer
(80), nonsmall cell lung cancer (81), and colorectal cancer (82)
but is decreased in bladder cancer (83). Immunohistochemical
analysis of 78 pairs of human PC tissues and adjacent nontumor
tissue specimens revealed that the expression of S100A11 in PC
tissues is considerably higher than that in surrounding nontumor
tissues and that S100A11 is mainly distributed in the cytoplasm
of PC cells. Further research found that S100A11 expression
increased in the early stages of PC, and multivariate analysis
indicated that S100A11 was an independent adverse prognostic
factor in PC (78). In contrast, S100A11 expression is downregulated
as cancer progresses to a worse phenotype. These seemingly
contradictory results support the notion that elevated S100A11 is
beneficial only for early diagnosis of PC; however, S100A11 can also
be used as a tumor suppressor gene in PC development (77). Thus,
analyzing the level of S100A11 in pancreatic juice may be a feasible
way to diagnose PC or high-risk PC lesions. Although there was no
significant correlation between S100A11 expression and tumor
location, TNM stage, tumor diameter, distant metastasis, or the
level of CA19-9, S100A11 expression was correlated with lymph
node metastasis and tissue differentiation in PC (78).

S100P: An Indicator of Early PC
Occurrence
S100P was originally identified in the human placenta. Using
cDNA array, serial analysis of gene expression (SAGE), and tissue
array data to compare the overall gene expression profile of PC
with that of normal pancreatic tissues, Crnogorac-Jurcevic et al.
found that a specific increase in S100P expression occurs only in
the tumor epithelium of PC, indicating that S100P may be a
promising biomarker to monitor PC (61). S100P can be used as a
biomarker of the early development of PC; its expression level in
PC and IPMN is significantly higher than in nontumor pancreatic
tissues, and its expression level gradually increases with the grade
of PanIN (60, 84–87). Compared with patients with pancreatitis,
the content of S100P in the pancreatic juice of PC and IPMN
patients was significantly increased. Thus, measuring the
expression level of S100P in pancreatic juice might help
distinguish pancreatitis from tumor disease for early screening
and diagnosis of PC (85). Since S100P is a specific and sensitive
marker, it is possible to detect the concentration of S100P in
duodenal fluid (DF) based on upper gastrointestinal endoscopy
(GIE) or endoscopic ultrasonography, which may be helpful for
early PDAC screening (88). In addition, evaluation of S100P
expression can be combined with EUS-FNA quantitative
analysis to improve the accuracy of diagnosis of PC and
nontumor lesions (89–91) or be applied in fine-needle aspiration
biopsy (FNAB) specimens prepared in cell blocks and smears to
test for PDAC (92, 93).
August 2021 | Volume 11 | Article 711180
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Others
A few studies have reported a relationship between other S100
proteins and PC. S100A7, also known as psoriasin, commonly
exists in the nucleus or cytoplasm in various cells and can be
secreted under certain circumstances. S100A7 has a high level of
expression in locally advanced and invasive PC but low expression
in distant metastatic primary PC. Interestingly, there was no
significant difference in S100A7 expression between PC and
adjacent tissues (94). S100A10 is regarded as a new biomarker
of PDAC, and its expression in normal pancreatic ducts and
PanIN-1A is markedly lower than that in PanIN-1B, PanIN-2,
PanIN-3, and PDAC (95, 96). S100A14 is overexpressed in human
PDAC cell lines and tissues, and its expression level is positively
correlated with advanced cancer stages and negatively correlated
with the survival time of PDAC patients (97, 98). A recent study
demonstrated that S100A14 shows a certain degree of
carcinogenicity and may enhance gemcitabine resistance,
promoting PDAC progression, and suppression of its expression
can inhibit PDAC formation (97). S100A16 is distinctly
upregulated in clinical PDAC samples but unchanged/
downregulated in nontumor pancreatic tissues. S100A16
expression is negatively related to the OS and RFS of patients
with PC by promoting the growth, proliferation, metastasis, and
invasion of PDAC cells in vivo and in vitro (99, 100). All of these
proteins are expected to be potential markers of PC; however, their
functions in the course of PC have only slowly begun to be
revealed in recent years, and further research is needed.

In conclusion, some members of the S100 protein family play
an important role in the development and treatment of poorly
curable PC (24, 37, 101). Although their specific role is not yet
clear, a large number of studies have provided evidence for
regulation of S100 proteins and their involvement in the
pathophysiological process of PC. At present, S100A2, S100A4,
S100A6, S100A8/S100A9, S100A11 and S100P seem to be the
S100 family proteins most related to PC, showing certain
potential to regulate or predict the occurrence, development or
prognosis of PC. It is believed that further studies on S100
proteins in the future will improve the clinical treatment of PC to
varying degrees.
S100 FAMILY-MEDIATED CELLULAR
SIGNALING NETWORK IN PC

S100 proteins are binding proteins involved in intracellular
Ca2+ homeostasis, and play a role in proliferation, growth,
differentiation, apoptosis, enzyme activation, migration/
invasion, and regulation of energy metabolism in both a Ca2+-
dependent and non-Ca2+-dependent manner (8). Secreted S100
proteins interact with a variety of cell surface receptors, such as
receptor for advanced glycation end products (RAGE), Toll-like
receptor 4 (TLR4), G-protein-coupled receptors, heparin sulfate
proteoglycan, and scavenging receptor, acting through autocrine
and paracrine pathways (24, 79, 102–104). Recently, numerous
studies have revealed the regulatory mechanisms of S100 family
members in the complex biosignaling network in PC (Figure 1).
Frontiers in Oncology | www.frontiersin.org 4
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Currently, the biological activity of S100A2 in tumors has not yet
been elucidated, and thus, its function in PC is still a mystery.
Gene mutations in PDAC often include mutations in the
oncogene KRAS and inactivation of the tumor suppressor
genes TP53, SMAD4 and CDKN2A (105–108). Wild-type
TP53 induces increased transcription of S100A2; in turn,
S100A2 activates the transcriptional activity of TP53 (109–
111). However, the complex interaction between increased
S100A2 and TP53 in PC is not yet clear. A small molecular
affinity between S100A2 and RAGE has been demonstrated in a
strictly calcium-dependent manner. Further exploration to
understand whether S100A2 binding to RAGE is involved in
PC pathology is necessary (112).

S100A4
The overexpression of S100 protein in PC is related to
hypomethylation of S100A4 gene (45, 113). Using an
orthotopic human PC xenograft mouse model, S100A4 has
been concluded to accelerate PC progression by promoting
cancer cell growth, survival, invasion, migration, and
angiogenesis in vivo (22). S100A4 expression in PC cells can
avoid transforming growth factor beta (TGF-b)-induced growth
inhibition and apoptosis of PC cells, and can promote the
survival, proliferation, and migration of PC cells through the
Src-focal adhesion kinase (FAK)- mediated dual signaling
pathway (22). Additionally, intracellular S100A4 is positively
correlated with matrix metalloproteinases (MMPs), such as
MMP-2 and MMP-9, and negatively correlated with E-cadherin
to promote PC cell metastasis and invasion (114–116). Takahiro
Tabata et al. used the RNA interference (RNAi) method to
specifically knock down the expression of S100A4 in human PC
cell lines in vitro, which induced G2 arrest and apoptosis and
reduced cell migration. In addition, microarray analysis showed
that knockdown of S100A4 can induce the expression of the tumor
suppressor genes positive regulatory domain zinc finger protein 2
(PRDM2) and vasohibin-1 (VASH1) (117). Bcl-2 interacting
protein 3 (BNIP3) is a member of the BH3-only subfamily of
the Bcl-2 protein family, which induces apoptosis via the
mitochondrial-dependent pathway under hypoxic conditions.
BNIP3 has the biological activity of inducing PC cell apoptosis
and increasing the sensitivity of tumor cells to gemcitabine;
unfortunately, its expression is significantly downregulated in
PC. Therefore, reactivation of BNIP3 may be an important
therapeutic target for PC (118–122). Mahon et al. found that the
S100A2 and S100A4 proteins were negatively correlated with
BNIP3 expression profiles in vitro (53). S100A4 may be a key
factor that promotes the EMT process in PC. Studies have also
found that the Shh-Gli1 signaling pathway mediates the
transcription of the target gene S100A4 in PC cells to regulate
EMT and promote PC metastasis (123, 124). In PDAC cell lines,
interleukin (IL)-6/11-STAT3 and zinc finger E-box binding
homeobox 1 (ZEB1) synergistically upregulate S100A4/A6,
thereby promoting PC cells invasion and EMT (24). However,
the exact effects of S100A4 in PC remain unclear, and the current
results regarding S100A4 in PC require further verification.
August 2021 | Volume 11 | Article 711180
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S100A6
Inhibition of S100A6 reduces the invasiveness and proliferation
of PC cells, and the possible mechanisms are that S100A6 activity
may directly or indirectly regulate tumor proliferation/invasion/
metastasis-related genes (62, 86). EMT is an important step in
cancer invasion and metastasis. Downregulation of epithelial
cadherin is a hallmark of EMT that occurs during various
processes, including early tumor metastasis. Chen et al.
demonstrated that S100A6 induces EMT and promotes cell
migration and invasion in a b-catenin-dependent manner in
human pancreatic cancer Panc-1 cells in vitro (125). In addition,
S100A6 increases the expression of vimentin, b-catenin, and N-
cadherin in Panc-1 cells while decreasing E-cadherin expression
(125). Annexin A2 is a calcium-dependent protein that can
promote PC development and metastasis, and it may also be a
target for treatment of PC (126, 127). Both annexin 2 and
S100A6 are expressed in the early stage of PC and are
overexpressed with high frequency in invasive cancer. The
combination of S100A6 and annexin 2 in PC cells can promote
PC cell motility (128). Given that it is responsible for tumor
occurrence and metastasis, S100A6 is a promising therapeutic
target to treat PC. In view of the current research explaining the
specific role of S100A6 in PC, there is still a long way to go.

S100A8/A9
Immune system imbalance is one of the crucial facilitators of
PDAC development. S100A8 and S100A9 proteins are
overexpressed in PC (68, 69), and their complex may be one of
Frontiers in Oncology | www.frontiersin.org 5
the possible mediators of inflammation occurring in PDAC
immunosuppression. Cytotoxic T-lymphocyte antigen 4
(CTLA4) is involved in regulating the immunosuppressive
activity of T cells and plays a key role in the negative
regulation of T cell activation (129). However, the S100A8 and
S100A9 complexes can reduce CTLA4 expression on the surface
of highly immunosuppressive CD33+CD14+HLA-DR−

monocytic myeloid-derived suppressive cells (MDSCs) in vitro,
which is also a feature of the immunosuppressive phenotype
(130, 131). RAGE protein is expressed in a variety of cells such as
endothelial cells, tumor cells, macrophages, neutrophils, and
mast cells (132, 133). S100A8/A9 secreted by monocytes can
induce pancreatic tumor cells to secrete proinflammatory
cytokines, including IL-8, fibroblast growth factor (FGF), and
tumor necrosis factor-alpha (TNF-a), mediated in part by RAGE
in pancreatic tumor cells. In turn, these cytokines induce S100A8
and S100A9 in monocytes to form a paracrine feedback loop,
which may affect the invasion and migration of PC (134). RAGE
is also involved in S100A8/A9-mediated activation of mitogen-
activated protein kinase (MAPK) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) signaling in PC
progression, thereby promoting tumor growth, spread, and
metastasis (134). Therefore, targeting S100A8/A9 is expected to
become an effective treatment for inhibiting the progression of
PC. Furthermore, Smad4 is widely expressed in normal
pancreatic tissues and mesenchymal fibroblasts, and the
expression of SMAD4 protein in PC tissues is significantly
lower than that of adjacent tissues and normal pancreas (135).
FIGURE 1 | Summary of the potential mechanisms of several S100 proteins affecting PC. S100 proteins present in or derived from PC cells and surrounding
stromal cells can play an important intracellular and extracellular role in the PC development. S100A4, S100A6, S100A7, S100A8, S100A9, S100A10, S00A11,
S10016 and S100P show increased expression during PC development. They can act on certain proteins or signaling pathways inside or outside the cell, directly or
indirectly affecting the growth, proliferation, metastasis or invasion of PC. However, S00A14 can inhibit PC metastasis or apoptosis of PC cells. EMT, epithelial-
mesenchymal transition; ERK1/2, extracellular signal-regulated kinase 1/2; FAK, focal adhesion kinase; IL-6/11, interleukin-6/11; MAPK, mitogen-activated protein
kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PEG2, prostaglandin E2; PI3K/AKT, phosphatidylinositol-3-kinase (PI3K)/protein kinase
B (AKT); RAGE, advanced glycosylation end-product receptor; STAT3, signal transducer and activator of transcription 3; TGF-b1, transforming growth factor beta-1.
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The Smad4 gene has a high frequency of mutations in PC, and
the expression of S100A8 is associated with the tumor suppressor
protein Smad4 in PC cells (69, 136, 137). Loss of Smad4 in the
tumor microenvironment can change the state of PC in response
to S100A8 (69, 137). S100A8/A9 inhibits the NF-kB and the
phosphatidy-linositol-3-kinase (PI3K)/protein kinase B(AKT)
pathways in PC cells in a Smad4-dependent manner, which
may be a way to alleviate the course of PC (130, 138). To date, the
specific effect of S100A8/A9 in PC is still unclear, and how
protein complexes regulate the biological functions of PC cells is
still a hot spot for future research. Furthermore, in view of the
intracellular and extracellular activities of S100A8/A9 in
pancreatitis, it will be important to determine whether and
how S100A8/A9 is involved in pancreatitis-initiated PDAC.

S100A11
Both S100A11 and TGF-b1 are significantly overexpressed in PC
tissues, and S100A11 is correlated with TGF-b1/Smad4
signaling, but these proteins are independent of each other in
regulating PANC-1 cell growth. Inhibition of TGF-b1 expression
in the PANC-1 cell line via small interfering RNA (siRNA)
downregulated the expression of the P21WAF1 tumor
suppressor gene, blocked S100A11 from entering the nucleus
from the cytoplasm, and promoted cell proliferation. However,
silencing S100A11 can downregulate the expression of
P21WAF1 in cells and promote cell apoptosis (139). It has also
been clarified that S100A11 can upregulate the PI3K/AKT
signaling pathway, thereby promoting the survival and
proliferation of PANC-1 cells (23). These studies indicate that
S100A11 may be a potential gene therapy target for PC. It is well
known that the proliferation of PDAC-related fibroblasts
accelerates PDAC progression. Extracellular S100A11 secreted
by PDAC activates surrounding fibroblasts through the
S100A11-RAGE-tumor progression locus 2 (TPL2)-
cyclooxygenase 2 (COX2) pathway, which can induce the
production of prostaglandin E2 (PGE2), a key soluble factor
that accelerates PDAC cell motility and ultimately leads to an
increase in the number of PDAC-derived circulating tumor cells
(CTCs) (79). In addition, the extracellular S100A11 secreted by
PDAC cells mediates the proliferation of neighboring fibroblasts
through RAGE-MyD88-mTOR-p70 S6 kinase signaling, which
in turn leads to fertilization of the PDAC interstitium and
promotes PDAC growth (140). Although many studies have
indicated that the regulation of cancer-associated fibroblasts
(CAFs) through known targeted pathways may be a good
choice to treat PDAC, the mechanism of S100A11 in
fibroblasts is not yet clear.

S100P
Using an oligonucleotide microarray-based method, the S100P
genes have been found to be abnormally hypomethylated in PC.
Further exploration revealed that S100P hypomethylation in PC
is likely the cause of S100P mRNA overexpression (141). S100P
directly stimulates tumor cell growth, movement, and invasion;
protects PC cells from apoptosis or anoikis caused by
chemotherapy drugs; or mediates changes in the cytoskeleton
of carcinoma cells, thereby promoting growth, survival, and
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invasion of PC (86, 142). The upregulation of S100P in PDAC
lymph node metastasis and its promotion of growth and invasion
in PDAC make it a possible epithelial-specific target protein to
treat primary or metastatic PC (143). S100P can activate RAGE,
which may be an important factor causing the invasiveness of
most PC lesions. Immunohistochemical analysis has been
reported to confirm the expression of RAGE and its ligand
S100P in human PDAC, and siRNA silencing of these genes
can reduce the migration or growth of PDAC cells (142, 144). In
mouse models, cromolyn, analog 5-methyl cromolyn (C5OH),
and RAGE antagonist peptides block the binding of S100P to
RAGE, thereby reducing the activity of NF-kB and inhibiting the
growth and metastasis of PC (142, 145, 146). Meanwhile, S100P
can activate the MAPK and NF-kB pathways in PC cell lines
(145, 147, 148). Dakhel et al. reported that extracellular S100P
stimulates BxPC3 cell line proliferation by inducing
phosphorylation of IkBa and MMP-9 secretion and increases
the survival rate of BxPC3 cell lines exposed to GEM. An anti-
S100P monoclonal antibody can sabotage these activities and
significantly delay liver metastasis and tumor growth (149).
Therefore, a combination of S100P monoclonal antibody and
targeted drugs or chemotherapy drugs may be a promising
method to treat PC in the future. Barry et al. found that S100P
promotes the transendothelial migration of PDAC cells in a
zebrafish embryo model, indicating that S100P promotes
infiltration/extravasation of cancer cells, which may be a key
step in the blood spread of PC cells (150). Additionally, through
in vitro experiments, studies have found that the spheroids of PC
cells can cause the formation of circular chemorepellent-induced
defects (CCIDs), thereby promoting lymphatic metastasis of
cancer cells. Fortunately, S100P may be an effective target for
inhibiting lymph node metastasis because these CCIDs in PC are
partially regulated by S100P (101). Overexpression of S100P in
Panc1 cells increases PC metastasis and invasion by inducing
disruption of certain cytoskeletal proteins (including cytokeratin
8, 18, and 19), mediating disruption of the actin cytoskeletal
network, altering the phosphorylation state of the actin
regulatory protein cofilin and upregulating cathepsin D (86).
These breakthrough discoveries are essential for improving the
poor prognosis of PDAC patients, but the mechanisms are not
yet fully understood.

Others
Overexpression of S100A7 in PC cells increases the expression
and activity of MMP-2 and MMP-9, leading to increased
invasiveness of PC (94). It can also promote the aggregation
and survival of PC cells that have lost their anchorage (94).
Therefore, high expression of S100A7 is linked to growth,
migration, and local invasion of PC, but the specific
mechanisms underlying S100A7 actions in PC are largely
unknown. S100A10 is overexpressed in PC, driven by specific
promoter hypomethylation and KRAS. Knockout of S100A10
can reduce the surface plasminogen activation of PC cells and
inhibit the invasiveness and growth of PC in vivo (96).
Overexpression of S100A16 not only significantly promotes
phosphorylated ATK (p-ATK) and phosphorylated extracellular
signal-regulated kinase 1/2 (p-ERK1/2) in SW1990 and PANC-1
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cells but also promotes invasion and proliferation of PDAC cells via
AKT and ERK1/2 signaling in an FGF19-dependent manner. High
expression of S100A16 inhibits the level of E-cadherin but increases
the level of vimentin. In PDAC SW1990 cells, knocking out
S100A16 can induce cell cycle arrest in G2/M phase and
apoptosis, and in Aspc1 or PANC-1 cells, repression of S100A16
increases the percentage of annexin V+ cells and thus may also
increase apoptosis (100). Twist1 is highly expressed in some
malignant tumors, induces EMT, and enhances chemotherapeutic
drug resistance (151–153). In one study, in vitro and in vivo
experiments showed that activation of the signal transducer and
activator of transcription 3 (STAT3) signaling pathway and
upregulation of Twist1 expression mediate S100A16-induced
EMT and promote metastasis of human PDAC cells (99). GATA
binding protein 3 (GATA 3) is a transcription factor containing zinc
finger domains and plays an important role in the occurrence and
development of certain tumors (154–156). Immunohistochemistry
has shown that PC cells have a strong and persistent cytoplasmic
GATA-3 immune response (155, 157). The expression of GATA-3
is correlated with the mRNA expression of Smad-3, TGF-b
receptors, and TGF-bs, and disruption of the transcriptional
function of GATA-3 may enhance TGF-b signaling, and
subsequently lead to malignant transformation of pancreatic cells,
thus promoting PC development (157). The long noncoding RNA
(lncRNA) GATA 3-antisense RNA1 (AS1)-microRNA (miR)-30b-
5p-testis-expressed protein 10 (Tex10) axis has been found to
regulate cell growth, apoptosis, invasion and apoptosis in PC
tissues and cells, which may be related to the Wnt/b-catenin
signaling pathway (158). The exact role of Gata-3 in PC cells
needs further study to determine whether GATA-3 can be used
as a biomarker or treatment target for PC.

Some studies have investigated inhibitors or existing drugs to
inhibit S100 protein expression and the progression of PC.
Ramatoulie Camara et al. used in silico methods to identify
potential binding pockets in the NMR ensemble of S100P and
successfully discovered several small molecule inhibitors that
affect the S100P-RAGE interaction and S100P-mediated cell
invasion, which can inhibit S100P-expressing PC cell invasion
in vitro. This provides strong evidence of the potential of S100P
inhibitors as chemotherapeutics for PC (159). In addition,
through in vitro cell experiments and using mouse models, it
has been found that cromolyn may bind to S100P to prevent
activation of RAGE, thereby inhibiting S100P-mediated PC
growth, survival and invasiveness (145). A new RAGE
antagonist peptide (RAP) can inhibit the interaction of S100P
and RAGE in vivo and in vitro at micromolar concentrations and
Frontiers in Oncology | www.frontiersin.org 7
can inhibit the growth and metastasis of PDAC (144). Metformin
is closely related to the morbidity, mortality, proliferation,
invasion and metastasis of a variety of tumors (160–162).
Researchers cultured pancreatic cancer BxPC-3 and AsPC-1
cells in vitro and found that metformin can inhibit the growth
of PC cells in a time- and dose-dependent manner. Metformin
may inhibit the invasion and metastasis of PC cells by inhibiting
the expression of the metastasis-related genes S100A4 and
MMP-9. Wang et al. treated human pancreatic cancer Capan-1
cells with different concentrations of dexmedetomidine (Dex)
and demonstrated for the first time that Dex inhibits the
proliferation of PC cells and promotes cell apoptosis by
upregulating the expression of miR-526b-3p and inhibiting the
expression of S100A4 (163). Although there is currently no
clinically effective drug for treatment of PC with S100 protein
overexpression, various experimental results have provided a
basis for the potential effectiveness of targeting S100 proteins to
treat PC.
NOMENCLATURE

The S100 protein family is a significant potential biomarker for
early PC diagnosis or prognosis determination, but this notion
needs to be further supported by evidence obtained from large
samples and multiple centers with different populations. Current
studies mostly focus on certain S100 proteins or their
combination with known clinical diagnostic markers as PC
biomarkers, and whether S100 family proteins can be
combined with each other to improve diagnostic performance
is still unknown. An imbalance in S100 proteins plays a central
role in PC progression and metastasis. Thus, therapies targeting
S100 family members are expected to improve the survival and
prognosis of PC patients. Although the biological characteristics
and mechanisms of these proteins in PC are not yet clear, the
current meaningful findings still highlight the important value of
the S100 protein family in future research on PC.
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