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Abstract: According to its characteristics, biochar originating originating from biomass is accepted as
a multifunctional carbon material that supports a wide range of applications. With the successfully
used in reducing nitrate and adsorbing ammonium, the mechanism of biochar for nitrogen fixation in
long-term brought increasing attention. However, there is a lack of analysis of the NH4

+-N adsorption
capacity of biochar after aging treatments. In this study, four kinds of acid and oxidation treatments
were used to simulate biochar aging conditions to determine the adsorption of NH4

+-N by biochar
under acidic aging conditions. According to the results, acid-aged biochar demonstrated an enhanced
maximum NH4

+-N adsorption capacity of peanut shell biochar (PBC) from 24.58 to 123.28 mg·g−1

after a H2O2 modification. After the characteristic analysis, the acid aging treatments, unlike normal
chemical modification methods, did not significantly change the chemical properties of the biochar,
and the functional groups and chemical bonds on the biochar surface were quite similar before and
after the acid aging process. The increased NH4

+-N sorption ability was mainly related to physical
property changes, such as increasing surface area and porosity. During the NH4

+ sorption process,
the N-containing functional groups on the biochar surface changed from pyrrolic nitrogen to pyridinic
nitrogen, which showed that the adsorption on the surface of the aged biochar was mainly chemical
adsorption due to the combination of π-π bonds in the sp2 hybrid orbital and a hydrogen bonding
effect. Therefore, this research establishes a theoretical basis for the agricultural use of aged biochar.

Keywords: biochar aging; NH4
+-N adsorption; characterization; adsorption mechanism

1. Introduction

Excessive fertilization is one of the main reasons for low nutrient use efficiency, which may
lead to the high risk of non-point source pollution, especially in intensive vegetable cultivation
areas [1,2]. In China, the yield of commercial vegetables mostly depends on the application of a high
quantity of nitrogen fertilizer. Furthermore, subsidies for artificial fertilizers from the government
encourage farmers to use greater amounts of fertilizers than needed to obtain high crop output [3].
Long-term fertilization application, particularly the overuse of nitrogen fertilizers, has caused nitrogen
discharge from farmland into underground water and the aquatic ecological system, which has been
confirmed to be the main reason for eutrophication and has further resulted in both soil and water
quality deterioration. Nitrogen leaching not only leads to the loss of soil fertility but also causes damage
to the environment and human health [4–6]. When the rate of nitrogen fertilizer application exceeds the
nitrogen requirement of a plant for a long time, it will cause the accumulation of ammonium nitrogen
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in the soil, thereby accelerating soil acidification. The mechanism of soil acidification caused by the
application of nitrogen fertilizer is very complicated, and acidification caused by the nitrification process
of ammonium nitrogen is one of the primary reasons [6,7]. The available literature mainly focuses on
adsorbing nitrate and reducing nitrate leaching in biochar amended soils, but little research has focused
on ammonium nitrogen adsorption. Therefore, it is necessary to improve the utilization capacity of
ammonium nitrogen and reduce its loss by studying the adsorption mechanism of ammonium nitrogen.

Biochar is a carbon-rich material that originates from agricultural waste biomass and is produced
by pyrolysis under oxygen-limited conditions. As a stable and attractive long-term carbon storage
material, biochar has been used as an unconventional and environmentally friendly soil remediation
agent to reduce pollutants from nutrients, especially nitrogen leaching, because of its highly porous
structure and good adsorption capacity [8–10]. The characteristics of biochar are mainly determined
by the raw materials and environmental factors, including temperature, heating rate, reaction time,
and pressure during the preparation of biochar [11]. The specific surface area of biochar is affected by
factors such as material, pyrolysis temperature, and pyrolysis method [11,12]. Generally, the specific
surface area of biochar increases with the increase of cracking temperature. The pore size of biochar
is related to the environmental pressure: “The larger the pressure the larger the pore size” [13].
The total number of functional groups and the density of functional groups of biochar decrease with
the increase of the pyrolysis temperature and the number of acidic groups decreases while the number
of basic groups increases [14]. The equipment and preparation technical conditions will also affect
the characteristics of the prepared biochar. Studies have shown that when the pyrolysis temperature
exceeds 400 ◦C, a relatively uniform microporous structure appears on the biochar surface, which is
the reason why biochar has great potential for ammonium nitrogen adsorption. As the carbonization
temperature increases, the isotherm adsorption curve of NH4

+-N changes from linear to nonlinear.
The adsorption mechanism gradually changes from partitioning to surface adsorption, thus increasing
the amount of ammonium nitrogen adsorption accordingly [15]. The element composition of biochar
ash mainly depends on its raw materials and pyrolysis time. Studies have found that plant-derived
biochar prepared at the same temperature has a larger specific surface area than animal-derived biochar,
but the ash content is significantly lower than that of animal-derived biochar [16]. The biochar surface,
which is carbonized at a certain temperature, contains many oxygen-containing functional groups,
such as carboxyl, carbonyl, phenolic hydroxyl, and lactone groups [11,17]. The above composition
indicates that biochar has a good adsorption capacity, especially for cations. Additionally, biochar has
a large number of negative charges and a high cation exchange capacity (CEC) [18], which may lead
to a charge adsorption of NH4

+, which has a positive charge [19]. In the research of the preparation
technology improvement of biochar, it is found that the physical and chemical properties, equipment
productivity, and biocarbonization rate of biochar at different carbonization temperatures can be
affected by the adjustment of factors such as inlet rate and furnace pressure [20].

Fresh biochar has shown effectiveness in reducing the pollutant concentration by increasing the
availability of pH-dependent cation exchange in soil, such as for heavy metal-ion pollution [21,22]
and excessive nutrients [10,23]. Due to the persistence of its aromatic cluster, biochar presents stable
characteristics and does not quickly decompose in soil. However, the ash of agricultural waste contains
high concentrations of nutrients such as Na, Ca, and Mg, [24] and biochar with a high ash content
may bring a range of inorganic compounds into soil, which may lead to more serious environmental
pollution [10]. Because of the high alkalinity of an agricultural residue powder (normally between
8–13.5), fresh biochar is not suitable for application to alkaline soil. Therefore, modified biochar
contained less ash and is necessary to stabilize the pH of alkaline farmland soil.

During the residence of biochar in soil, the biochar becomes oxidized by adding acidic groups to
its surface over time [11,25]. Long-term application in soil may cause certain changes in the physical
and chemical properties of biochar, and some of its beneficial properties may be lost over time. It is
necessary to assess the long-term effects of the biochar aging process and the competitive interaction
between biochar and other elements because the stability of biochar is the most decisive factor of carbon
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sequestration in soil [2]. Previous studies have found that natural processes, such as wind, rain erosion,
freezing and thawing cycle, will change the physical structure of biochar with a long-term residence
time in soil. Furthermore, the surface of biochar will gradually undergo oxidation reactions and its
pH value, surface chemical composition, and non-aromatic hydrocarbon structure will change [26,27].
Kumar et al. [21] explored the physical and chemical property changes of biochar after 180-day planted
plot experiments. The study showed that biochar surface oxidation occurred rapidly and significantly
in the early application stage and then later remained stabilized in soil [21,28].

Artificially accelerated simulated aging can increase the oxygen content and CEC of the biochar
surface, but the type of biochar and the type of pollutant have different effects on the adsorption capacity
of biochar before and after aging. In farmland, due to precipitation and nitrogen fertilization, biochar
will be acidified by nutrient leaching and acid rainfall after being applied in soil [29]. As a kind of
common adsorbent, biochar has been widely used in soil remediation to reduce nutrient loss, especially
reducing nitrate and ammonium leaching in underground water [27,30,31]. However, the adsorption
effect of biochar after aging remains unknown, and previous research on aged biochar is scattered
and still unsystematic. The aim of this study was to establish a theoretical reference for ammonium-N
sorption behaviors by an acid and oxidation aging of biochar. In this article, peanut shells were used
as the raw material, with four kinds of normal acid-treated biochar and a water-washed control group
to imitate the aging and oxidization progress of biochar. Then, the adsorption principle of these
acid/oxidation-treated biochar in an aqueous solution was detected.

2. Materials and Methods

2.1. Production of Biochar

Peanut shells were used as the biomass materials after smashing. The smashed shells were
oven-dried at 80 ◦C until they reached a constant weight and sifted with a 100-mesh sieve to produce
biochar by a slow pyrolysis procedure under N2 protection. The pyrolysis procedure followed a slow
heating rate of 8 ◦C/min until reaching the final pyrolysis temperature of approximately 500 ◦C that
was kept for 2 h. The peanut shell biochar was labelled PBC. The carbon content of PBC was 80.7%,
with a high ash content of 16.2%, and a pH of 9.92 (carbon:water was 1:20 (g:mL). Biochar was added
to deionized (DI) water and shaken at 150 rpm for 1.5 h. Then, it was allowed to stand for 10 min.
The pH values were measured with a pH meter (Delta 320, Mettler Toledo, Shanghai, China) [24].
To simulate the acid and oxidization conditions in over-fertilized farmland [28], treatments with
four kinds of modifiers (deionized water (18.25 MΩ/cm, produced by Millipore, Billerica, MA, USA),
2 M HCl, 2 M H2SO4, and 2 M H2O2 (Macklin, Shanghai, China) were carried out as a kind of
chemical aging method to modify the biochar. The biochar modification was performed with a Soxhlet
extraction apparatus in which 200 cm3 of liquid (the modifiers above) was added into a 250 cm3

round-bottom Pyrex flask with 10 g PBC and reacted at room temperature with a water condenser
for 24 h. The modified biochars were washed with DI water to pH = 7 ± 0.5 and dried in an oven at
105 ◦C. The four modified biochars were named H2O-PBC, HCl-PBC, H2SO4-PBC, and H2O2-PBC.

2.2. Physical-Chemical Characterization Analysis of the Biochar

2.2.1. Morphological, Surface, and Pore Structure Analysis

The microstructure and the surface topography of the carbon materials were characterized and
analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). A small
amount of the sample powder was spread on conductive tape, and gold was sprayed on to increase the
conductivity of the carbon material. This test used a SU8100 scanning electron microscope, (Hitachi,
Tokyo, Japan).

The textural properties of biochar were obtained by nitrogen and carbon dioxide adsorption/

desorption tests using a specific surface tester (ASAP 2020 PLUS HD88, Mike Instruments, Norcross,
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GA, USA). Due to the particularity of biochar, the microporous structure of carbon material has higher
adsorption selectivity towards CO2 than N2 when it has a high ash content [32]. Before testing, to reduce
the adverse impact of the ash content, the test materials were degassed at 180–220 ◦C for over 24 h.
Therefore, in this experiment, the test temperature of the CO2 adsorption and desorption experiment
was 273 K, and the pressure range was 0–1.07 bar, which was used to test the micropore adsorption
performance of the carbon materials. The specific surface area and pore volume of the micropores
were calculated by density functional theory (DFT) [32]. The other pore structures were measured by
the N2 gas method (relative gas pressure P/P0 was 0.98) and calculated by the Barrett–Joyner–Halenda
(BJH) method [12].

The mineral composition of jadeite was measured by X-ray diffraction (XRD, X‘Pert-ProMPD,
PANalytical, Almelo, the Netherlands). The surface charge and point of zero charge (pHPZC) of
all adsorbents were measured through a potentiometric titration method by an automatic titrator
(Mettler Toledo T70, Mettler Toledo, Shanghai, China) according to the method reported by Noh and
Schwarz [33].

2.2.2. Functional Groups’ Analysis

Fourier transform infrared (FTIR) spectroscopy was used to observe the change in functional
groups on the various modified biochar surfaces before and after ammonium adsorption. The FTIR
spectra of the samples were recorded from 4000 to 400 cm−1 through an FTIR spectrometer (Nicolet iS50,
Thermo Fisher Scientific, Madison, WI, USA). In addition, the elemental compositions of all samples
were characterized through an elemental analyzer (Vario EL cube, Elementar, Langenselbold, Germany),
and C, H, O, N, and S were determined to correlate with the observed functional groups.

X-ray photoelectronic spectroscopy (XPS, ULVCA-PHI PHI 5000 VersaProbe II, Chigasaki,
Kanagawa, Japan) was used to determine the elemental compositions and functional groups on the
surface of all samples. The core level spectra were analyzed using CasaXPS 2.3 software (Version 2.3.15,
CasaXPS software Ltd., Manchester, UK).

2.3. Batch Sorption Experiments

(NH4)2SO4 with a concentration of 1000 mgN/L was used as a stock solution and stored in a 4 ◦C
refrigerator; in the adsorption test, the stock solution was diluted with deionized water. All samples
were filtered (0.45-µm filter) to ensure no interference effects for the NH4

+ molecule and then analyzed
by a continuous flow chemical analyzer (AA3, Bran+Luebbe Corp, Hamburg, Germany). According to
the preliminary experiments, the results showed that at pH values between 6–8, PBC with a mass
from 0.1 to 1 g could remove up to nearly 80% NH4

+-N from a biochar-nutrient mixture solution with
1000 mg/L NH4

+. PBC values greater than 1 g showed no additional adsorption after 20 h of shaking,
thus, the adsorbed amount reached the maximum. Therefore, subsequent batch sorption experiments
were investigated at pH = 7 ± 0.5 in which 100 mg of adsorbent was added to 50 mL of absorption
solution (with a concentration of 20 to 1000 mg N/L) and shaken at 200 rpm for 24 h.

The equilibrium adsorption amount of NH4
+-N per unit mass of sorbent was calculated by the

following equation:

Qe =
(C0 −Ce) ∗ V

m
(1)

C0 and Ce (mg/L) are the initial and equilibrium concentrations of NH4
+-N in solution, respectively,

Qe (mg/g) is the adsorbance of NH4
+-N at equilibrium, V (L) is the volume of the solution, and m (g) is

the mass of biochar.
A concentration of 100 mg N/L (NH4)2SO4 solution was selected for investigating the adsorption

kinetics at room temperature (25 ◦C) under pH = 7 ± 0.5. Due to the adsorption conditions, 100 mg
biochar was added to 50 mL adsorbent, and the samples were measured after 5, 10, 20, 30, 60, 90, 120,
180, 360, 720, 1080, and 1440 min at 200 rpm.
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The equilibrium adsorption amount of NH4
+-N per unit mass of sorbent was calculated using the

following equation:

Qt =
(C0 −Ct) ∗ V

m
(2)

Qt (mg/g) is the amount of NH4
+ sorbed at a given time interval (t). C0 (mg/L) is the initial NH4

+

concentration. Ct (mg/L) is the NH4
+ concentration in solution at time t. V (L) is the volume of solution

and m (g) is the mass of biochar.

2.4. Modeling the Adsorption Data

According to previous studies of adsorption isotherms, it is convenient to optimize the use of
adsorbents by modelling the interaction between adsorbates and adsorbent materials during the
adsorption process [11,34]. Therefore, adsorption kinetics were used to discover the mechanism of
the thermodynamic and dynamic properties of ammonium-ion adsorption on biochar [35]. In this
article, Langmuir, Freundlich, pseudo-first-order, and pseudo-second-order kinetics models and
the Webber–Morris (diffusion) equation [36,37] were used to evaluate the ammonium-ion sorption
phenomenon on the different acid-modified biochar samples.

2.4.1. Adsorption Isotherms

The Langmuir equation can be expressed as:

Qe =
bCeQm

1 + bCe
(3)

The Freundlich equation can be expressed as:

Qe = KFCe
1/n (4)

where Qe (mg·g−1) is the amount of solute adsorbed per unit weight of sorbent, Ce (mg·L−1) is
the equilibrium concentration of NH4

+ in the bulk solution after adsorption, Qm (mg·g−1) is the
monolayer adsorption capacity, b (mg·L−1) is the constant related to the affinity between the adsorbate
and adsorbent, KF (mg(1 − n)

·Ln
·g−1) is the constant related to the relative adsorption capacity of the

adsorbent, and 1/n is the constant related to the adsorption intensity [38,39].

2.4.2. Adsorption Kinetics

For the pseudo-first-order model (Lagergren model) and pseudo-second-order model,
the following expressions were used [40]:

Qt = Qe

(
1− e

−k1t
2.303

)
(5)

t
Qt

=
1

k2Qe
2 +

t
Qe

=
1
v0

+
t

Qe
(6)

where Qe (mg·g−1) is the adsorbed amount of NH4
+ at equilibrium, Qt (mg·g−1) is the amount of

NH4
+ sorbed at time t, k1 (min−1) and k2 (min−1) are the rate constants of pseudo-first-order and

pseudo-second-order adsorption, respectively, and v0 (g·mg−1
·min−1) is the initial adsorption rate.

The following equation was used for the intraparticle model [41]:

Qt = Kd
1/2 + c (7)
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where Qt (mg·g−1) is the amount of NH4
+ sorbed at time t, Kd (mg/g·min1/2) is the intraparticle diffusion

rate constant and c (mg·g−1) is the boundary layer diffusion constant. The graphical plots of the linear
relationship between Qt and t1/2 show Kd as the slope and c as the intercept.

3. Results and Discussion

3.1. Characterization of Biochar

3.1.1. Specific Surface Area, Pore Structure, and Elemental Content Analysis

According to the results, aging treatments could greatly enhance the fixed carbon of peanut shell
biochar from 42.36% to 71.52% (Table 1). Moreover, the ash contents of PBC decreased to 10% from
over 30% after acid and oxidation aging treatments. Most ash contents exist as soluble salts, which are
easily dissolved in water [42], and the ash removal efficiency of biochar under an oxidation treatment
(H2O2) is higher than that under an acid treatment and water control group. The main reason for the
high pH of biochar is the alkaline substances that form by the mineral elements of ash dissolving in
water [14,43]. The pH of the zero point of PBC (pHPZC) was reduced by removing the ash from the
biochar surface. Due to the particularity of biochar, the microporous structure of the carbon material
has a higher adsorption selectivity toward CO2 than N2 when it has a high ash content [44]. Therefore,
the surface area and pore volume of the micropores were measured with the CO2 gas method and
calculated by the DFT method, while the other pore structures were measured by the N2 gas method
and calculated by the BJH method [41].

Table 1. Physiochemical properties of the original and acid-modified biochar.

Samples
Ash Content Volatile Content Water Content Fixed Carbon pHpzc

wt.% wt.% wt.% wt.% pH Unit

PBC 32.54 24.36 0.74 42.36 9.20
H2O-PBC 11.76 30.30 0.98 56.96 8.60
HCl-PBC 8.52 27.77 0.78 62.93 5.00

H2O2-PBC 6.83 21.00 0.65 71.52 7.20
H2SO4-PBC 7.42 24.88 0.82 66.88 6.90

In this study, all of the biochar samples had highly microporous structures, and the surface area and
pore volume of the micropores were much higher than those of the mesopores and macropores (Figure 1
and Table S1). Peanut shell biochar materials do not contain only micropores of uniform size. Instead,
the biochar materials contain a large number of irregular mesopores and macropore structures that are
distributed in addition to micropores. In general, the acid and oxidation treatments could increase
the surface area and pore volume of biochar pore structures, especially for the biochar micropores.
However, in the biochar samples treated with sulfuric acid and hydrochloric acid, the surface area
and pore volume of the mesoporous and macroporous structure have been decreased because the
mesopores and macropores were destroyed by acid treatment. Meanwhile, the microporous structures
of biochar were barely changed under the overly acidic treatment process. This result is in accordance
with most research results [12,45]. Tang and Zhu mentioned that carbon-rich materials with highly
porous states effectively capture nitrogen and phosphate ions and exhibit fast adsorption rates [23,46].
Therefore, compared with the original biochar, the acid- and oxidation-aged biochar should have more
advantages in the adsorption process.
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inside of the pore was cleaned more thoroughly and the pore surface was smoother after the 
hydrogen peroxide treatment (Figure 2E). 
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Figure 1. The gas adsorption, desorption isotherms and the distribution curves of the biochar pore size.
((A,C,E) were adsorbed by CO2 and (B,D,F) were adsorbed by N2).

The SEM surface morphology analysis of the PBC and water- and acid-washed biochars is
illustrated in Figure 2A–E, and it is difficult to clearly observe the pore structure on the surface of
unmodified PBC. Combined with the results in Table 1, the PBC surface was covered with a large
amount of ash, and the PBC structure was mostly irregular and amorphous (Figure 2A). Water washing
biochar (H2O-PBC) could significantly reduce the ash content and pyrolysis by-products on the PBC
surface so that some parts of the original porous structure of the biochar could be exposed (Figure 2B).
Although the 2 M hydrochloric acid and sulfuric acid treatments could effectively remove the ash
on the biochar surface (Table 1), the SEM images showed that the HCl and H2SO4 treatment could
cause erosion of the biochar material (Figure 2C,D). Furthermore, although the specific surface area of
the micropores did not change much, the original and regular pore structures disappeared after the
treatment (Figure 2C,D). In contrast, as a kind of weakly acidic oxidant, hydrogen peroxide not only
had a good effect on removing ash content from the biochar surface but also did not cause significant
damage to the pore channel structure. Compared with that after the water treatment, the inside of the
pore was cleaned more thoroughly and the pore surface was smoother after the hydrogen peroxide
treatment (Figure 2E).
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Figure 2. Scanning electron microscopy images of the five biochar samples. (A–E) represent the images
for PBC, H2O-PBC, HCl-PBC, H2SO4-PBC and H2O2-PBC, respectively.

The elemental analysis results (Tables S2 and S3) of the biochar showed that the C content
in the five kinds of biochar all exceeded 60%, which was higher than that of general commercial
biochar [16]. In previous research, acid washing, especially strongly oxidizing acid washing, can
import oxygen-containing functional groups to biochar, thereby increasing the percentage of H/C and
O/C [12,28]. The relative elemental content ratio (H/C, O/C) of biochar can be used to characterize
the aromaticity, hydrophilicity, and polarity of carbon materials. Among them, the smaller H/C is
the stronger the aromaticity and hydrophilicity of the material; in contrast, the higher the O/C value
is the greater the polarity of biochar [47]. The results of Table S3 show that, compared with the
unmodified PBC, the aromaticity and hydrophilicity of the modified PBC increased slightly and the
polarity decreased overall.

3.1.2. Surface Functional Group Analysis and X-ray Crystal Structure Analysis

An XRD pattern analysis of biochar (Figure 3) shows that there are significant bulges in the
diffraction pattern from 15◦ to 30◦ before and after the acidification of PBC, and this region represents
amorphous organic components [20], indicating that the amorphous organic components on the biochar
surface did not change significantly before and after the water and acid treatments. The surface of
both the PBC- and acid-treated biochar samples contained a few inorganic components, such as silicon
oxide and calcium and magnesium carbonates. Compared with PBC, the acid-treated biochar samples
exhibited a more stable crystal structure in which the inorganic substances changed to more stable
crystals and their oxides. While some studies have found that different crystal components indicate
the different biomaterials in biochar [19,21], however, KCl, SiO2 and aluminium oxide hydroxide
crystals often exist in straw and peanut shell biochar [48]. Furthermore, an acid treatment can stabilize
the chemical structure of the biochar carbon skeleton [49], and the stable structure of carbon-based
materials often represents better adsorption capability of nutrients from wastewater [37], which is
consistent with the results in this research.
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Figure 4a shows the infrared spectra of the five kinds of biochar. As shown in the figure,
the infrared absorption peaks of the five kinds of biochar before and after the aging modification are
roughly similar. The absorption peak at 3400 cm−1 represents the associated hydroxyl (O–H) stretching
vibration peak or water molecules in the sample. Carbohydrates are the main source of the hydroxyl
group in the biomass. Moreover, the absorption peak at 1628 cm−1 is an asymmetric stretching vibration
of a C–O or C=O group on a benzene ring. The absorption peak at 1383 cm-1 corresponds to the
in-plane flexural vibration of the aromatic –CH3 group on a benzene ring, and 910–650 cm−1 is the
benzene ring substitution region, which represents the out-of-plane bending vibration of a C–H bond
on the benzene ring. The infrared analysis results show that the oxidative modification in this paper
did not change the functional group of the biochar. Although the absorption peak of the hydroxyl
group changed to some extent, it may be due to the interference of water molecules.Materials 2020, 13, 2270 10 of 19 
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The FTIR analysis of NH4
+-N adsorbed PBC (Figure 4) illustrated that the main absorption

peaks of the FTIR spectrum before and after adsorption changed greatly, and the changed absorption
peaks mainly appeared at 3430, 2000, 1628, and 1383 cm−1, which corresponded to the characteristic
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peaks of the stretching vibration of the hydroxyl, carboxyl, and amide groups on the biochar surface,
respectively [17]. Therefore, the sorption of NH4

+-N by biochar could be mainly caused by the
hydroxyl and carboxyl groups on the carbon surface, which could form coordination bonds with the
nitrogen atom. At the same time, in the infrared spectrum, the absorption peaks between 1000 and
650 cm−1 are the combined vibration of benzene ring substituents on the biochar surface. The dramatic
change before adsorption showed that NH4

+-N sorption by the biochar occurred through electrostatic
induction or hydrogen bonding on the carbon surface, and nitrogen atoms were adsorbed to form
amino groups in a manner that the alkyl group on the benzene ring structure was substituted.

To further determine the changes in functional groups and chemical bonds on the biochar surface,
XPS was used to verify the chemical composition and the presence of elements. From the full-spectrum
XPS scan in Figure S1, the PBC and aged PBCs were mainly composed of carbon (combined energy of
approximately 285 eV), oxygen (combined energy of approximately 400 eV), and oxygen (combined
energy of approximately 530 eV) [14]. Through a peak-differentiation-imitating analysis of C 1s, the C of
aged biochar can be clearly divided into four forms. The characteristic peak at 284.5 eV corresponded to
the functional groups CC, CH, and C=C hybridized to sp2 and sp3. The C bond in the form of a double
bond mainly represents the graphitized structure of the carbon material, and the C of the single bond
represents the helical structure of the aromatic carbon and benzene rings. The characteristic peak at
285.4 eV corresponds to the C–O functional group belonging to alcohols and phenols, the characteristic
peak at 286.4 eV corresponds to the C=O functional group in the carbonyl group, and the characteristic
peak at 289 eV corresponds to the O–C=O functional group in the ester group.

The percentage of oxygen-containing functional groups in the peak area was calculated to obtain
semi-quantitative analysis results of various functional groups on the biochar surface (Table S4).
In general, the biochar surface contains massive oxygen-containing functional groups, and oxidative
modification increased the percentage of oxygen-containing functional groups on the biochar surface
in all C-containing functional groups. However, the analysis of the oxygen spectrum found that there
was no specific advantageous O functional group, and the oxidative modification did not significantly
increase the O–H functional group content on the biochar surface. This result was mutually verified
with the FTIR analysis results above, and it could be indicated that the change in the hydroxyl (O–H)
stretching vibration peak in the infrared spectrum was mainly affected by the water molecules in the
biochar. The presence of a large number of oxygen-containing functional groups on the biochar surface
(C–O, C=O, and O–H) could not only improve the hydrophilicity of the material on the biochar surface
but also increase the variety of charge on the aged biochar surface, thus enhancing their ability to
adsorb ions in water and soil.

According to the peak-separation results before and after NH4
+-N adsorption, the calculation

results of the percentage of N-containing functional groups showed that they changed greatly on the
PBC surface after adsorption (Figure 5). More specifically, the PBC and aged PBCs contained two kinds
of N-functional groups, pyridinic-N and pyrrolic-N, respectively, and most of the N-functional groups
existed in the form of pyrrole before N adsorption. The main N-containing functional groups on the
PBC surface changed from pyrrolic nitrogen to pyridinic nitrogen, and there were still a small number
of nitrate N groups on the surface of H2SO4-PBC. The nitrogen content of the aged biochar increased
significantly after NH4

+-N adsorption. This shows that the NH4
+-N adsorption mechanism of the

oxidation-aged biochar was mainly chemical adsorption, and the π-π bond in the sp2 hybrid orbital
participated in the adsorption process.

In contrast to the variation in peak position and peak area of C and O (Figures S2 and S3), the peak
positions showed no significant change, but the peak area of O-containing functional groups decreased
dramatically after NH4

+-N adsorption. Thus, it could be proven that the adsorption processes of
NH4

+-N on acid-aged biochar consumed the oxygen-containing functional groups on the biochar
surface, which combined with the chemical bonds, hydrogen bonds, and π-π bonds through the
chemical adsorption process. This result agrees with the EDS analysis results (Figure S4), and the N
distribution areas on the biochar surface greatly coincide with the O areas after NH4

+-N adsorption.
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The whole adsorption process of acid-aged biochar also included physical adsorption, including
ionic interactions.
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3.2. Adsorption Isotherm

The adsorption data were fitted with the Langmuir and Freundlich models for studying the
NH4

+-N sorption isotherms on the biochar. The fitting curves are clarified in Figure 6, and the
corresponding parameters are listed in Table 2. Depending on the correlation coefficient (R2), all sorption
behaviours of NH4

+-N on the five kinds of biochar were fitted better by the Langmuir equation
(RL

2 = 0.986~0.993) than by the Freundlich equation (RF
2 = 0.934~0.988). On the theoretical basis of the

Langmuir model, which represents monolayer adsorption, better fitting results suggested that NH4
+-N

adsorption was proceeded by monolayer chemisorption within the adsorbents [37]. The maximum
capacity of NH4

+-N sorption with H2O2-PBC could be calculated as 123.227 mg·g−1 (Qm), which was a
great improvement on the sorption ability of PBC for NH4

+-N (24.575). Compared to other relevant
study results of ammonium sorption, most biomass-based biochar cannot provide high uptake capacity
in acidic or neutral environments [16]. More specifically, the maximum ammonium removal efficiency
of biomass biochar and agricultural residues, such as rice husks or plant shells, are below 40% [37,50].
Although active modifications by metal ions or acids and bases can increase the NH4

+ sorption capacity
to more than 100 mg·g−1 [51], biochar after such an active process is not suitable for agricultural
applications to avoid further environmental impact [52]. Moreover, the Freundlich equation also fit
well with the sorption data, particularly for the water and acidified biochar (R2 > 0.95). The results
indicated that the biochar surface was heterogeneous and that some level of physical adsorption
occurred on the surface [50]. The values of constant 0 < 1/n < 1 implied that the sorption process was
inclined to both a chemical and slightly physical adsorption [23,25].

Table 2. Fitting parameters for the Langmuir and Freundlich isotherms of NH4
+-N adsorption in an

aqueous solution on the differently treated biochar.

Adsorbents
Langmuir Model Freundlich Model

Qm (mg·g−1) b (mg·L−1) R2 KF (mg·g−1) n R2

PBC 24.58 5.00 × 10−3 0.98 0.84 2.10 0.93
H2O-PBC 60.50 1.78 × 10−3 0.99 0.49 1.56 0.99
HCl-PBC 100.28 4.00 × 10−3 0.99 1.89 2.34 0.94

H2SO4-PBC 120.01 3.12 × 10−3 0.99 2.07 1.78 0.95
H2O2-PBC 123.23 4.40 × 10−3 0.99 3.03 1.90 0.95
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3.3. Adsorption Kinetics

Figure 7 shows the sorption kinetics of ammonium on PBC and PBC after water and acid washing.
The parameters are listed in Table 3. As plotted in Figure 7, NH4

+-N adsorption of selected adsorbents
reached the apparent sorption equilibrium point after approximately 180 min. According to the
regression coefficient (R2), both pseudo-first-order and pseudo-second-order models fit well with the
adsorption data. The amount of ammonium adsorbed on acidified PBC was much higher than that
adsorbed on the water-washed and original PBC. The biochar after an acid treatment displayed a higher
initial sorption rate (v0) than the water-washed and original PBC (Table 3), and H2O2-PBC showed the
highest v0 (1.978 mg/g/min) among the five adsorbents. Moreover, the adsorption would reach the
equilibrium point after approximately 180 min in a 100 mg/L NH4

+-N solution. Based on the fitting
results, the rapid sorption on the selected adsorbents might be regulated by chemical interactions.
From previous studies [40,50], the adsorption velocity on granular porous adsorbents was controlled
by intraparticle diffusion.
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To identify the effects of intraparticle diffusion and boundary diffusion during the adsorption
process, the fitting results of the intraparticle diffusion model are shown in Figure 8. The fitting
curves of the acidified biochar samples could be linearly fitted to three stages, and the adsorption
process of ammonium-N on PBC and H2O-PBC could be linearly fitted to two stages. More specifically,
the straight line fitting of the first stage could represent the relation between intraparticle diffusion
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adsorption and the adsorption rate, the fitting line of the second stage implied the boundary layer
diffusion effect during the adsorption process, and the last stage was the final sorption equilibrium
stage [40,53]. For the whole adsorption process of PBC and H2O-PBC, except in the equilibrium stage,
the fitting line nearly passed through the origin in the first stage, implying that intraparticle diffusion
adsorption was the key controller of the adsorption rate. For the three kinds of acidified biochar,
the fitting line almost passed through the origin in the first stage, demonstrating that the effect of
intraparticle diffusion was one of the important rate-controlling aspects for NH4

+-N adsorption, while
the high positive value of boundary layer diffusion (c) in the second stage showed that apart from
intraparticle diffusion, the adsorption rate of NH4

+-N on the selected acidified biochar might also be
affected by boundary layer diffusion [54].

Table 3. Kinetic parameters of the pseudo-first-order and pseudo-second-order equations for NH4
+-N

adsorption on the five kinds of biochar.

Adsorbents
Pseudo-First-Order Kinetics Pseudo-Second-Order Kinetics

K1 (min−1) Qe (mg·g−1) R2 v0 (g·mg−1·min−1) Qe (mg·g−1) R2

PBC 0.15 7.20 0.99 0.79 7.53 0.92
H2O-PBC 0.15 9.80 0.99 1.03 10.29 0.96
HCl-PBC 0.16 14.22 0.95 1.69 14.83 0.94

H2SO4-PBC 0.12 20.65 0.98 1.75 21.65 0.96
H2O2-PBC 0.12 22.93 0.99 1.98 24.10 0.98

Materials 2020, 13, 2270 13 of 19 

 

acidified biochar, the fitting line almost passed through the origin in the first stage, demonstrating 
that the effect of intraparticle diffusion was one of the important rate-controlling aspects for NH4+-N 
adsorption, while the high positive value of boundary layer diffusion (c) in the second stage showed 
that apart from intraparticle diffusion, the adsorption rate of NH4+-N on the selected acidified biochar 
might also be affected by boundary layer diffusion [54]. 

 
 

Figure 7. Adsorption kinetics of NH4+-N on the five kinds of biochar fitted with the pseudo-first-order 
(a) and pseudo-second-order models (b). 

Table 3. Kinetic parameters of the pseudo-first-order and pseudo-second-order equations for NH4+-
N adsorption on the five kinds of biochar. 

Adsorbents 
Pseudo-First-Order Kinetics Pseudo-Second-Order Kinetics 

K1 (min−1) Qe (mg·g−1) R2 v0 (g·mg−1·min−1) Qe (mg·g−1) R2 

PBC 0.15 7.20 0.99 0.79 7.53 0.92 

H2O-PBC 0.15 9.80 0.99 1.03 10.29 0.96 

HCl-PBC 0.16 14.22 0.95 1.69 14.83 0.94 

H2SO4-PBC 0.12 20.65 0.98 1.75 21.65 0.96 

H2O2-PBC 0.12 22.93 0.99 1.98 24.10 0.98 
 

 
Figure 8. Adsorption kinetics of NH4+-N on the biochar samples as well as modeling through the 
intraparticle diffusion model (t is the adsorption time). 

Figure 8. Adsorption kinetics of NH4
+-N on the biochar samples as well as modeling through the

intraparticle diffusion model (t is the adsorption time).

Both the equilibrium and kinetics data showed that the major NH4
+-N sorption mechanism on

the treated biochar in this article was chemisorption, and the SEM and Brunauer-Emmett-Teller (BET)
analysis results suggested that the physical interaction caused by porous adsorption was not the
primary reason for NH4

+-N removal from an aqueous solution, which was similar to the results of
Wang’s research, NH4

+ adsorption on biochar is mainly related to acidic functional groups on biochar
surface [55]. According to the SEM-EDS analysis (Figure S4) after NH4

+ adsorption, the elemental
distribution map showed that N increased after adsorption, and the N distribution was quite similar
to the site of the oxygen atom. Combined with the FTIR spectra in Figure 4, the nitrogen atoms
were coordinated with the carboxyl and hydroxyl groups on the biochar surface through the spectral
observation of the hydroxyl, carboxyl, and amide group stretching vibration changes at 3430, 2000,
1628, and 1383 cm−1. The spectra between 1000 and 650 cm−1 were the binding vibrations of the
substituent groups of benzene, which could be used to prove the substitution of alkyl groups by amino
groups on the benzene structure via inductive effects or hydrogen bonds [14].
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Table 4 compares the maximum nitrogen adsorption capacity of the biochar used in this study with
that of the carbon materials used previously. Generally, the maximum NH4

+-N adsorption amount
of agricultural biomass biochar was between 10–50 mg·g−1, when the PBC is at an intermediate
level for ammonium adsorption. In this research, the four kinds of aging biochar had better
adsorption performance, especially H2O2-PBC had higher adsorption performance than most other
adsorbents. However, activated biochar will normally have better NH4

+-N sorption capacity than
other carbon materials.

Table 4. Comparison of the maximum ammonium adsorption capacity onto various adsorbents.

Adsorbent
Capacity
NH4

+-N
(mg·g−1)

Concentration
Range NH4

+-N
(mg·L−1)

Contact
Time pH Temperature

(◦C) Ref.

PBC 24.58 20–1000 24 h ≈7 25 This article
H2O-PBC 60.50 20–1000 24 h ≈7 25 This article
HCl-PBC 100.28 20–1000 24 h ≈7 25 This article

H2SO4-PBC 120.01 20–1000 24 h ≈7 25 This article
H2O2-PBC 123.23 20–1000 24 h ≈7 25 This article

Peanut shell biochar (PS) 243.30 10–500 5–10 h ≈7 25–50 Gao et al., 2015
NaOH modified PS (mPS) 313.90 10–500 5–10 h ≈7 25–50 Liu et al., 2016
Maple wood biochar (MW) 0.46–0.87 0–100 16 h - - Wang et al., 2016

H2O2 oxidized MW 1.35–7.23 0–100 16 h - - Wang et al., 2016
Rice husk biochar 39.80 250–1400 96 h 5~8 25–45 Kizito et al., 2014

Poulty litter biochar (water washed) 1.33 0–10 24 h ≈7 - Tian et al., 2016
Bentonite hydrochar 23.67 200 25 h 6 30 Ismadji et al., 2016

4. Conclusions

In this article, four kinds of acid and oxidation treatments were used to simulate the aging process
of biochar under acidic conditions in farmland with untreated fresh biochar as the control group.
Compared with the water-washed and untreated biochar, acid-washed biochar can greatly enhance the
adsorption ability of NH4

+-N in an aqueous solution. Hydrogen peroxide-aged biochar had the highest
amount of NH4

+-N (123.23 mg·g−1) sorption among the five kinds of prepared biochar. Compared with
other similar research on NH4

+ adsorption, the biochar in this study provided a relatively high NH4
+

sorption capacity. The surface morphology, material composition, and sorption capacity of the biochar
changed after the aging treatment. As a result of redox reactions, the oxygen-containing groups on
the biochar surface increased, the inorganic minerals were washed off, the polarity increased, and the
aromaticity decreased. With the removal of the ash content on the biochar surface by an acid aging
treatment, the binding points of inorganic cations were exposed, and the mesoporous and macroporous
volume of the biochar was enlarged, which was conducive to NH4

+-N adsorption. In addition, the acid
treatment destroyed the microporous surface structure of the biochar; so as the adsorption site was
destroyed, the adsorption capacity was weaker than that of the oxidized treatment. According to the
adsorption isotherm models and kinetic models, NH4

+-N sorption on the aged biochar in this study was
mainly related to oxygen functional groups on the biochar surface. The improved NH4

+-N adsorption
ability might be related to the chemisorption and porous interparticle diffusion of ammonium atoms on
the biochar. Therefore, it could be said that the acid and oxidation aging treatments did not decrease the
adsorption ability of PBC in this simulation experiment. Moreover, aged biochar under a weakly acidic
oxidant (H2O2) could highly improve its adsorption ability towards NH4

+-N. The further influences of
the aging treatment on the biochar adsorption process need to be further investigated through field
tests. In the experiment of simulating the natural aging process, this paper only considered the method
of simulating chemical oxidation, and further research needs to be conducted under soil conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/10/2270/s1,
Table S1: Pore structure of the original and acid modified biochar, Table S2: Surface elemental composition
of the original and acid modified biochar, Table S3: Elemental composition of the original and acid modified
biochar, Table S4a: The Chemical bond composition of biochar (C1s), Table S4b: The Chemical bond composition
of biochar (O1s, N1s), Figure S1: The XPS spectra of biochar and their C1s XPS-peak-differentation-imitating,
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Figure S2: XPS spectra of C1s and O1s of PBC before and after NH4
+-N adsorption, Figure S3: XPS spectra of

C1s and O1s of H2O2-PBC before and after NH4
+-N adsorption, Figure S4: SEM and EDS images of the five

biochars. (a,b,c,d,e represent the adsorption of NH4
+ before and after PBC, H2O-PBC, HCl-PBC, H2SO4-PBC,

and H2O2-PBC, respectively.
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