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Rapid development in Magnetic Resonance Imaging (MRI) has played a key role in

prenatal diagnosis over the last few years. Deep learning (DL) architectures can facilitate

the process of anomaly detection and affected-organ classification, making diagnosis

more accurate and observer-independent. We propose a novel DL image classification

architecture, Fetal Organ Anomaly Classification Network (FOAC-Net), which uses

squeeze-and-excitation (SE) and naïve inception (NI) modules to automatically identify

anomalies in fetal organs. This architecture can identify normal fetal anatomy, as

well as detect anomalies present in the (1) brain, (2) spinal cord, and (3) heart.

In this retrospective study, we included fetal 3-dimensional (3D) SSFP sequences

of 36 participants. We classified the images on a slice-by-slice basis. FOAC-Net

achieved a classification accuracy of 85.06, 85.27, 89.29, and 82.20% when predicting

brain anomalies, no anomalies (normal), spinal cord anomalies, and heart anomalies,

respectively. In a comparison study, FOAC-Net outperformed other state-of-the-art

classification architectures in terms of class-average F1 and accuracy. This work aims to

develop a novel classification architecture identifying the affected organs in fetal MRI.

Keywords: deep learning, fetal MRI, Convolutional Neural Network (CNN), image classification, fetal disease, fetal

organ anomaly

INTRODUCTION

Fetal MRI is increasingly gaining importance for diagnosing fetal abnormalities detected on
ultrasound. Accurate diagnosis is crucial for prompt diagnostic and therapeutic decision-making
(Loomba et al., 2011).

A subset of machine learning called Deep Learning (DL)mimics how the human brain processes
data, and thus, creates patterns that are used in decision-making. As data are fed through this
mesh of neurons, each layer is responsible for processing a subset of the data and producing a
result. Applications of DL include language processing, object recognition, speech recognition,
segmentation, and classification. DL excels when learning from unstructured data. This makes
DL a powerful tool in a clinical setting due to the high variability of morphology in biomedical
images, especially in fetal imaging (Lundervold and Lundervold, 2019). Specifically, DL can be
useful for medical fetal image classification, which attempts to assign a relevant diagnostic label
to an image. Convolutional Neural Networks (CNN) are frequently used for classification tasks
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(Sarvamangala and Kulkarni, 2021) due to their high accuracy
relative to other state-of-the-art architectures, and how
computationally efficient they are (Alzubaidi et al., 2021).
One of the main benefits of using CNNs is that they perform
automatic feature extraction, avoiding the need for manual
feature engineering. This makes CNN’s very useful in research
scenarios where features of interest are not well known or well
understood, as in fetal image analysis.

Current fetal MRI classification algorithms generally focus
on one organ of interest, most commonly, the fetal brain. This
is likely due to the relatively high occurrence of fetal brain
abnormalities, being three in one thousand fetuses (Boyd et al.,
2011; Groen et al., 2017; Boyle et al., 2018), as well as the usual
high image quality and frequency of fetal brain imaging. Recently,
studies have differentiated between different brain anomalies by
using attention mechanisms (Shi et al., 2020). However, their
algorithm performed poorly at the detection of ventriculomegaly,
with a relatively low classification accuracy of 67%. Another
study classified brain anomalies while also using a dataset that
included a wide range of gestational ages from 16 to 39 weeks
(Attallah et al., 2019). The authors used 21 machine learning
classifiers, specifically K-nearest neighbors, that obtained the
highest classification accuracies and areas under the curve in the
high 90s.

Existing algorithms that focus on organs other than the brain
are often still organ-specific. Torrents-Barrena et al. reviewed
popular segmentation and classification techniques for various
fetal organs (Torrents-Barrena et al., 2019). They found that the
placenta, brain, lungs, and liver benefit from feature extraction
methods, and the heart benefits from intensity-based models.
Organ-specific algorithms are limited in that they can only
provide information or diagnoses regarding the target organ, thus
ignoring any abnormalities in surrounding organs. However,
since each organ has a unique appearance on medical imaging,
creating a single algorithm that assesses all organs well can
be challenging (Xie et al., 2020).

Nevertheless, having a single algorithm capable of assessing
disorders that affect a variety of fetal organs would be desirable
for efficient and holistic diagnoses. In recent years, more adaptive
CNN methods have been proposed that can better detect
the diverse characteristics of fetal organs and pathologies. A
particularly useful development is the Squeeze and Excitation
(SE) module proposed by Hu et al. In a standard CNN, the
feature channels all have the same weights. On the other hand,
SE modules implement adaptive weights to the channel-wise
feature maps by modeling dependencies between convolutional
channels (Hu et al., 2019). The SE module enables the use of
global information by squeezing each channel through a global
average pooling layer. A series of activation operations then
produces a non-linear feature map that is concatenated with the
original channels, resulting in an adaptive-weighted feature map.
The result is a low-cost module that automatically emphasizes
important features with global and local considerations (Rundo
et al., 2019; Lo et al., 2021). Another new CNN methodology
capable of multi-level feature analysis is the naive inception
architecture (NI). NI modules improve classification accuracy by
increasing network width and keeping network depth constant

(Jin et al., 2019). They propose multiple filter sizes for the same
network layer, allowing for multi-level feature analysis (Szegedy
et al., 2014). While the NI module is capable of handling features
of varying scales, the SE module can adapt to global and local
intensity variations, making them both valuable tools in whole
fetal analysis and diagnosis.

In our study, we take advantage of the benefits offered
by the DL modules to develop a new architecture that can
automatically and accurately identify affected fetal organs. We
aim to develop a novel architecture by combining the previously
established SE and NI modules to address the challenges of
whole-fetal diagnosis. Our proposed architecture FOAC-Net
aims to contribute to improvements in clinical settings by
providing efficient and unbiased diagnoses critical for early
lifesaving interventions.

MATERIALS AND METHODS

Acquisition
This study was approved by the local research ethics board and
the requirement for informed consent was waived due to the
retrospective nature of the study.

Thirty-six de-identified whole-body fetal MRI datasets were
included, as part of a collaborative study at The Hospital for
Sick Children in Toronto, Canada. Datasets included a 3D
SSFP sequence with SENSE along two dimensions (Seed and
Macgowan, 2014) acquired on a 3T scanner. Coronal images
were used as this orientation provided the most surface area
for identifying fetal organs. Only one scan per patient was
used if multiple images were available. Fetuses were excluded if
they had a medical disease that had an occurrence of less than
1/100,000 for privacy concerns. Sequences with minor imaging
artifacts were included if they contained minimal motion,
chemical shift, or radiofrequency distortion, as assessed by two
pediatric neuroradiologists. Gestational age at the time of image
acquisition was between 20 and 37 gestational weeks (gw) with
a distribution centered at 30 gw (30.62 ± 2.75 gw; mean ±

std). Gestational age was evenly distributed across the training,
validation, and testing datasets to avoid bias in a single dataset.
Interpretation of the MRI was performed by radiologists.

Dataset
Thirty-six T2-weighted coronal fetal MRI SSFP sequences were
included in this study, each containing between 60 and 110
2D slices resulting in a total of 4,770 2D images. The data
were divided into training, validation, and testing datasets
in a 60/20/20 split. The resulting dataset had 2,904 slices
in the training set and 933 slices in both the testing and
validation sets. As our dataset was collected using different
acquisition parameters, intensity normalization was used to
enforce consistency and regularity in our dataset and avoid any
biases induced by acquisition. The data was divided on a per-
patient basis. For example, patients 1–22 are used in training,
23–28 in validation, and 29–36 in testing. Many biomedical
applications typically divide the data on a per-patient basis
(Khademi et al., 2021). The resolution of the images was of
size 384 × 384. Fetal MRI anomalies were classified into four
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TABLE 1 | Detailed evaluation of the fetal MRI dataset, training and validation, and examples of diagnoses.

Class Training Validation Testing Examples of diagnosis Gestational age (weeks)

Brain 713 227 227 Hypoxic ischemic encephalopathy 30.41 ± 2.62

Interhemispheric cyst

Agenesis of corpus callosum

Heart 760 246 246 Intracardiac tuberous sclerosis 28.29 ± 2.52

Central venous hypertension

Ventricular septal defect

Spinal Cord 755 233 233 Spina bifida 31.61 ± 3.62

Vertebra malformation

Cervical thoracic scoliosis

Normal 676 227 227 32.17 ± 2.24

Total 2,904 933 933

FIGURE 1 | An overview of the proposed classification architecture, FOAC-Net.

main cohorts: (1) brain abnormality, (2) cardiac abnormality,
(3) healthy (no anomaly), and (4) spinal abnormality. The
objective of this classification structure was to accurately classify
prominent regions of fetal abnormalities present in MRI scans.
Table 1 describes the number of slices per class, examples of
diagnosis onMR imaging, and gestational age. A paired t-test was
used to confirm that the differences in gw per anomaly were not
statistically significant. The calculated p values for all classes were
>0.05, using a paired t-test.

CNN-Architecture Overview
The proposed architecture is illustrated in Figure 1. The
architecture pathway consists of three SE modules applied
after every convolution layer. Three NI modules were added
after every maximum pooling operation. The excited channels

from the SE modules were used as inputs to the NI modules.
The NI modules then extracted multi-scale features by using
convolutional filters of varying sizes. As a result, the proposed
CNN selected relevant features that were emphasized for
identifying the affected-organs classification task at hand while
limiting the number of computational resources. Deeper along
the data path, the kernel size of all filters was decreased in order
to gradually focus on more refined features (Luo et al., 2017).
This was done to force the network to consider global and local
features that pertain to the affected organ.

Squeeze-and-Excitation Module
The SE modules were implemented after every convolution layer
and were followed by the NI modules. This led to a rigorous
feature selection process as the newly excited features from the
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FIGURE 2 | Block diagram representation of the SE module.

SE modules were then processed in a multi-scale manner by the
NI module. Figure 2 illustrates how the SE module was designed.

The SE modules were composed of two components: (1)
the squeeze operation, (2) the excitation operation, and (3) the
concatenation. In the squeeze operation, global average pooling
was used to reduce the input to a single value across all channels.
In the excitation operation, the model achieved the desired
non-linearity. In the concatenation operation, the non-linear
characteristics were applied to the original feature maps.

The squeezing operation is described by (1) where Un
represents the feature map that is squeezed by Fsqueeze(), and the
H andW are the dimensions of Un given by the height and width
respectively. Global average pooling produces an average value
representing each given feature map such that Zn represents the
n-th element (Hu et al., 2019).

Zn = FSqueeze (Un) =
1

H ×W

H
∑

i=1

W
∑

j=1

Un(i, j) (1)

The excitation operation is described by (2). In order tomodel the
interdependencies between the feature maps, a fully connected
layer, ReLU layer, and a sigmoid activation layer are required.
After the squeezing operation, each feature map was passed
through a ReLU activation given as δ. This ReLU activation
provided the model with the desired non-linearity. We divided
the output by a constant value, g = 8. This will help the model
with generalization and reduce the channel complexity. The
resulting value was then applied to a sigmoid activation layer
given as σ . The product is n excited feature maps that were ready
to be used in upcoming layers (Hu et al., 2019).

s = FExcite (Zn) = ( σ ,

(

δ,
Zn

g

)

) (2)

The concatenation operation is described in (3). In order to
achieve the activations, we multiplied the excited feature maps
by the original channels in the input image, where X =

[ x1, x2, . . . , xn] were the channel wise concatenation between
the excited feature maps sn and the input feature map Un. This
pipeline created adaptive weights for the feature channels for
better spatial information (Hu et al., 2019).

X = snun (3)

FIGURE 3 | Block diagram of the naïve inception module.

Naïve Inception Module
The Naïve Inception modules were implemented after every
maximum pooling layer that followed the SE module. There were
several reasons for why we chose this specific inception module
variant, namely (1) high-performance gain, (2) minimal increase
in computational load when compared to other variants, (3) its
ability to extract features from input data at varying sizes, and (4)
utilization of 1 × 1 convolution filters. Figure 3 illustrates how
we implemented the naïve inception module.

The 1× 1 convolution behaves differently than its 3× 3 and 5
× 5 convolutional counterparts. The 1 × 1 convolution (1) has
dimensionality reduction of the input data in the module, (2)
has a reduced number of filters, thus the output has a reduced
number of channels relative to the initial input, and (3) can learn
patterns across the channels of an image. The 3 × 3 and 5 × 5
convolution filters are used to extract spatial patterns at different
scales. Traditionally, researchers would often have a tough choice
in deciding what convolution filter size would be appropriate.
Inception modules alleviate this issue by using different scales.

The maximum pooling layer, 3 × 3, and 5 × 5 convolution
layers were padded to the dimensions of the input image. This
allowed for all the convolution layers and maximum pooling
layer to be concatenated. The concatenated output was then used
as the input to the following convolution layers until the next
naïve inception module was called once again.

Experiments
The proposed method was trained and tested on an RTX 2070
Super graphics card. The proposed model was programmed in
Python using Keras and TensorFlow and was trained using the
Adam optimizer. The learning rate was set to 1e−4 and was
scheduled to reduce to 1e−5 when the performance plateaued
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with a patience of 0. Categorical cross-entropy was used for
our loss function. The size of the input images was 384 × 384
pixels. The batch size was set to 8, and 100 epochs were used
for training. 5-fold validation was used during training to better
utilize our data and improve generalizability. A basic set of image
augmentation transformations were applied to the data. The
basic transformations used included: shear, zoom, vertical and
horizontal flip, width shift, and height shift.

Three metrics were implemented to evaluate the classification
accuracy: (1) accuracy and (2) F1-Score. Accuracy is a metric that
determines the proportion of true results among the total number
of cases, which was calculated per 2D slice:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Here TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative values, respectively.
F1-Score is another classification metric that considers class
imbalances, by considering the recall and precision. Recall
considers what proportion of true positives are identified
correctly. Precision considers what proportion of true
identifications are identified correctly. F1-Score is the harmonic
mean of the two and provides a new way of model interpretation.

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1 Score =
2(Recall∗Precision)

Recall+ Precision
(7)

Where the F1-Score is two times the product of the Recall and
Precision scores, divided by the sum of Recall and Precision.
Biomedical datasets often contain high variability and class
imbalances; thus, the F1-Score provides a better representation
of model performance as opposed to using solely accuracy. In the
following tables, we present the average F1-Score over all classes.

We evaluate our own FOAC-Net as well as 3 other popular
classification architectures including VGG-Net, ResNet, and
DenseNet (Simonyan and Zisserman, 2014; He et al., 2015;
Chollet, 2017; Howard et al., 2017; Huang et al., 2018; Jin et al.,
2019). We chose these state-of-the-art architectures because they
were demonstrated to work well in many imaging applications.
These architectures follow the same hyper-parameter setup as
previously described and were all implemented in Keras. We also
conducted an ablation study to investigate the effects of the SE
and NI components on the performance of FOAC-Net.

Statistical Analysis
Architecture performance was evaluated using the class average
of the previously mentioned metrics. Each model was trained
5 times and the reported performance is an average over the 5
trained versions. The significance of the performance differences
between FOAC-Net and the other models were evaluated using
independent t-tests on the accuracy and F1 scores. A 95%
confidence interval and a significance level of p < 0.05 were used

to determine significance. This statistical analysis is shown in
Tables 2, 3.

RESULTS

FOAC-Net achieved the highest classification accuracy and F1-
score. The other models that were tested on had classification
accuracies in the high seventies to low eighties. However, the F1-
score for some models was in the high sixties to low seventies.
This is illustrated in Table 2.

Table 3 presents the results of the ablation study that was
conducted on our proposed FOAC-Net. We started with the
proposed architecture and evaluated the performance of the
model by removing important aspects such as NI and SE
modules. In Table 3, we show the difference value between the
performance of the ablated model and the proposed FOAC-Net.
We also evaluated the performance of the model using 3 × 3
kernel sizes (denoted by k) across the entire model as opposed
to our descending approach.

Figure 4 illustrates the class-by-class performance of the
FOAC-Net architecture in a confusion matrix. Each class
incorrectly predicted another class at least once. However, for
each class, the precision, recall, and accuracy were all over 80%.
FOAC-Net performed the worst when classifying the heart at
82.20%. FOAC-Net performed the best when classifying spinal
cord anomalies at 89.29%. Each box in the confusion matrix
represents what FOAC-Net predicted. For example, in the first
box (top-left-most box), FOAC-Net correctly predicted the
brain on 188 occurrences. The diagonal row represents correct
classifications or true positive values. The recall can be calculated
by taking the true positive class in the given column and dividing
it by the sum of the entire column. Similarly, we can obtain the
precision value by taking the true positive class in the given row
and dividing it by the sum of the entire row.

DISCUSSION

Our study presents a novel CNN architecture, FOAC-Net,
which can achieve accurate 2D fetal organ anomaly classification
when trained on second and third-trimester images. FOAC-Net
outperformed other state-of-the-art classification architectures.
Specifically, FOAC-Net obtained the highest accuracy (85.32%)
relative to 12 other prevalent architectures. In addition, FOAC-
Net also attained the highest F1-score at 85.24% indicating
that the model has low incidences of false negatives, which is
crucial for medical classification tasks. These results showed
that a combination of SE and NI modules had a positive effect
on classification performance. The performance presented by
FOAC-Net has significant implications regarding the potential
for DL to improve antenatal diagnosis of fetal anomalies in
the clinic.

State-of-the-art classification architectures including the Res-
Net, Dense-Net, and VGG variants, InceptionNet, MobileNet,
and Xception all performed worse compared to the proposed
model. VGG-16 and 19 performed worse than our proposed
model, but unlike the other models, there was very little
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TABLE 2 | Mean testing results with standard deviation.

Model Accuracy (mean ± SD) Accuracy p value F1-score (mean ± SD) F1-score p value #of parameters

FOAC-Net 85.32 ± 0.0025 – 85.24 ± 0.0024 – 10,336,178

VGG-16 78.93 ± 0.030 0.021 78.78 ± 0.028 0.016 138,357,544

VGG-19 82.43 ± 0.0079 0.011 82.83 ± 0.044 3.01e−05 143,667,240

ResNet-50 84.16 ± 0.0064 0.0048 79.56 ± 0.050 0.036 25,636,712

ResNet-101 82.56 ± 0.0016 1.87e−04 73.07 ± 0.041 0.0069 44,707,176

ResNet-152 81.93 ± 0.0082 0.0027 69.41 ± 0.0405 0.0025 60,419,944

DenseNet-121 82.04 ± 0.019 0.049 79.56 ± 0.033 0.042 8,062,504

DenseNet-169 83.82 ± 0.0060 0.020 82.05 ± 0.018 0.039 14,307,880

DenseNet-201 84.35 ± 0.0012 0.0099 77.59 ± 0.0093 1.56e−04 20,242,984

Inception-V3 75.75 ± 0.037 0.011 72.43 ± 0.033 3.01e−05 23,851,784

Inception-ResNet 82.02 ± 0.019 0.043 71.99 ± 0.0026 2.82e−07 55,873,736

Mobile-Net 80.76 ± 0.012 0.0033 71.38 ± 0.016 1.11e−04 4,253,864

Xception 83.65 ± 0.0091 0.0417 78.58 ± 0.029 0.016 22,910,480

TABLE 3 | Ablation study with mean standard deviation.

Model Accuracy (mean ± SD) Accuracy p value F1-score (mean ± SD) F1-score p value

FOAC-Net 85.29 ± 0.0025 – 85.24 ± 0.0024 –

Proposed-NI 82.01 ± 0.0018 1.01e−04 82.11 ± 0.0021 4.98e−05

Proposed-SE 80.85 ± 0.0028 5.30e−05 80.82 ± 0.0223 1.76e−05

Proposed-NI-SE 80.74 ± 0.0048 1.63e−04 80.82 ± 0.0047 1.10e−04

Proposed (K) 79.69 ± 0.0075 2.84e−04 79.69 ± 0.0074 2.40e−04

Proposed (K)-NI 79.49 ± 0.0093 5.97e−04 81.56 ± 0.019 0.029

Proposed (K)-SE 79.25 ± 0.0097 4.44e−04 79.66 ± 0.034 0.046

Proposed (K)-SE-NI 78.98 ± 0.0064 2.52e−04 79.52 ± 0.039 0.033

difference between the accuracy and F1 scores of the VGG
models. The Res-Net models had better performance than the
VGGmodels but still performed worse than the proposed model.
The accuracies ranged from 81 to 84; however, the F1 scores
were generally low. This is likely due to the models’ inability
to differentiate between relevant anatomy. The added model
depth from Res-Net architecture likely resulted in increased
complexity, leading to overfitting and the inability to differentiate
anatomy. The Dense-Net variants also obtained high accuracies
while maintaining a high F1score, unlike the Res-Net series,
but Dense modules were still unable to compete with FOAC-
Net. The inception-based models performed generally worse
than the previously described models. Mobile-Net and Xception
had accuracies ranging from 80 to 83%, but lower F1-score
performance in the high 70 s. The improved performance of our
model relative to the competitors was found to be significant,
with p values on the F1 and accuracy scores being <0.05 as
shown in Tables 2, 3. It can be seen from Figure 4 that other
state-of-the-art classification models perform slightly worse on
a class-by-class basis when compared to FOAC-Net.

It can be seen from Table 2 the number of parameters
given for each state-of-the-art classificationmodel. Our proposed
FOAC-Net has 10.36 million parameters which are higher than
DenseNet-121 and Mobile-Net. However, both classification
architectures are out-performed by FOAC-Net by 3.32 and

4.56% respectively. The small increase in parameters justifies the
performance increase. FOAC-Net only took another few minutes
to train. When observing classification models with a larger
number of parameters such as VGG-16, ResNet-152, Xception,
and more, we did not see an increase in classification accuracy or
F1 score. FOAC-Net offers high classification performance while
minimizing the number of parameters needed for training.

We conducted our ablation study (outlined in Table 3)
to determine which individual components were responsible
for the relative success of FOAC-Net. The first experiment
demonstrated that the removal of NI modules lowered the
accuracy and F1-score. Similarly, removing SE modules also
diminished the performance of the model even more than NI
modules. However, changing the kernel sizes to 3 × 3 across
the entire architecture lowered the performance the most. This
demonstrates that the larger kernel sizes at the start of the model
were able to extract larger and more general features better,
which can translate into higher performance. After changing
the kernel sizes and removing either NI or SE, the performance
significantly decreased. This ablation study demonstrated that
the performance of the model was impacted by the following
(from greatest to least): (1) kernel size, (2) SE modules, and (3)
NI modules. Embedding SE modules in FOAC-Net seemed to
improve classification performance, however, when paired with
the NI modules the performance was increased even further.
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FIGURE 4 | Confusion matrix evaluating specific class performance on the proposed architecture.

We believe the NI modules took advantage of the adaptive
weights produced by the SE modules and were able to learn
well from them. The opposite also holds true: NI modules do
not perform as well on their own compared to when they are
paired with SE modules. These deeper calculations allowed for
high performance. Overall, all three components contributed to
the success of our network.

Figure 4 shows the performance of FOAC-Net on each target
class in the form of a confusion matrix. The precision score
for the cardiac class was 82.20%. This relatively low value is
likely attributed to the heart’s small size and motion. For the
brain class, the model achieved moderate precision scores of
around 85%. However, the brain class also had a low recall
score, indicating high false-negative classifications. It is possible
that the relatively large number of congenital anomalies in the
fetal brain was the reason for the lower performance. The large
variance in anatomical abnormalities in the brain makes training
difficult and thus contributes to the relatively low recall of brain
abnormalities. The normal class and spinal cord class obtained
a precision score of 84.14 and 85.83% and a recall score of
85.27 and 89.29% respectively. Both the normal and spinal cord
classes out-perform the brain and heart class, which is likely due
to relative anatomical simplicity when compared to the brain
and heart.

Figure 5 illustrates the predicted classification results of
FOAC-Net on a patient. Quantitatively, the fetal brain is the
most prominent organ in the image The algorithm predicted
that this image has an 89% chance of showing a brain

anomaly, 6% chance for normal anatomy, 1% for spinal cord
abnormalities, and 4% for cardiac abnormalities. The radiologist
report determined this fetus to have mild left ventriculomegaly,
therefore FOAC-Net was able to predict the image as one
containing a brain abnormality correctly. We can see that
FOAC-Net has better classification performance compared to
other state-of-the-art classification models on all affected organs.
However, the normalized probabilities show that the other
classification models can still identify the affected organ but with
lower accuracy.

Our model was effective in identifying the affected organ.
Despite the relatively high performance of FOAC-Net, we believe
the performance is likely to increase. Fetal MR imaging datasets
suffer from high anatomical and positional variability, making
the small number of patients in our dataset a primary factor
in limiting the performance of our architecture. Expanding the
dataset, and thus expanding the anatomical orientations of the
dataset would likely improve classification performance. Having
more fetal data with varying orientations would provide the
proposed model with more diversity and a deeper understanding
of the appearance of fetal disorders. When implementing a 2D
slice-by-slice approach the heart was often difficult to identify.

CONCLUSION

We present an automated whole fetal MRI affected-organ
classification method using DL techniques. FOAC-Net
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FIGURE 5 | Predicted classification output of FOAC-Net, ResNet-152, DenseNet-201, and Xception (normalized prediction probabilities). Target classes are [brain,

normal, spinal cord, heart], respectively.

is a novel architecture that utilizes the combined effects
of SE and NI modules to extract excited features at
varying scales to improve classification performance.
FOAC-Net showed promising results, while also offering
improvements over other state-of-the-art architectures.
The proposed model provides an accurate prediction of
the classes at 85.32% accuracy. The proposed architecture
was successful in fetal MRI affected-organ classification,
suggesting that automated classification techniques
can be useful to increase efficiency and accuracy in
clinical settings.
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