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Available data show marked similarities for the degeneration of dopamine cells in
Parkinson’s disease (PD) and aging. The etio-pathogenic agents involved are very similar
in both cases, and include free radicals, different mitochondrial disturbances, alterations
of the mitophagy and the ubiquitin-proteasome system. Proteins involved in PD such as
α-synuclein, UCH-L1, PINK1 or DJ-1, are also involved in aging. The anomalous behavior of
astrocytes, microglia and stem cells of the subventricular zone (SVZ) also changes similarly
in aging brains and PD. Present data suggest that PD could be the expression of aging
on a cell population with high vulnerability to aging. The future knowledge of mechanisms
involved in aging could be critical for both understanding the etiology of PD and developing
etiologic treatments to prevent the onset of this neurodegenerative illness and to control
its progression.
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Parkinson’s disease (PD) is a neurodegenerative illness whose
onset and progression is clearly linked to aging (Driver et al.,
2009; Buchman et al., 2012). The discovery of cell loss and
eosiniphilic intracitoplasmic aggregates (Lewy bodies) in the sub-
stantia nigra (SN) of these patients during the early twentieth
century (Greenfield and Bosanquet, 1953) led a number of groups
to investigate the etio-pathology of PD in this center. Although
recent studies have reported neurodegeneration in many other
brain centers, the degeneration of SN cells is still the hallmark for
a diagnosis of PD.

In the 1960s Hornykiewicz reported a decrease of striatal
dopamine (DA) and an effective therapeutic response to lev-
odopa (a DA precursor) suggesting that nigrostriatal DA-cells
(nsDAc) are the SN cells which mainly degenerate in PD, a
possibility also supported by the loss of neuromelanin+ cells
in this center (this pigment is a by-product of DA oxidation)
(Hornykiewicz, 1966, 2010; Hirsch et al., 1988). This possibility
was then supported by studies showing that most degenerated
cells express proteins involved in the synthesis (e.g., tyrosine
hydroxylase -TH- and l-dopa decarboxylase -DD-), degradation
(monoamine oxidase -MAO-), and transport (dopamine trans-
porter, DAT) of DA (Lloyd and Hornykiewicz, 1970; Kastner
et al., 1993). The aforementioned findings are frequently used
to support the possibility that the nigral DA cell (DAc) loss
is a specific characteristic of PD. However, a similar degener-
ation has been observed in the SN of aged healthy subjects

who also show a decrease in the number of: (1) total SN neu-
rons (Hirai, 1968; McGeer et al., 1977; Stark and Pakkenberg,
2004; Morterá and Herculano-Houzel, 2012); (2) pigmented SN
neurons (which decrease 7–10% per decade) (Ma et al., 1999;
Stark and Pakkenberg, 2004; Rudow et al., 2008); (3) TH+ and
DAT+ neurons (Kastner et al., 1993; Rudow et al., 2008; Kordower
et al., 2013); (4) DD+ neurons (Lloyd and Hornykiewicz, 1970);
and (5) MAO+ neurons (Saura et al., 1997). Thus, the nsDAc
loss cannot be considered as a discriminating characteristic
of PD.

It has been suggested that the nigral DA-cell subgroups
(González-Hernández and Rodriguez, 2000) which degenerate
in PD are not the same subgroups which degenerate during the
normal aging. PD degeneration mainly affects snDAc located
in the ventral tier of the posterior-lateral regions of the SN
compacta (Fearnley and Lees, 1991; Damier et al., 1999) which
innervate the dorsal-lateral region of the striatum (Kish et al.,
1988; Hornykiewicz, 1989). However, this snDAc subgroup also
shows the highest degeneration rate during aging, a fact observed
in both monkeys (Kanaan et al., 2008; Collier et al., 2011) and
humans (Reeve et al., 2014). In addition, the striatal distribution
of the DA denervation is also similar in PD (Kish et al., 1988;
Hornykiewicz, 1989) and aging (Kish et al., 1992; Haycock et al.,
2003). Therefore, the difference between the DA-cell degeneration
in PD and aging may be the intensity of the degeneration process
more than the type of cells which degenerate.
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Both PD (Olanow and Tatton, 1999; Obeso et al., 2010) and
aging (Olson, 1987; Peto and Doll, 1997) are probably the con-
sequence of the simultaneous and persistent action of a number
of damaging agents, with oxidative stress being one of the most
relevant factors in both cases. Oxidative stress has proved to be
critical for aging (Gerschman et al., 1954; Brack et al., 2000;
Toussaint et al., 2000), affecting proteins, lipids, and nucleic acids
in a variety of organs and animals (Sohal and Weindruch, 1996;
Perez et al., 2009; Oliveira et al., 2010). The oxidative stress in
mammals is mainly generated by the mitochondrial production
of energy. The nsDAc has an unmielinated axon (Orimo et al.,
2011) and a large number of synaptic terminals (hundreds of
thousands) (Matsuda et al., 2009) which require a high amount
of energy, thereby increasing oxidative stress. The metabolization
and autooxidation of DA, together with the high concentration
of intracellular iron, are additional sources of free radicals in
these cells (Kidd, 2000; Berg and Hochstrasser, 2006). These
characteristics increase the vulnerability of the snDAc to the
aging process.

The DAc is protected from oxidative stress by different mecha-
nisms including the superoxide dismutase and glutatione peroxi-
dase activity (which prevent the oxidant action of oxygen species),
and by the DAT and the vesicular monoamine transporter 2 activ-
ity (which moves DA from the extracellular medium to synaptic
vesicles preventing its metabolization and self-oxidation). These
protecting mechanisms are altered in PD where a disruption of the
mitochondrial electron transport chain increases the generation
of free radicals (Parker et al., 1989; Bender et al., 2006). This,
and the down-regulation of the superoxide dismutase, glutatione
peroxidase, DAT and vesicular monoamine transporter 2 activities
observed in PD (Riederer et al., 1989; Zeevalk et al., 2008), suggest
high oxidative stress in the SN of these patients. This possibility is
also supported by the high oxidative damage of lipids (Bosco et al.,
2006), proteins and DNA (Nakabeppu et al., 2007) found in the
SN of these patients (Jenner, 2007). However, all these facts have
also been observed in the aged brain and cannot be considered
as a selective characteristic of the PD brain (Sohal and Brunk,
1992; Oliveira et al., 2010). In fact, increasing the resistance to
oxidative stress via caloric restriction is often considered as the
most effective way of delaying aging in animals (Yu, 1996; Bokov
et al., 2004), although this neuroprotecting possibility is still to be
properly tested in PD.

The most direct impact of oxidative stress is produced on the
mitochondria. The DNA of mitochondrias (mtDNA) is highly
vulnerable to mutations because it is located near the mito-
chondrial source of free radicals (electron transport chain) and
because it is not protected by histones. mtDNA shows a high
number of delections in PD patients, and epidemiological studies
and cybrid models have suggested that the mtDNA damage is
important in PD (Gu et al., 1998; Kraytsberg et al., 2006). Similar
mtDNA damage has been observed in the healthy brain, where
the mtDNA mutations normally accumulate with aging (Linnane
et al., 1989; Bender et al., 2006). Sporadic mtDNA mutations in
single mitochondrias are not enough to induce severe cell damage,
but the aggregation of random mutations in an increasing num-
ber of mitochondrias can reduce cell viability. This fact probably
enhances neurodegeneration in both aged and age-associated

diseases such as PD (Cantuti-Castelvetri et al., 2005; Smigrodzki
and Khan, 2005; Maruszak et al., 2006).

The mitochondrial population of cells is normally pro-
tected from damage by different repair mechanisms, including
fission/fusion processes (which use healthy mitochondrias to
recuperate the functions of damaged mitochondrias) and
mitophagy (an autophagic process which eliminates the most
damaged mitochondrias preventing their accumulation). Proteins
involved in these repair mechanisms (e.g., parkin and PINK1)
behave anomalously in both PD (Ethell and Fei, 2009) and aging
(Palikaras and Tavernarakis, 2012), with autophagy also being
altered in both cases (Cuervo et al., 2004; Ethell and Fei, 2009;
Hubbard et al., 2012). The movement of mitochondrias across the
axon is necessary to preserve an efficient quality control of neu-
ronal mitochondrias. Most synaptic mitochondrias are synthe-
sized in the neuronal somata and moved along axons (anterograde
motion). Axonal transport is also necessary to move dysfunc-
tional mitochondrias from synaptic bottoms to the cell somata
(retrograde motion) where they can be destroyed by mitophagy
and other mechanisms (Cheng et al., 2010). Different proteins
involved in the axonal transport (e.g., α-synuclein, parkin and
PINK1-Miro-Milton complex) are involved in both PD and aging
as well. The axonal damage observed in DAc of the PD brain
(Cheng et al., 2010) has been found in the aging brain too (Gilley
et al., 2012), which shows that the anomalous behavior of axons
is also a characteristic shared by the PD and the aging brain.

The anomalous conformations of α-synuclein facilitate the
formation of Lewy bodies in the nsDAc of PD patients (Lansbury
and Brice, 2002) as well as in healthy aged subjects (Li et al.,
2004; Moore et al., 2005). Similarly, the mutation of parkin has
been associated to both PD (Lücking et al., 1998; Lucking et al.,
2000; Moore et al., 2005; Reeve et al., 2014) and aging (Rodríguez-
Navarro et al., 2007; Vincow et al., 2013). The UCH-L1 mutation
impairs the ubiquitin-proteasome system (Osaka et al., 2003; Li
et al., 2004), promoting both PD (Leroy et al., 1998) and aging
(Marzban et al., 2002). PINK1 facilitates axonal transport and
degradation of damaged mitochondrias (Valente et al., 2004a; Liu,
2014), and this PINK1 activity is altered in both the PD (Valente
et al., 2004b; Albanese et al., 2005; Gelmetti et al., 2008) and
aging (Wood-Kaczmar et al., 2008; Vincow et al., 2013) brain.
The DJ-1 protein protects cells against oxidative stressors (Moore
et al., 2005). Its anomalous behavior has been linked to a familiar
parkinsonism (Bonifati et al., 2003a,b; Ibanez et al., 2003) and
to aging (Marzban et al., 2002; Meulener et al., 2006). These
proteins have been associated with the different familiar early
onset parkinsonisms which present mutations of their genes, but
also with idiopathic (or sporadic) PD and with normal aging
where their activity may change (Cookson and Bandmann, 2010).

Many of the altered cell groups in PD show similar changes
in the aged brain. This is the case of astrocytes, cells whose
physiological functions (Sofroniew and Vinters, 2010; Rodriguez
et al., 2012) change in PD and aging (Raivich et al., 1999; Morales
et al., 2013). Astrocytes prevent neuronal damage by releasing
neuroprotecting agents (glutathione, basic fibroblast growth
factor, glial cell line-derived neurotrophic factor. . .) (Saavedra
et al., 2006; Deierborg et al., 2008), and by removing toxic
molecules from the extracellular medium (e.g., α-synuclein)
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(Braak et al., 2007; Lee et al., 2010). The neuroprotecting
abilities of astrocytes decrease with age (Pertusa et al., 2007;
Mansour et al., 2008; Chinta et al., 2013), which increases DAc
vulnerability (Mirza et al., 2000; Song et al., 2009) and enhances
the development of PD (Halliday and Stevens, 2011).

It has been suggested that the slow DAc decline during life
is normally compensated by a slow cell repopulation provided
by the subventricular zone (SVZ; Doetsch et al., 1997, 1999;
Quiñones-Hinojosa et al., 2006). SVZ stem cells normally differ-
entiate into astrocytes and neuroblasts which later migrate to the
olfactory bulb. The differentiation and migration of these cells are
modulated by the DA released from nsDAc terminals (Freundlieb
et al., 2006; Borta and Höglinger, 2007). Some neurons generated
by SVZ stem cells express a DAergic phenotype and migrate
to the olfactory bulb where they modulate olfaction. However,
neuroblasts can also migrate to other brain loci, particularly when
the target areas have been damaged (ictus.) (Macas et al., 2006).
It has been suggested that stem cells can migrate to the SN
(Kay and Blum, 2000; Zhao et al., 2003; Zhao and Janson Lang,
2009), where they could compensate for the DAc loss induced
by aging. Thus, an insufficient repopulation of the DAc loss
induced by senescence may also be a cause of PD (Armstrong and
Barker, 2001). This possibility is supported by the low neuroge-
nesis observed in the SVZ (Höglinger et al., 2004) and anterior
olfactory nucleus (Pearce et al., 1995; Hawkes et al., 1997) of PD
patients. A similar low neurogenesis has been observed during
aging. Healthy subjects present a noticeable decrease of SVZ stem
cell proliferation during the last third of life which is when the
incidence of PD increases (Galvan and Jin, 2007; Conover and
Shook, 2011). Nevertheless, the cell repopulation hypothesis is
currently a matter of debate because the DAergic repopulation of
the SN has not been definitively proved (Frielingsdorf et al., 2004).
The new astrocytes derived from SVZ stem cells could also prevent
DAc degeneration by replacing the damaged astrocytes in PD
patients (Gonzalez-Perez and Quinones-Hinojosa, 2012; Mack
and Wolburg, 2013). Bearing in mind the neuroprotecting role
of astrocytes, this repopulation could also be necessary to keep
the DAc alive in the aged brain. In this case, aging and PD could
be the final result of a deficient gliogenesis and of the consequent
deterioration of the astrocyte population supporting the snDAc.
Therefore, the reduced neurogenesis and gliogenesis secondary to
the senescence of the SVZ could be involved in both aging and PD.

The microglia has been linked to the neurodegenerating pro-
cess in PD. Microglia is activated in the presence of aggregated
forms of α-synuclein (Zhang et al., 2005), expressing macrophage
markers and releasing IL-1β, IL-6 and TNF-α which can damage
the DAc (Croisier et al., 2005; Orr et al., 2005). This activation has
been found in both PD (Hunot et al., 1996; Knott et al., 2000) and
aged brains (Godbout and Johnson, 2004; Gelinas and McLaurin,
2005; Campuzano et al., 2009), suggesting that the neurotoxic
action of these cells is similar in both conditions (Ouchi et al.,
2005; Streit et al., 2008; Cunningham, 2013).

Recent technological advances have made it possible to obtain
pluripotent stem cells (iPSC; Takahashi and Yamanaka, 2006)
from the skin of healthy subjects and patients with different
illnesses including PD (disease-specific iPSC) (Lee and Studer,
2010). The DAc derived from iPSC shows an abnormal phenotype

(with respect to aged-matched controls) when produced from
patients with familiar parkinsonisms (PINK1, SNCA, parkin,
LRRK2...) (Sánchez-Danés et al., 2013) but not when produced
from patients with sporadic PD (Soldner et al., 2009). However,
cells from sporadic PD patients show the typical alterations of the
nsDAc when they are kept for a long time in a culture medium
which in vitro simulates in vivo aging (more than 2 months in a
culture medium which induces chronic cellular stress) (Sánchez-
Danés et al., 2012). In these conditions, the DAc derived from
iPSC of sporadic PD patients shows morphological (reduced
number of neurites and accumulation of autophagic vacuoles)
and neurochemical (accumulation of α-synuclein in their cyto-
plasm) characteristics similar to those of the DAc in PD (Sánchez-
Danés et al., 2012). Thus, aging, in this in vitro model, seems to
be a condition for developing the DAc characteristics observed in
PD, which also supports aging as a basic mechanism for PD.

In summary, the studies reviewed above show that the DAc
degeneration in PD is similar to that observed in aging, sug-
gesting that aging is not simply another agent to add to the
etiology of PD. The progressive course of aging and PD could be
induced by the same multi-factorial etiology, including astrocytic
and microglia alterations, oxidative stress, anomalous action of
different proteins, mitochondrial disturbances, and alterations
of the mitophagy and the ubiquitin-proteasome system. To this
effect, PD could be the expression of aging on a cell population
which, due to its characteristics (number of synaptic terminals,
unmielinated axon etc...), is particularly vulnerable to damage.
Repeated injuries accumulated throughout a person’s lifespan
may go unnoticed until the DAc loss exceeds a critical value.
DAc degenerated over the years could be regularly replaced by
new neurons derived from brain stem cells. Since stem cells are
also affected by aging, the DAc loss induced by aging could
be increased by an insufficient cell replacement. The progres-
sive imbalance between the DAc loss and DAc neurogenesis
eventually leads to a large enough decrease in the number of
DAc to trigger the onset of motor disturbances of PD. This
DAc loss is usually considered as a sign of brain aging until
it crosses the above mentioned clinical threshold and PD can
be diagnosed. In our opinion, a better understanding of the
mechanisms involved in aging would help to explain the etio-
pathology of PD.
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