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Abstract
Background: Background K+ channels are the principal determinants of the resting membrane
potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the
action potential (AP).

Methods: RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and
whole-cell patch clamp technique is employed to determine the functional expression of TASK-1
in embryonic chick heart.

Results: Chicken TASK-1 was expressed in the early tubular heart, then substantially decreased
in the ventricles by embryonic day 5 (ED5), but remained relatively high in ED5 and ED11 atria.
Unlike TASK-1, TASK-3 was uniformly expressed in heart at all developmental stages. In situ
hybridization studies further revealed that TASK-1 was expressed throughout myocardium at
Hamilton-Hamburger stages 11 and 18 (S11 & S18) heart. In ED11 heart, TASK-1 expression was
more restricted to atria. Consistent with TASK-1 expression data, patch clamp studies indicated
that there was little TASK-1 current, as measured by the difference currents between pH 8.4 and
pH 7.4, in ED5 and ED11 ventricular myocytes. However, TASK-1 current was present in the early
embryonic heart and ED11 atrial myocytes. TASK-1 currents were also identified as 3 μM
anandamide-sensitive currents. 3 μM anandamide reduced TASK-1 currents by about 58% in ED11
atrial myocytes. Zn2+ (100 μM) which selectively inhibits TASK-3 channel at this concentration had
no effect on TASK currents. In ED11 ventricle where TASK-1 expression was down-regulated, IK1
was about 5 times greater than in ED11 atrial myocytes.

Conclusion: Functional TASK-1 channels are differentially expressed in the developing chick heart
and TASK-1 channels contribute to background K+ conductance in the early tubular embryonic
heart and in atria. TASK-1 channels act as a contributor to background K+ current to modulate the
cardiac excitability in the embryonic heart that expresses little IK1.
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Background
TASK-1 is an acid-sensitive two pore domain potassium
channel (K2P) that is activated by alkaline pH and is
inhibited by external protons [1]. Activation of TASK-1
channels produces an outwardly rectifying current at nor-
mal physiological condition. The currents do not show
time- and voltage-dependent activation, inactivation or
deactivation [2,3]. With a pKa of 7.3, TASK-1 channels
could be open throughout an AP of cardiac cells and
therefore contribute to repolarization of APs as well as to
the RMP. In addition to its pH sensitivity, TASK-1 channel
is also sensitive to oxygen and local anesthetics and is
tightly regulated through protein kinases A, C, G and
phospholipase C signaling pathways [4,5]. Thus, the func-
tional role of TASK-1 channel will depend to a great extent
on where it is expressed.

TASK-1 channel is highly expressed in heart [1,6-10]. By
means of real time PCR, Liu et al shows that TASK-1 is one
of the predominant K2P channels and is expressed more
in the atria than in the ventricles of both embryonic and
adult rat heart [10]. In adult mouse heart, TASK-1 is
expressed in the atria but not in the ventricles [1]. We have
characterized the cardiac expression of TASK-1 channel in
developing chick and mouse hearts with immunofluores-
cent staining [6]. The expression pattern of TASK-1 chan-
nel in chick embryonic heart was similar to that in the
developing mouse heart, where TASK-1 channels were
expressed ubiquitously in the tubular heart but later in
development it was restricted to ventricular conduction
system.

We were intrigued by the expression of TASK-1 channels
throughout the heart tube in early developmental stages.
In the early tubular heart, all myocytes including ventricu-
lar myocytes exhibit spontaneous electrical activities sim-
ilar to adult sinoatrial nodal cells. The lack of inward
rectification K+ currents (IK1 or Kir channels) likely con-
tributes to their automaticity [11]. However, a small back-
ground K+ conductance is necessary otherwise the
myocytes would be too depolarized to beat spontane-
ously. Our hypothesis is that TASK-1 channels could be
one of the contributors to this small background K+ con-
ductance. Although the functional role of TASK-1 channel
in developing heart is still unknown it seems likely to be
involved in setting RMP and possibly influencing the
shape of action potentials [8].

In this report, we further studied the distribution of TASK-
1 and its electrophysiology during chicken heart develop-
ment. Consistent with our previous studies, TASK-1 was
highly expressed in the tubular heart early in develop-
ment. In later development, expression of TASK-1 was
retained in the atria but was down-regulated in the ventri-

cle. Likewise, patch clamp studies showed that acid sensi-
tive background K+ currents were present in S14 tubular
heart and in ED11 atria, but little in ED5 and ED11 ven-
tricle. Conversely, there was little or no IK1 in ED11 atrial
myocytes while IK1 was substantial in ED11 ventricular
myocytes. These results demonstrate that TASK-1 chan-
nels contribute to background membrane K+ conductance
where inwardly rectifying K+ currents (IK1) are not present
in the developing heart.

Methods
Total RNA isolation and RT-PCR of TASK-1 and TASK-3
Whole S11 chick embryos (40 hour incubation at 37°C),
heart tubes from S14 (50 hours) and S18 (3 day incuba-
tion), ED5 and ED11 hearts were dissected and collected
in DEPC-treated PBS solution. The ventricles and atria of
ED5 and ED11 embryos were separated under a micro-
scope. The dissected tissues were immediately homoge-
nized in the presence of β-mercaptoethanol (β-ME,
Sigma). The total RNAs were prepared by using the Qia-
gen RNeasy kit (Qiagen). Genomic DNA was removed by
on-column treatment of RNase-free DNase I (Roche Inc.).
1 μg DNase I treated total RNA was used to synthesize the
first strand cDNA with Invitrogen Platnium III® reverse
transcriptase (Invitrogen Inc). The reverse transcription
was terminated by heating the reactions to 85°C for 15
min and then diluted 10 times prior to PCR reactions.

The specific primers for chicken TASK-1 were designed
from the cloned cDNA sequence (accession number
DQ272256, sense primer 5'-CTCTTTCTACTTCGCCAT-
CAC-3' and antisense primer 5'-CTTCTCGTCCTCG-
GCGTTCA-3'). Primers for chicken TASK-3 were designed
from the predicted cDNA sequences (accession number
XM_417369, sense 5'-TCTACTTCGCCATCACCGTCAT-3'
and antisence 5'-CTCGTTCTTCTGCAGGGCCAC-3').
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as an internal control (sense 5'-TGGGAAGCT-
TACTGGAATGG-3' and antisense 5'-ACCAG-
GAAACAAGCTTGACG-3', accession number:
NM_204305). For PCR reaction, a total of 25-35 cycles for
melting, annealing and extension steps (95°C, 25 s; 55-
60°C, 30 s and 72°C, 45 s) were carried out. 10 μL ampli-
fication products were checked on 1.5% agarose gel. A no
template (NTC) was used as a negative control to monitor
the primer dimerization and non-specific amplification.
PCR products were further cloned into pGEM T-easy vec-
tor for sequencing and synthesizing cRNA probe for in situ
hybridization studies.

2.2. Digoxin-labeled cRNA probe synthesis and in situ hybridization
The plasmid DNA containing chicken TASK-1 clones was
linearized and then used to synthesize Dig-labeled cRNA
probe by using either SP6 or T7 RNA polymerase and fol-
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lowing the manufacturer's instructions (Roche Biochemi-
cal Corp.).

For in situ hybridization, chick embryos of S11, S18 were
collected in DEPC-treated PBS solution. For ED11 hearts,
hearts were first excised and perfused through the aorta
subsequently with DEPC-treated PBS and 4% paraformal-
dehyde under a dissection microscope. The collected
embryos and hearts were immediately placed in pre-
cooled 4% paraformaldehyde on ice and further fixed
overnight on an orbital rotator at 4°C. The fixed embryos
and embryonic hearts were then dehydrated in 50%, 75%,
100% (PBS:Methanol) and stored at -20°C. Prior to in situ
hybridization, stored embryos and hearts must be re-
hydrated. The hybridization was carried out at 70°C over-
night in standard hybridization mix containing 1 μg/ml
cRNA probe. After NBT/BCIP reactions, the stained
embryos and hearts were processed for embedding in par-
affin and sectioning with a thickness of 14 μm.

Chick embryonic myocyte isolation
Chick embryonic myocytes were isolated by using enzy-
matic dissociation methods. Briefly, the atria and ventri-
cles of ED5 and ED11 hearts were separated before the
enzymatic digestion. The atria and ventricles of ED5 and
ED11 hearts were then incubated for 10 minutes in Mg2+

and Ca2+ free Tyrode solution containing 0.1 mg/ml
Trypsin, 1 mg/ml collagenase and 0.2 mg/ml bovine
serum albumin at room temperature. Then, three diges-
tion steps were subsequently carried out at 37°C. The
enzyme digestion times were empirically adjusted to
achieve maximum viability for each of the developmental
stages. The dissociated myocytes were collected by centri-
fuging and re-suspended in Modified M-199 medium
(Gibco Corp.). For the preparation of S14 myocytes,
whole S14 tubular hearts were used for dissociation. The
myocytes were incubated overnight in a plastic petri dish
in which the myocytes did not attach. The myocytes were
used within 24 hours after dissociation.

Electrophysiological recordings
Embryonic myocytes were transferred to a Warner per-
fusion chamber (Warner Instruments) and were continu-
ously perfused with Tyrode solution (S-1) at a flow rate of
~2 ml/min. For whole-cell patch clamp recordings of
TASK currents, dissociated myocytes were initially bathed
with Tyrode solution (S-1, Table 1). After the formation of
whole cell configuration, bath solution was then switched
to experimental solution either S-2 or S-3 (Table 1).
Pipettes were pulled from 1.5 mm borosilicate glass using
a P-97 Glass Microelectrode Puller (Sutter Corp.). Patch
pipette usually had a resistance of 4-8 MΩ when filled
with pipette solution P-1 or P-2 (Table 1). The liquid junc-
tion potential was cancelled before pipette contacted the
cells. When most of external chloride was replaced by

aspartate, an agar bridge (3 M KCl) was used to reduce
junction potential. The membrane and access resistances
were monitored during experiments by means of mem-
brane test in Axon Clampex 8.0 software. Only those cells
that had a seal resistance larger than 1 GΩ were used for
the final analysis. Whole-cell currents were sampled at 5
kHz and recorded with an AXOPATCH 200B voltage-
clamp amplifier (Axon instrument). The command volt-
age steps were applied with pCLAMP 8.0 and a DIGIDATA
1322A interface (Axon Instrument). Data were stored on
the hard disk for off-line analysis. All experiments were
carried out at room temperature except where specified.

All chemicals were purchased from Sigma except where
specified. Anandamide and ZD-7288 were purchased
from Tocris Bioscience (Tocris. MO). A 3 mM stock solu-
tion of anandamide was prepared in 100% ethanol and
stored in freezer. The working solution of anandamide
was freshly prepared before each experiment. In all anan-
damide experiments, control solutions contained appro-
priate concentrations of ethanol.

Data Analysis
All data are presented as mean ± S.E. For statistical analy-
sis, a paired or unequal variance student T-test was used to
determine statistical significance. A p value < 0.05 was
considered to be significant and was indicated with aster-
isk and non-significance by NS.

Results
Developmental expression of TASK-1 in chick embryonic 
heart
A distinguishing characteristic of K2P channels is that the
ion selectivity filter structure (GYGX) is not strictly con-
served. A single mutation will change the ion selectivity of

Table 1: The components of solutions used in patch-clamp 
experiments

Components (in mM) S-1 S-2 S-3 P-1 P-2

NaCl 140 - - -
KCl 5.4 125 - 145
CaCl2 1.8 - - - 5
MgCl2 1.05 2 2 2 1
Dextrose 5.5 5.5 5.5 - -
HEPES 10 10 10 10 10
EGTA - - - 0.5 11
K-Aspartate - - 140 - 130
ATP·Mg - - - 5 -
ATP·Na2 - - - - 5
BaCl2 - 0.1 0.1 - -
TEA·Cl - 20 10 - -
4-AP - 0.5 0.5 - -

Note: pH of pipette solutions (P-1 and P-2) was adjusted to 7.2 with 
KOH. For all bath solutions pH was adjusted to 7.4 with NaOH or 
KOH. TEA: tetraethylammonium, 4-AP: 4-aminopyridine.
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K2P channels [12-14]. We therefore compared chicken
TASK-1 pore regions with those members of human TASK
family as shown in Fig. 1A. The shaded region indicates
the signature sequences of K+ ion selectivity filter in both
pore regions. Chicken TASK-1 has an identical pore amino
acid sequences with human TASK-1, indicating conserva-
tion of TASK-1 gene. The developmental expression of
TASK-1 and TASK-3 were then studied by RT-PCR. TASK-
1 was expressed in early heart development S14, but was
dramatically reduced in ED5 and ED11 ventricles (Fig.
1B). However, expression of TASK-1 in chick ED5 and
ED11 atria remained relatively high. Unlike TASK-1,
TASK-3 is equally expressed in the heart developmental
stages studied in this report (Fig. 1B).

Although we have used immunohistochemistry to charac-
terize the cardiac expression of TASK-1 in chick embryonic
heart there is still concern about the specificity of com-
mercial available antibodies of TASK-1 channels [3]. For
this reason, we determine the regional expression of
TASK-1 during heart development by means of in situ
hybridization (ISH). TASK-1 was ubiquitously expressed
in the myocardium of the early heart at S11 (Fig 2A). In
S18 chick heart, TASK-1 was most strongly expressed in
trabeculae, where the ventricular conducting system
develops (Fig. 2B). Further, TASK-1 was heavily expressed
in ED11 atria and was slightly expressed in the right ven-
tricle (Fig. 2D). No TASK-1 expression was visible in ED11
left ventricle. A typical control using sense RNA probe in

Expression of TASK-1 during chick heart development by RT-PCRFigure 1
Expression of TASK-1 during chick heart development by RT-PCR. A: amino acid sequence alignment of pore regions 
of TASK-1 with all human TASK channels. B: TASK-1 and TASK-3 RT-PCR: Lane 0 shows 1 Kb DNA markers. Lane 1-6 as 
indicated at bottom (see text for definition). GAPDH expression was used as a reference and was equivalent in all samples 
after 25 to 40 cycle two step RT-PCR amplification. The size of cDNA products are indicated on the right hand and the devel-
opmental stages are labeled at the bottom.
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chick ED11 embryonic heart was shown in Fig. 2C, indi-
cating the high specificity of antisense TASK-1 probe.

Developmental regulation of TASK-1 currents in chick 
embryonic myocytes
Based on the results of our expression studies, we meas-
ured TASK currents in chick embryonic myocytes and the
contribution of two major acid-sensitive K2P channels,
TASK-1 and TASK-3, by their differential pH sensitivity
(pKa of 7.3 and 6.7, respectively). TASK currents inhibited
by lowering pH from pH 8.4 to 7.4 are only contributed
by TASK-1 channels while TASK-3 channels are still active
in this pH range. However, in the pH range between 7.4
and 6.4, both TASK-1 and TASK-3 channels could contrib-
ute to TASK currents [15,16]. The TASK-1 or TASK-3 cur-
rents were also identified as those blocked by 3 μM
anandamide or 100 μM zinc. At the concentrations used
here anandamide and zinc selectively inhibit TASK-1 and
TASK-3 currents, respectively [17,18].

In the present study, TASK currents were recorded in exter-
nal solutions with elevated [K+]o (125 mM). To avoid pos-
sible interfering K+ currents, 100 μM Ba2+ was used to
inhibit inwardly rectifying K+ currents. At this concentra-
tion, Ba2+ has a minimal effect on TASK-1 currents [19].
0.5 mM 4-AP was used to block transient K+ current (Ito).
10 or 20 mM tetraethylammonium (TEA) was used to
inhibit the activation of delayed rectifier K+ currents (IK).
The hyperpolarization-activated pacemaker current If was
blocked by ZD-7288 (5 μM). Under these recording con-
ditions, I-V curves of ED11 atrial myocytes displayed
slight outward rectification (Fig. 3A) and showed pH sen-
sitivity in elevated external [K+]o solution (S-2 and P-1).
Consistent with PCR results, TASK-1 currents, measured
by the current difference between pH 8.4 and 7.4 at -80
mV, decreased with development in embryonic ventricu-
lar myocytes but were maintained in embryonic atrial
myocytes (Fig. 3B). Interestingly, TASK-1 currents (pH
8.4-7.4) and TASK currents (pH 7.4-pH 6.4) were not sig-
nificantly different at any heart developmental stage, sug-
gesting that TASK currents are mostly due to TASK-1
channels. However, ED11 atrial myocytes showed signifi-
cantly higher TASK currents than ED11 ventricular myo-
cytes (p < 0.01 for pH 7.4-6.4). Of all heart developmental
stages used, ED11 atrial myocytes showed the greatest the
acid-sensitive current densities (Fig. 3B). These results
indicated that there are functional TASK-1 channels in
embryonic heart.

The contribution of TASK-1 channels to TASK currents
was further studied in chick ED11 atrial myocytes simply
because they had the highest current density. TASK cur-
rents were evoked by a 2 s depolarizing ramp from -100
mV to +50 mV (Fig. 4A). Both intracellular and external
Cl- were mostly substituted by aspartic acid (S-3 and P-2)

to avoid the interference of acid sensitive Cl- currents [20].
Under these experimental conditions, membrane currents
showed inward rectification at negative potentials and
slightly outward rectification at positive potentials. I-V
curves are drawn from 6 cells with an average Cp of 10.8 ±
1.3 pF (Fig. 4A). 3 μM anandamide abolished more than
half of inward current at pH 8.0 at -80 mV (~58%, Fig.
4C). The pH sensitive currents (pH8.0 - pH6.4) at -80 mV
were -13.1 ± 3.2 pA/pF and the mean of anandamide sen-
sitive currents at -80 mV was -7.6 ± 2.6 pA/pF (The inset
of Fig. 4C). Fig. 4B shows the I-V relationship of TASK cur-
rents at potentials between 0 and +50 mV (Fig. 4B). In this
potential range, TASK currents activated by pH 8.0 were
much smaller than those at negative potentials. However,
TASK currents were inhibited by either lowering pH to 6.4
or 3 μM anandamide (Fig. 4B), indicating that in this
potential range TASK currents were mostly due to TASK-1
channels. At +50 mV, the mean currents at pH 8.0, pH6.4
and in the presence of 3 μM anandamide were 7.87 ±
1.67, 6.37 ± 1.60 and 6.67 ± 1.52 pA/pF, respectively. This
result is well consistent with pH sensitivity studies (Fig.
3B) showing that TASK currents between pH7.4 and
pH6.4 are mostly due to the TASK-1 channel. Therefore,
the currents activated by pH 8.0 and inhibited by pH 6.4
and anandamide are consistent with TASK-1 currents in
chick embryonic heart.

Whether TASK-3 channels contribute to TASK currents
was determined by using 100 μM Zn2+, at a concentration
that selectively inhibits TASK-3 channels [17]. While
inward currents activated by pH 8.0 at -80 mV were largely
inhibited by pH 6.4 (blank column), 100 μM Zn2+ did not
inhibit TASK currents. In fact, it slightly increased TASK
currents at -80 mV from -20.1 ± 5.7 to -21.5 ± 5.1 pA/pF
(NS) (Fig. 4D). At -80 mV, the currents at pH 8.0 and pH
6.4 were -20.1 ± 5.7 and -9.6 ± 1.6* pA/pF, respectively (n
= 9, Cp = 8.6 ± 1.2 pF). The pH-sensitive inward currents
were -10.5 ± 5.3 pA/pF and Zn2+-sensitive K+ currents were
1.4 ± 1.1 pA/pF (Fig. 4D). Thus, 100 μM Zn2+ has little
effect on the inward currents, suggesting that TASK-3
channels contribute little or nothing to TASK currents.
Since TASK-3 transcripts were found in chick embryonic
heart, there remains the possibility that TASK-3 exists as a
heterodimer with TASK-1 which may not be sensitive to
100 μM Zn2+ but possibly to anandamide.

3.3 Ik1 is much larger in embryonic ventricular myocytes than in atrial 
myocytes and is inhibited by 100 μM Ba2+

Our data suggest that TASK-1 currents are present in early
embryonic heart and in ED11 atrial myocytes, but not in
embryonic ventricles after ED5. In mature working myo-
cardium, inwardly rectifying K+ channels are dominant in
setting the RMP. It is possible that the differential expres-
sion of TASK-1 is related to a differential expression of Ik1.
To examine this possibility, we compared the inwardly
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In situ hybridization of chicken TASK-1 expression in developing chick heartFigure 2
In situ hybridization of chicken TASK-1 expression in developing chick heart. A: in situ hybridization of S11 chick 
embryos. TASK-1 was ubiquitously expressed in S11 embryonic heart. B: In situ hybridization of TASK-1 in S18 chick embry-
onic heart. TASK-1 was expressed in the both the atrium and ventricle. However, expression appeared greatest in the trabec-
ulae of the S18 heart. Whole mount In situ hybridization of TASK-1 in ED11 chick heart shown in C and D. C: a control in situ 
hybridization with sense RNA probe staining. No detectable purple staining was observed. D: TASK-1 was strongly expressed 
in the both right and left atria and lightly expressed in the ventricle in ED11 chick heart. Abbreviations are: heart (HT), myocar-
dium (MC), neural tube (NT), trabeculae (Tb), atrial-ventricular cushion (AVC), right atrium (RA), left atria (LA), right ventricle 
(RV) and left ventricle (LV).
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Patch clamp studies of acid-sensitive K+ currents (TASK currents) at different embryonic agesFigure 3
Patch clamp studies of acid-sensitive K+ currents (TASK currents) at different embryonic ages. The background 
K+ currents were activated with a 375 ms depolarizing ramp from -100 mV to +50 mV from a holding potential of -40 mV in an 
elevated [K+]o (125 mM). A: representative recordings of background K+ currents in ED11 atrial myocytes and their pH sensi-
tivity. The pH is indicated next to each trace. B: The difference currents between pH 8.4 and pH 7.4 (blank column) and 
between pH 7.4 and pH 6.4(filled column) at -80 mV at different developmental ages as indicated under each column. The data 
were averaged from n = 9 (S14), 3 (ED5 ventricle), 4 (ED11V), and 6 (ED11A) cells.
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rectifying K+ current, IK1, in chick ED11 atrial and ven-
tricular myocytes. In these studies, normal Tyrode solu-
tion (S-1) was used and IK1 currents were identified as 100
μM Ba2+-sensitive currents (Figs. 5 and 6).

In ED11 atrial myocytes, there was very little inward cur-
rent that could be easily identified as IK1 at normal physi-
ological condition (Fig. 5A), while in ED11 ventricular
myocytes (Fig. 5B) a large portion of inward current
appeared to be due to IK1, having a steep inward rectifica-
tion at negative potentials. This qualitative assessment

was verified by the application of 100 μM Ba2+, which
blocked a small amount of inward current in the atrium
and a much larger amount in the ventricle (Fig. 5C). Ba2+-
sensitive currents in ED11 atrial and ventricular myocytes
at -120 mV are shown in Fig. 5D. At -120 mV, Ba2+-sensi-
tive current densities in ventricular myocytes (-19.4 ± 2.7
pA/pF, n = 10) were significantly larger than in atrial myo-
cytes (3.7 ± 1.5 pA/pF, n- = 4, p < 0.001). These data show
that in ED11 heart, IK1 in the ventricles is about 4-5 times
greater than in the atria.

Effect of anandamide, pH and Zn2+ on TASK-like currents of ED11 atrial myocytes in Cl- substituted solutionsFigure 4
Effect of anandamide, pH and Zn2+ on TASK-like currents of ED11 atrial myocytes in Cl- substituted solutions. 
A: I-V curves averaged from 6 cells showing the effects of pH and anandamide on background K+ currents in ED11 atrial myo-
cytes during a 2s depolarizing ramp from -100 to +50 mV. The cells were held at -40 mV and perfused with 140 mM K-aspar-
tate solution. Note TASK-like background K+ current had a pronounced inward rectification at pH 8.0. B: The enlarged I-V 
curves at positive potential. C: The summarized data (n = 6 cells) of the effects of pH and anandamide on TASK-like back-
ground K+ currents (at -80 mV). The background K+ currents at pH 6.4 (filled column), pH 8.0 (blank column) and pH 8.0 in the 
presence of 3 μM anandamide (back slashed column) are as indicated. The inset panel (a) of Fig. 4C shows pH- (blank column) 
and anandamide- (filled column) sensitive background K+ currents. The anandamide-sensitive currents account for 58% of 
TASK-like background K+ currents. D: Zn2+ had no effect on the TASK-like background K+ currents. The summarized data (n = 
11) of the effects of 100 μM Zn2+ on TASK-like background K+ currents in ED11 atrial myocytes as indicated. The inset panel b 
of Fig. 4D shows pH- (blank column) and Zn2+- (filled column) sensitive currents at -80 mV in ED11 atrial myocytes.
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Note that the apparent reversal potential of I-V curve (IK1,
Fig. 5C) was about -20 mV, much more positive than is
expected for the intra- and extra-cellular K+ concentrations
used in these experiments (S-1 and P-II, -80 mV). How-
ever, in 5 atrial cells replacement of Na+ with NMDG
shifted reversal potential of IK1 to -85 mV [data not
shown] and the mean current of IK1 was -1.27 ± 0.67 pA/
pF. Hence, there appears to be a large Na+-dependent
inward current in chick embryonic cardiac cells account-
ing for apparently small reversal potential seen in Figs. 5
and 6.

Anandamide has no effect on Ik1 current in ED11 
ventricular myocytes
To examine whether 3 μM anandamide modulates other
K+ channels, we compared the effects of barium and anad-
amide on current-voltage relationships of ED11 ventricu-

lar myocytes where both inwardly rectifying and delayed
rectifier K+ currents are present.

Current recordings and I-V relationships in ED11 ven-
tricular myocytes showed the activation of inwardly recti-
fying K+ current (IK1) at negative potentials and the
activation of delayed rectifier IK at positive potentials
(Figs. 6A and 6B). Anandamide (3 μM) had no effect on I-
V relationships, indicating that anandamide had no effect
on either IK1 or IK (Fig. 6B and 6C). On the other hand,
adding 100 μM Ba2+ significantly inhibited IK1 while leav-
ing IK unaffected (Fig. 6B). The currents at -80 mV in the
absence and presence of anandamide were -4.5 ± 1.1 and
-4.3 ± 0.9 pA/pF, respectively, and were not significantly
different, while barium inhibited a large current at this
potential in the same cells. Anandamide-sensitive K+ cur-
rent at -80 mV was 0.07 ± 0.48 pA/pF, while Ba2+-sensitive
current was 1.95 ± 0.86 pA/pF (Fig. 6C, n = 11). It is appar-

Inwardly rectifying K+ currents, IK1, in ED11 atrial and ventricular myocytesFigure 5
Inwardly rectifying K+ currents, IK1, in ED11 atrial and ventricular myocytes. Panel A and B are representative IK1 
current recordings from ED11 atrial and ventricular myocytes. The currents were evoked by depolarizing voltage steps 
between -120 and 0 mV with an interval of +10 mV from a holding potential of -40 mV in normal Tyrode solution. C: I-V rela-
tionships of IK1 in ED11 atrial and ventricular myocytes in the presence (black triangle and square) and absence (open triangle 
and square) of 100 μM Ba2+. The data are presented as Mean ± SE and are the average from 9 ED11 atrial myocytes, and 10 
ventricular myocytes. D: Comparison of IK1 current densities of ED11 atrial and ventricular myocytes at -120 mV. The IK1 cur-
rent densities were calculated as 100 μM Ba2+ sensitive K+ currents. At -120 mV, the IK1 current density in ED11 atrial myo-
cytes is about 5 times less than in ventricular myocytes.
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ent from these results that anandamide has no effect on
inward rectifier, IK1.

Discussion
In the present study, we demonstrate that the functional
expression of an acid-sensitive 2P domain K+ channel,
TASK-1, is developmentally regulated in chick embryonic
heart. TASK-1 is initially expressed throughout the myo-
cardium in the early heart tube. Expression of TASK-1
remained in the atria, but was down-regulated later in the

ventricles. TASK-3 is consistently present at all chick heart
developmental ages. Consistent with expression studies,
TASK-1 currents are present in tubular heart, but the cur-
rent densities are the highest later in the developing atria.
In contrast, IK1 has 4-5 times lesser current density in
ED11 atrial myocytes than in ED11 ventricular myocytes
that have only small TASK-1 currents. Our electrophysio-
logical and TASK-1 mRNA expression data clearly demon-
strate the presence of TASK-1 channels in native
embryonic cardiac myocytes and its contribution to back-

Anandamide has no effects on inwardly rectifying K+ current IK1 and delayed rectifier K+ current IKFigure 6
Anandamide has no effects on inwardly rectifying K+ current IK1 and delayed rectifier K+ current IK. A: typical 
current recordings from the same cell in Tyrode (on top left panel), in the presence of 3 μM Anandamide (middle), and in the 
presence of both anandamide and 100 μM Ba2+ (bottom). The K+ currents were evoked by applying 400 ms depolarizing steps 
from -120 to +50 mV with an interval of 10 mV from a holding potential of -40 mV. B. I-V relationships before (open square), 
after addition of 3 μM anandamide (black square), and Ba2+ and anandamide together (black triangle). The asterisks indicate sig-
nificance. The data were averaged from 5 cells. C: Summarized data (n = 11) of inwardly rectifying K+ currents at -80 mV and 
the effects of anandamide and Ba2+. The horizontal bar indicates the drug administration. The blank column is the control in 
Tyrode, anandamide alone (black column), and Ba2+ and anandamide together (column with back slash). Anandamide had no 
effect on K+ currents in ED11 ventricular myocytes. The inset of Fig. 6C summarizes the anandamide and Ba2+ sensitive cur-
rents. The data were presented as mean ± SE from the same cells (n = 11).
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ground K+ conductance. The developmental regulation of
TASK-1 expression suggests that TASK-1 is important both
in heart development and in regulating membrane poten-
tials.

Developmental expression and regulation of TASK-1 
channel in chick embryonic heart
The distribution of TASK-1 during heart development
may imply its functional role. Compared to TASK-3,
TASK-1 is ubiquitously expressed earlier in heart develop-
ment. TASK-1 expression is down-regulated later in devel-
opment in ventricle but is maintained in later
developmental stages in atria. On the other hand, TASK-3
channels are more uniformly expressed in all chick heart
developmental stages.

The distinguishing characteristics of TASK channels
(mainly TASK-1 and TASK-3) are their sensitivity to exter-
nal pH. Here we showed an acid-sensitive background K+

current in the developing chicken heart having similar
characteristics that are consistent with TASK-1 channels
(Fig. 3A). However, in the symmetrical K+ and chloride-
free solutions, I-V relations of TASK currents show strong
inward rectification, closely resembling the I-V relation-
ships of TASK-1 single channel conductance and TASK-1/
TASK-3 channels [16]. TASK currents also become bigger
at negative potentials. These data suggest the possibility
that TASK-1 current is masked by a Cl- current when meas-
ured in symmetrical KCl solutions.

The difference in pH sensitivity of TASK-1 and TASK-3
(pKa of 7.3 and 6.7 respectively) has been successfully
used to distinguish these channels [16]. In addition, anan-
damide and Zn2+ have been used as relatively selective
inhibitors of cloned TASK-1 and TASK-3 currents [17,18].
Although both anandamide and zinc are endogenous ion
channel modulators and at higher concentrations they
could inhibit other K2P channels, the concentrations used
here are to selectively inhibit TASK-1 or TASK-3 channels.
Therefore, TASK currents in chick embryonic heart that
show the sensitivity to both anadamide and external pro-
tons are mostly due to TASK-1 channels.

Anandamide-sensitive TASK-1 currents comprise only
about two-thirds of the acid-sensitive background K+ cur-
rents in the ED11 atrium. One possibility is because the
inhibition of TASK-1 by anandamide is less effective at
negative potentials (Fig. 4). Still, we could not preemp-
tively exclude the contribution of other acid sensitive K2P
channels. Among the five members of TASK family, TASK-
5 is a non-functional channel [21] and TASK-4 actually
belongs to the TALK subfamily and is activated at alkaline
pH (>pH 8.0). TASK-2 is strongly expressed in epithelial
tissues, particular in the kidney to regulate cell volume
but, is only weakly expressed in the adult heart [22].

Therefore, the contribution from other acid sensitive K2P
channels should be relatively small.

It is surprising that although TASK-3 mRNA was present at
a relatively higher level and was expressed equally at all
developmental stages (Fig. 1B) its contribution to TASK
currents is quite small under our experimental conditions
(Fig. 3B). 100 μM Zn2+ does not induce a significant inhi-
bition of TASK currents in chick ED11 atrial myocytes
(Fig. 4C). One possible explanation is that TASK-3 might
form functional heterodimers with TASK-1 in native
embryonic cardiac myocytes because heterologous TASK-
1/TASK-3 channel has an intermediate pH sensitivity and
low sensitivity to ruthenium red and Zn2+ (16-17). In fact,
in TASK-1 knockout mice, TASK currents, mostly contrib-
uted by homodimers of TASK-3 channels, are greatly
inhibited by 100 μM Zn2+ in cerebellar granule neurons
[23]. Functional TASK-1/TASK-3 heterodimers have been
reported in cerebellar granule cells [16,24].

Possible functional role of TASK-1 in embryonic cardiac 
excitability
In the early tubular heart, all myocytes exhibit spontane-
ous electrical activity similar to adult sinoatrial node cells
and have a relatively depolarized maximum diastolic
potential. The spontaneous activity or automaticity of the
early tubular heart is a consequence of the less negative
maximum diastolic potential that is due to the lack of IK1,
higher PNa/PK permeability, and higher membrane resist-
ance of embryonic myocytes which are similar to SA nodal
cells in adult hearts [11]. With a higher membrane resist-
ance, a small current such as TASK-1 current could play a
significant role in modulating embryonic cardiac action
potentials.

In chick heart development, a significant hyperpolarizing
change in RMP in ventricular myocytes occurs between
ED5 and ED7 [25]. In the developing chick atria, RMP
does not change significantly between ED9 and ED19,
and atria have a more depolarized RMP (-63 mV) com-
pared to the ventricle (-80 mV) [26]. Data shown here
indicates that TASK-1 expression is down-regulated dur-
ing the period when the RMP becomes more hyperpolar-
ized and IK1 is evidently present in developing chick
ventricle. This indicates that IK1 is a dominant contributor
to RMP in ventricle after about ED5. In embryonic atria
where there is a lack of IK1, temperature-sensitive TREK
channels have been shown to play a very important role
in setting RMP [27]. Thus, TASK-1 channels are unlikely to
play a dominant role in setting RMP although they are
maintained in ED11 atrial myocytes. However, unlike
TREK channels, TASK-1 channels do not have strong tem-
perature sensitivity [28]. During avian heart development,
the temperature environment may vary significantly.
Therefore when temperature dependent inactivation of
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TREK channels occurs and there is a lack of the normally
dominant background K+ current, IK1, TASK-1 channels
remain active and could play a role in maintaining the sta-
bility of membrane potentials.

In general, TASK-1 may contribute to setting the maxi-
mum diastolic potential, to the repolarization of action
potentials, and to shortening the duration of action
potential as has been shown for TASK-1 activity in adult
rat and mouse ventricular myocytes [8,29].

Conclusion
In this study, we were able to demonstrate the functional
expression of TASK-1 in the early tubular heart and in the
embryonic atrial myocytes. The expression of TASK-1 is
developmentally regulated in chick embryonic heart.
Functional expression of TASK-1 is likely to be a contrib-
utor to background membrane conductance in cardiac
myocytes from early tubular heart to embryonic atrial
myocytes.
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