sive model, we delivered of a single dose of two million mRNA GD2-directed CAR T cells locoregionally to the pons via stereotactic injection. The mRNA GD2-directed CAR T cells resulted in no toxic deaths of the mice. In addition, a single dose of mRNA CAR T cells targeting GD2 prolonged survival of the mice by a median of six days (p<0.05). Ongoing studies using an indwelling catheter for repeated dosing of mRNA CAR T cells are currently underway and results expected at the time of presentation. This work will form of the basis of an mRNA CAR T cell trial targeting GD2 for patients with DIPG.

IMMU-12. PHASE I/II TRIAL OF IMMUNOTHERAPY WITH FUSIONS OF DENDRITIC CELLS AND TUMOR CELLS FOR RELAPSED OR REFRACTORY BRAIN TUMORS IN CHILDREN AND YOUNG ADULTS

<u>Masayoshi Yamaoka</u>¹, Yasuharu Akasaki², Jun Takei², Masaharu Akiyama¹, Tetsunori Tasaki³, Toya Ohashi⁴, Hiroyuki Ida¹, and Takaaki Yanagisawa2; ¹Jikei University School of Medicine, Pediatrics, Tokyo, Japan, ²Jikei University School of Medicine, Neurosurgery, Tokyo, Japan, ³Jikei University School of Medicine, Blood transfusion and cell therapy, Tokyo, Japan, ⁴Jikei University School of Medicine, Gene therapy, Tokyo, Japan

BACKGROUND/OBJECTIVES: Relapsed or refractory brain tumors in childhood continue to have a dismal prognosis in spite of intensive multidisciplinary treatment. Cancer immunotherapy is newly developed to be expected as next promising treatment for highly aggressive pediatric cancer. This trial was designed to evaluate the safety and effectiveness of an immunotherapy with fusions of dendritic cells (DCs) and tumor cells in patients with malignant brain tumors. METHODS: Patients with histopathologically confirmed malignant and recurrent/refractory brain tumor were eligible for this immunotherapy trial. Autologous cultured tumor cells obtained from surgical specimens were fused with autologous DCs using polyethylene glycol. The fusion cells (FC) were inoculated intradermally in the cervical region and repeated 3-10 times in each 28-84 days cycle. Treatmentrelated toxicity, progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS: Six patients were enrolled, three with high grade glioma and three with ependymoma. Median age at first course of immunotherapy was 10 years (range 8-25 years) and median follow-up time from the first course of immunotherapy was 13.5 months (range 3-33 months). All patients with immunotherapy were well tolerated to this treatment with no adverse events except local erythema in injected site. Median progression free survival and overall survival were 18 months and 18.5 months, respectively. CON-CLUSIONS: FC immunotherapy with autologous DCs and tumor cells for brain tumor in children and young adults were extremely well tolerated and showed encouraging responses in this series. Further phase II study of FC immunotherapy is planned to improve survival and reduce treatment related morbidity.

IMMU-13. DUAL IGF1R/IR INHIBITOR IN COMBINATION WITH GD2-CAR T-CELLS AS A POTENT THERAPEUTIC STRATEGY FOR H3K27M-MUTANT DIFFUSE MIDLINE GLIOMAS

Emmanuel de Billy1, Marsha pellegrino1, Biagio De Angelis1, Pietro Businaro¹, Domenico Orlando¹, Giulia Pericoli¹, Lucia Lisa Petrilli¹, Sabrina Rossi², Roberta Ferretti¹, Nicola Maestro¹, Luca Massimi³, Marco Pezzullo4, Cristiano De Stefanis4, Rossella Rota1, Francesco Ferrari^{5,6}, Elisa Salviato⁵, Andrea Carai⁷, Ignazio Caruana¹, Franco Locatelli^{1,8}, Angela Mastronuzzi⁹, Concetta Quintarelli¹, and Maria Vinci1; 1Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, ²Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, 3Pediatric Neurosurgery, Department of Neurosurgery, Fondazione Policlinico Gemelli-IRCCS, Rome, Italy, ⁴Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, 5IFOM, the FIRC Institute of Molecular Oncology, Milano, Italy, 6CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Pavia, Italy, 7Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy, 8Department of Gynaecology/Obstetrics and Paediatrics, Sapienza University of Rome, Rome, Italy, 9Neuro-oncology Unit, Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy

Diffuse midline gliomas (DMG) are aggressive paediatric brain tumors for which there is no effective treatment. Recent pre-clinical studies suggest that adoptive transfer of chimeric antigen receptor (CAR) T-cells targeting the disialoganglioside antigen GD2 (GD2-CAR) has a significant therapeutic potential for H3K27M-mutant DMG. Still, some tumor cells resist to treatment suggesting that a multimodal approach may be necessary to treat more efficiently the disease. Our aim was to identify chemical compounds that, in combination with CAR T-cells, would enhance anti-tumor efficacy. After having confirmed the GD2 expression in tissue samples and patient-derived H3K27M-mutant DMG cells, we developed a high throughput cell-based assay to screen 40 kinase inhibitors in combination with T-cells expressing

the GD2-CAR.CD28.4-1BB.z construct. The screening led to the identification of the dual IGF1R/IR antagonists, BMS-754807 and linsitinib, which, in combination with GD2-CAR T-cells, improved antitumor activity by 25% (p<0.0001) and 20% (p<0.0001) respectively, compared to GD2-CAR T-cells alone. The two compounds inhibited tumor cell proliferation through IGF1R/IR dependent mechanisms at a concentration which did not affect CAR T-cell expansion. Linsitinib, but not BMS-754807, decreased GD2-CAR T-cells exhaustion and increased their memory profile. Furthermore, linsitinib attenuated the expression of 10 out of 71 DMG genes involved in immunomodulation (e.g. IL33, VEGFC, STAT5A) and regulated upon tumor/CAR T-cells co-culture. Finally, we confirmed the anti-tumor activity of the new linsitinib/GD2-CAR T-cells combination strategy in a DMG H3K27M-mutant 3D culture model. Our work supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for H3K27M-mutant DMG therapy.

IMMU-14. IMMUNE CHECKPOINT INHIBITOR THERAPY FOR TREATMENT OF SYNCHRONOUS CANCERS IN PAEDIATRIC PATIENTS WITH CONSTITUTIONAL MISMATCH REPAIR DEFICIENCY

Jacob Henderson¹, Daniel Morgenstern², Melissa Edwards², Sumedha Sudhaman², David Kram³, Michael Osborn⁴, Yoon-Jae Cho⁵, and Uri Tabori2; 1Mary Bridge Children's Hospital, Tacoma, WA, USA, ²Hospital for Sick Children, Toronto, ON, Canada, ³Wake Forest School of Medicine, Winston Salem, NC, USA, ⁴Royal Adelaide Hospital, Adelaide, Australia, 5Oregon Health and Science University, Portland, OR, USA

Constitutional mismatch repair deficiency (CMMRD) is an autosomal recessive condition in which affected patients carry biallelic germline mutations in the MMR genes. This highly penetrant syndrome results in nearly universal development of malignant neoplasms at a young age, most commonly pediatric brain tumors. Importantly, in addition to brain tumors, patients frequently develop multiple metachronous or even synchronous tumors making it impossible to treat these cancers with current chemotherapeutic approaches due to the complexity of different chemoradiation regimens required, resulting in excess toxicity and lack of efficacy. We first, assessed the metachronous (defined here as serial tumors diagnosed >1 year apart or after completion of definitive treatment for the initial tumor) or synchronous cancers (defined here as tumors diagnosed within a year of each other or during the definitive treatment for the initial tumor) in all patients within the consortium. Strikingly, 47% developed synchronous and/or metachronous cancers leading to patient demise. Molecular analysis revealed that all synchronous tumors (n=26) harbored a hypermutational burden accompanied by high genomic microsatellite instability and the relevant signatures. We therefore treated two patients with glioblastomas who had synchronous solid tumors with checkpoint inhibitors. In both patients, objective tumor response was associated with clinical benefit and prolonged survival. Biomarker analysis revealed increased tumor mutational burden, microsatellite instability and immune cell infiltration. These cases highlight the role of universal, mechanism based and tumor-agnostic approach to treat patients with brain tumors with additional synchronous cancers in the setting of cancer predisposition.

IMMU-15. PROTEOGENOMIC DISCOVERY OF NOVEL TUMOR PEPTIDES AS NEOANTIGENS FOR PERSONALIZED T CELL IMMUNOTHERAPY IN MEDULLOBLASTOMA Samuel Rivero-Hinojosa, Melanie Grant, Aswini Panigrahi, Huizhen Zhang, Veronika Caisova, Catherine Bollard, and Brian Rood; Children's National Research Institute, Washington, DC, USA

T cell immunotherapies are promising new tools to combat high-risk subgroups of medulloblastoma without increasing the late effects burden. The ideal target antigen of an effective antitumor T-cell response is abundantly expressed by tumor cells but not by normal tissues, in order to limit offtarget effects. Tumors translate a host of highly novel transcripts that are the result of aberrations in tumor DNA and the unmasking of alternative or novel exons. We developed a novel proteogenomic approach to identify tumor-restricted peptides and used them to select and expand T cells capable of mounting a tumor-specific cytotoxic immune response. Using RNA-seq and WGS data, we created personalized custom searchable databases containing predicted novel proteins from somatic mutations, novel junctions and fusion transcripts from 56 medulloblastoma tumors. By searching these databases with raw mass spectrometry data from paired medulloblastoma tumors, we identified tens of neoantigen peptides arising from the translation of tumor-specific transcripts; novel isoforms being the predominant source. We tested these peptides for their ability to select and expand autologous polyclonal populations of T cells and tested the immunogenicity of each individual peptide. Flow cytometry revealed populations of CD4+ and CD8+ cells with an activation profile marked by IFN- γ and TNF- $\alpha.$ Immunosuppressive marker profiles were also characterized. Using cytotoxicity assays, we demonstrated that tumor specific T cells can eliminate neoantigen bearing tumor cells. Thus, proteogenomics can identify immunogenic tumor specific peptides that can be used to create a personalized, targeted T cell therapy for children with high risk medulloblastoma.

IMMU-16. INTRA-TUMOURAL IL-12 DELIVERY ENABLES CAR T-CELL IMMUNOTHERAPY FOR HIGH-GRADE GLIOMA

Giulia Agliardi¹, Anna Rita Liuzzi², Alastair Hotblack¹, Donatella De Feo², Nicolás Núñez², Ekaterina Friebel², Francesco Nannin¹, Thomas Roberts³, Rajiv Ramasawmy³, Cassandra Stowe¹, Iwan Williams¹, Bernard Siow^{3,4}, Mark Lythgoe³, Tammy Kalber³, Sergio Quezada¹, Martin Pule¹, Sonia Tugues², Burkhard Becher², and <u>Karin Straathof^{5,1}</u>; ¹UCL Cancer Institute, London, GB, United Kingdom, ²Institute of Experimental Immunology, University of Zurich, Zurich, CH, Switzerland, ³UCL Centre for Advanced Biomedical Imaging, London, GB, United Kingdom, ⁴Francis Crick Institute, of Child Health, London, GB, United Kingdom

Treatment with T-cells redirected to tumour specificity with a chimeric antigen receptor (CAR) may be well suited to treat intracranial tumours due to the ability of T-cells to access the central nervous system and migrate to infiltrative sites of disease. In adult glioblastoma, a case report of local and distant eradication of intracranial and spinal tumour deposits following intraventricular infusion of IL13Ra2-CAR T-cells indicates the potential of this approach. However, in contrast to the sustained complete remissions observed in haematological malignancies, in the majority of patients with glioblastoma CAR T-cell therapy has not resulted in clinical benefit. Tumour heterogeneity and the highly immune inhibitory tumour microenvironment (TME) are likely key barriers to achieving durable anti-tumour immunity. Here use intra-tumoural administration of IL-12 to enable CAR T-cell immunity. We employed CAR-T cells targeting the tumour-specific epidermal growth factor variant III (EGFRvIII). In an immunocompetent orthotopic mouse model of high-grade glioma, we show that CAR-T cells alone failed to control fully established tumour, but when combined with a single, locally delivered dose of IL-12, durable antitumor responses were achieved. IL-12 not only boosted cytotoxicity of CAR T-cells, but also reshaped the TME driving increased infiltration of proinflammatory CD4+ T-cells, decreased numbers of regulatory T-cells (Tregs) and activation of the myeloid compartment. Critically, immunotherapy enabling benefits of IL-12 were achieved with minimal systemic effects. Our findings show that local delivery of IL-12 is an effective adjuvant for CAR-T cell therapy for high-grade glioma. Assessment of application in high-risk childhood brain tumours is ongoing.

IMMU-17. CAR T CELLS TARGETING THE INTEGRIN ALPHA $_{\rm V}$ BETA $_3$ EXHIBIT ROBUST ANTI-TUMOR RESPONSES AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) AND GLIOBLASTOMA (GBM)

<u>Dustin Cobb</u>, Jacopo de Rossi, Lixia Liu, Erin An, and Daniel Lee; University of Virginia, Charlottesville, VA, USA

Effective therapies for DIPG and GBM are lacking. CD19 chimeric antigen receptor (CAR) T cells are highly effective in patients with refractory B-cell malignancies. We aim to develop novel CARs for high-grade gliomas. The integrin complex alpha, beta, was selected as a CAR-T cell target due to its expression on gliomas and their vasculature, yet with minimal expression throughout normal tissues, vessels and organs. Indeed, a majority of DIPG and GBM cell lines express surface $\alpha_{\nu}\beta_3$. Second-generation CAR-T cells expressing an anti- $\alpha_{\nu}\beta_3$ scFv and either a CD28 or 4-1BB co-stimulatory domain and CD3zeta were constructed. Transduced healthy, donor-derived T cells exhibited high level CAR expression, efficient expansion, and representative populations of memory subsets including central, effector, and stem cell-like memory CAR-T cells. $\alpha_v \beta_3$,28z and $\alpha_v \beta_3$,BBz CAR-T cells exhibited antigenspecific in vitro cytotoxicity and cytokine production against DIPG and GBM cell lines. Both CARs mediated rapid and robust anti-tumor responses in NSG mice bearing orthotopic DIPG or GBM tumors. 5/13 $\alpha_{\nu}\beta_3.28z$ and $0/14 \alpha_v \beta_3$.BBz treated animals died without detectable disease within 2 weeks of infusion suggesting different toxicity profiles and is consistent with faster CAR-T cell expansion in CD28-versus 4-1BB-containing CD19 CAR-T cells seen clinically. Our results demonstrate that avb3.BBz CAR-T cell therapy may be both highly effective and safe in DIPG and GBM patients. Due to the restricted nature of $\alpha_v \beta_3$ expression in normal tissues, the robust responses seen in tumor-bearing mice, and the slower kinetics of $\alpha_v\beta_3.BBz$ CAR-T cell expansion, a first-in-human clinical trial is being planned.

IMMU-18. FAVORABLE OUTCOME IN REPLICATION REPAIR DEFICIENT HYPERMUTANT BRAIN TUMORS TO IMMUNE CHECKPOINT INHIBITION: AN INTERNATIONAL RRD CONSORTIUM REGISTRY STUDY

Eric Bouffet¹, Sumedha Sudhaman¹, Jiil Chung¹, Jacalyn Kelly¹, Ailish Coblentz¹, Melissa Edwards¹, Tatiana Lipman¹,

Cindy Zhang¹, Ayse Bahar Ercan¹, Lauren Sambira¹, Anne Bendel², Stefan Bielack³, Elisabeth Koustenis³, Deborah Blumenthal⁴, Daniel Bowers⁵, Alberto Broniscer⁶, Annika Bronsema⁷, Sara Carroll⁸, Stefano Chiaravalli9, Kristina Cole10, Shlomi Constantini4 Rebecca Loret De Mola¹¹, Gavin Dunn¹², Charlotta Fröjd¹³, David Gass¹⁴, Karen Gauvain¹², Ben George¹⁵, Nobuko Hijiya¹⁶, Lindsey Hoffman¹⁷, Jeffrey Knipstein¹⁵, Ted Laetsch⁵, Valérie Larouche¹⁸, Alvaro Lassaletta¹⁹, Scott Lindhorst²⁰, Alexander Lossos²¹, Sandra Luna-Fineman¹⁷, Vanan Magimairajan²², Gary Mason²³,
Warren Mason²⁴, Maura Massimino⁹, Oz Mordechai²⁵, Enrico Opocher²⁶,
Michal Oren²⁷, Michael Osborn²⁸, Alyssa Reddy²⁹, Mark Remke³⁰,
Sumita Roy³¹, Magnus Sabel³², David Samuel³³, Kami Schneider¹⁷, Santanu Sen³⁴, Duncan Stearns³⁵, David Sumerauer³⁶, Gregory Thomas¹¹, Patrick Tomboc37, An Van Damme38, Margaret Wierman3 Ira Winer⁴⁰, Lee Yi Yen⁴¹, Michal Zapotocky³⁶, David Ziegler⁴², Stefanie Zimmermann⁴³, Rina Dvir⁴, Gidi Rechavi²⁷, Carol Durno¹, Melyssa Aronson44, Michael Taylor1, Peter Dirks1, Trevor Pugh4 Adam Shlien1, Cynthia Hawkins1, Daniel Morgenstern1, and Uri Tabori1; ¹The Hospital for Sick Children, Toronto, ON, Canada, ²Children's Minnesota Minneapolis Hospital, Minneapolis, MN, USA, ³Klinikum Stuttgart-Olgahospital, Stuttgart, Germany, 'Tel-Aviv, Sourasky Medical Center, Tel-Aviv, Israel, ⁵UT Southwestern Medical Centre, Dallas, TX, USA, 6St. Jude's Children's Research Hospital, Memphis, TN, USA, ⁷University Medical Centre of Hamburg-Eppendorf, Hamburg, Germany, ⁸Cleveland Clinic Florida, Weston, FL, USA, ⁹Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy, ¹⁰Children's Hospital of Philadelphia, Philadelphia, PA, USA, ¹¹Oregon Health & Science University, Portland, OR, USA, ¹²Washington University School of Medicine, St, Louis, MO, USA, ¹³Västra Götalandsregionen, Vänersborg, Sweden, ¹⁴Carolinas Healthcare System, Charlotte, NC, USA, ¹⁵Medical College of Wisconsin, Milwaukee, WI, USA, 16Ann and Robert H, Lurie Children's Hospital of Chicago, Chicago, IL, USA, ¹⁷Children's Hospital of Colorado, Aurora, CO, USA, ¹⁸Centre Mère-Enfant Soleil du CHU de Québec, Sante-Foy, QC, Canada, 19Hospital Infantil Universitario Niño Jesús, Madrid, Spain, ²⁰Medical University of South Carolina, Charleston, SC, USA, ²¹Hadassah Medical Organization, Jerusalem, Israel, ²²Cancer Care Manitoba, Winnipeg, MB, Canada, ²³Children's Hospital of Pittsburg of UPMC, Pittsburgh, PA, USA, ²⁴Princess Margaret Hospital, Toronto, ON, Canada, ²⁵Rambam Academic Hospital, Haifa, Israel, ²⁶Università Degli Studi di Milano, Milan, Italy, ²⁷The Chaim Sheba Medical Center, Tel HaShomer, Israel, ²⁸Women's and Children's Hospital, North Adelaide, Australia, ²⁹UCSF Benioff Children's Hospital, San Francisco, CA, USA, ³⁰University Hospital Düsseldorf, Dusseldorf, Germany, ³¹Children's Hospital of Michigan, Detroit, MI, USA, ³²Queen Silvia Children's Hospital, Göteborg, Sweden, ³³Valley Children's Hospital, Madera, USA, ³⁴Kokilaben Dhirubhai Ambani Hospital, Mumbai, India, 35Rainbow Babies and Children's Hospital, Cleveland, OH, USA, 36FN Motol, Prague, Czech Republic, ³⁷West Virginia University Children's Hospital, Morgantown, WV, USA, 38Saint Luc UCL, Brussels, Belgium, 39University of Colorado (UCHealth), Aurora, CO, USA, ⁴⁰Wayne State University, Detroit, MI, USA, ⁴¹Taipei Veterans General Hospital, Taipei City, Taiwan, ⁴²Kids Cancer Centre, Randwick, Australia, ⁴³Universitätsklinikum Frankfurt, Frankfurt, Germany, ⁴⁴Mount Sinai Hospital, Toronto, ON, Canada, ⁴⁵Princess Margaret Cancer Centre, Toronto, ON, Canada

Pediatric brain tumors with replication repair deficiency (RRD) are hypermutant and may respond to immune checkpoint inhibition (ICI). We performed a consortium registry study of ICI in recurrent RRD cancers. Clinical and companion biomarkers were collected longitudinally on all patients. Biomarkers included tumor mutational burden (TMB), neoantigens and genetic signatures obtained from whole genome and exome sequencing. Immune inference was obtained by RNAseq and T cell rearrangement was collected in the tumor and in blood throughout treatment. Of the 46 tumors on the study, 32 were brain tumors with glioblastoma in 96%. Rapid, objective responses (>50%) were observed in 50% of glioblastomas. Three year overall survival for the whole co-hort was 48+/-8% which compares favorably with historical controls. Brain tumors fared worse with OS of 39+/-10% and late recurrences observed even after 2 years of therapy (p=0.02). Tumor size and acute "flare" constitute poor outcome throughout all cancers. While all tumors are hypermutant, TMB and predicted neoantigens correlated with response to ICI (p=0.02). Specific signatures extracted from SNVs and total mutations predicted response to ICI and favorable outcome (p=0.005). RNA inference and TCR reveal that the FLARE phenotype is mostly acute nonspecific immune response and not true progression. Finally, glioblastomas (n=8) which failed single agent ICI had favorable responses to combinational immunotherapies with prolonged survival of 65%+/-8% at one year after failure vs 0 for other patients (p=0.01). RRD glioblastomas exhibit favorable outcome and responses to ICI. Combinational therapies based on tumor and immune signatures of these cancers are necessary.