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Abstract

The bacterial second messenger bis-(39–59) cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central
regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas
fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture
containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the
LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering
sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular
mechanism of autoinhibition and activation of LapD based on structure–function analyses and crystal structures of the
entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the
intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the
inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via
interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across
the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional
analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including
many free-living and pathogenic species.
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Introduction

Bacterial biofilms arise from planktonic microbial cells that

attach to surfaces and form sessile multicellular communities, a

process relevant to their survival in hostile habitats and for

bacterial pathogenesis [1]. Recent work has identified biofilm

formation as a multiphase process with strict temporal and spatial

regulation, often accompanied by adaptational strategies such as

phenotypic variation, development of antibiotic resistance, and

virulence gene expression [2,3]. On the cellular level, functional

differentiation events including changes in motility, cell adhesion,

and secretion are among the many processes driving bacterial

biofilm formation. Such a plethora of physiological responses

inevitably poses the question of how regulation is achieved, and a

nucleotide unique to bacteria, bis-(39–59) cyclic dimeric guanosine

monophosphate (c-di-GMP), has emerged as a key signaling

molecule in this process [4,5].

c-di-GMP is a monocyclic RNA dinucleotide that functions as

an intracellular second messenger exerting control at the

transcriptional, translational, and posttranslational levels [6]. It is

generated from two guanosine triphosphate (GTP) molecules by

GGDEF domain–containing diguanylate cyclases, and degraded

by phosphodiesterases containing either EAL or HD-GYP protein

domains [7–10]. The majority of cellular c-di-GMP appears to be

bound to protein, eliciting localized, rather than more diffusive,

signals [5]. To date, only a few c-di-GMP receptors have been

identified, but they are strikingly diverse, including a class of

riboswitches [11]. Protein domains involved in c-di-GMP signal

recognition include PilZ domains [12,13], a non-canonical

receiver domain in VpsT of Vibrio cholerae [14], the AAA s54

interaction domain–containing transcription factor FleQ of P.

aeruginosa [15], and the cyclic nucleotide monophosphate–binding

domain in Clp of Xanthomonas campestris [16]. In other cases, c-di-

GMP turnover domains can also serve as sensors for the
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dinucleotide. For example, in GGDEF domain–containing pro-

teins, an RxxD motif can serve as a c-di-GMP-binding inhibitory

site either to regulate the activity of active enzymes (e.g., PleD of

Caulobacter crescentus and WspR of P. aeruginosa) [17,18] or to mediate

protein–protein interactions in degenerate homologs (e.g., PelD of

P. aeruginosa and CdgG of V. cholerae) [19,20].

Bacterial proteins that mediate c-di-GMP turnover and signal

transduction are often composed of multiple domains, allowing for

a variety of regulatory inputs, signaling events, and/or physiolog-

ical responses [21]. For example, a large number of these proteins

contain both GGDEF and EAL domains in the same polypeptide

chain. These proteins fall into three main categories based on their

catalytic activity: tandem domain–containing proteins with both

diguanylate cyclase and phosphodiesterase activity; proteins with

only one active domain, in which the degenerate, inactive domain

exhibits a regulatory function; and proteins in which both domains

are degenerate and likely to work as c-di-GMP receptors [22,23].

Despite the frequent occurrence of this signaling module in

bacterial genomes, structural and mechanistic insight regarding

their function and regulation is sparse.

The transmembrane protein LapD belongs to the last group. It

contains degenerate GGDEF and EAL domains that lack catalytic

activity, but it is capable of c-di-GMP binding via its divergent

phosphodiesterase domain [24]. LapD is required for stable cell

attachment and biofilm formation in P. fluorescens and P. putida [25–

27]. It responds to changes in cellular c-di-GMP levels modulated

by the availability of inorganic phosphate, an essential nutrient that

is limiting in many ecosystems [24,28]. Under phosphate starvation

conditions, the expression of the phosphodiesterase RapA is

upregulated, reducing cellular c-di-GMP levels and cell attachment.

Increased phosphate availability yields an inactive Pho regulon,

reduced RapA expression, and, as a consequence, a rise in cellular

c-di-GMP concentration. As c-di-GMP levels change LapD

switches between two states: the dinucleotide-unbound off state

that retards stable biofilm formation by facilitating the secretion of

the cell surface adhesin LapA, and the c-di-GMP-bound on state

that supports cell adhesion by preventing the release of LapA from

the outer membrane [24,26]. Binding of c-di-GMP to the LapD

EAL domain is relayed to the periplasmic output domain through

an inside-out signaling mechanism that utilizes a juxtamembrane

HAMP domain, a relay module often found in bacterial

transmembrane receptors [24].

Accompanying work by Newell et al. [29] reveals the complete

c-di-GMP signaling circuit by which LapD controls cell attach-

ment in response to phosphate availability. For wild-type LapD, c-

di-GMP binding appears to induce a conformational change,

which activates the receptor. As a consequence, the affinity of the

periplasmic domain for the cysteine protease LapG increases,

limiting its access to LapA. Perturbations in the HAMP domain by

deletion of some key elements yield a constitutively active receptor,

independent of dinucleotide binding. However, it has remained

unclear what prevents LapD from adopting an active conforma-

tion and how dinucleotide binding translates into an output signal.

Here, we present three crystal structures of LapD from P.

fluorescens that provide models for the c-di-GMP-unbound

cytoplasmic domain lacking only the HAMP domain, a c-di-

GMP-bound EAL domain dimer, and the periplasmic domain.

Together these structures span almost the entire receptor and

elucidate molecular mechanisms that regulate LapD function. The

crystal structure of the cytoplasmic module containing the

GGDEF–EAL tandem domains reveals the presence of an

autoinhibitory motif formed by a helical extension of the HAMP

domain. In this inactive state, the GGDEF domain restricts

dinucleotide access to the EAL domain module. The crystal

structure of dimeric, c-di-GMP-bound EAL domains provides

insight into the conformational changes resulting from dinucleo-

tide binding. Based on the crystal structure of the periplasmic

output domain of LapD, we identify functionally important

residues and propose a model for the regulation of LapD activity

in inside-out signal transduction. Finally, our structural studies

highlight many conserved features that allow us to identify similar

signaling systems in a variety of bacterial strains including

common pathogens such as V. cholerae and Legionella pneumophila.

Results/Discussion

Inactive State of the Intracellular Module of LapD
In order to elucidate the molecular mechanism that regulates

LapD function, we determined the crystal structure of the

intracellular module of P. fluorescens LapD, comprising a HAMP–

GGDEF domain linker segment and the degenerate GGDEF–

EAL domain module (LapDdual; residues 220–648) (Figure 1).

Based on secondary structure predictions, the linker forms a

continuation of the second HAMP domain helix (Figure S1). We

will refer to this motif as the signaling helix (S helix) in analogy to

helical extensions found in association with other HAMP domains,

where they are involved in transducing signals through the HAMP

domain to the adjacent signaling modules [30–32].

The structure of LapDdual (space group P32, one molecule in the

asymmetric unit) was solved by single-wavelength anomalous

Author Summary

Bacteria have the ability to form surface-attached com-
munities, so-called biofilms, in both free-living environ-
mental habitats and during pathogenic colonization in
infectious diseases. Many of the cellular processes
contributing to biofilm formation, for example, changes
in motility, cell adhesion, and secretion, are regulated by
the nucleotide-based second messenger c-di-GMP, which
is unique to bacteria. In Pseudomonas fluorescens, there are
high levels of c-di-GMP within the bacterial cell when there
is plentiful nutrient availability inside the cell, and the c-di-
GMP levels determine stable biofilm formation outside the
cell. LapD, a transmembrane receptor for intracellular c-di-
GMP, communicates changing c-di-GMP levels to the
outside of the cell by controlling the stability of the large
adhesin protein LapA, which keeps bacteria attached to a
surface or to other cells. We conducted X-ray crystallo-
graphic analyses of the structure of the intracellular and
periplasmic modules of LapD that, in combination with
functional studies, including those shown in an accompa-
nying study by Newell et al., reveal the molecular
mechanisms regulating receptor function. When phos-
phate availability is severely restricted, intracellular c-di-
GMP levels are low and LapD is in held in an ‘‘off’’ state by
an autoinhibitory interaction, which permits the proteo-
lytic processing of LapA, its release from the cell surface,
and consequently biofilm dispersal. Conversely, when
there are higher phosphate levels in the growth medium,
c-di-GMP increases and binds to a cytoplasmic domain of
LapD, disrupting the autoinhibitory state and triggering a
conformational change that sequesters the periplasmic
protease responsible for cleavage of LapA, ultimately
yielding stable cell attachment. By revealing key motifs for
the regulation of LapD, we have identified similar systems
in many other bacterial strains that may control periplas-
mic protein processing events in a similar fashion.

Cyclic di-GMP-Mediated Transmembrane Signaling
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dispersion phasing using selenomethione-substituted protein

crystals (Table S1). We also obtained a second crystal form

involving different crystal packing contacts (space group I23, one

molecule in the asymmetric unit), yet the overall structure of

LapDdual in the two crystals is identical (root mean square

deviation [rmsd] of 0.9 Å over all atoms; Figure S2A and S2C). In

both cases, the biologically significant unit was predicted to be a

monomer, based on energetic and geometric estimations [33].

The overall fold of the GGDEF and EAL domains in LapD is

very similar to those of other active or inactive diguanylate cyclases

and phosphodiesterases, respectively (GGDEF domains: PleD,

WspR, and FimX, average Ca–rmsd of 1.2 Å; EAL domains:

YkuI, BlrP1, FimX, and TDB1265, average Ca–rmsd of 1.6 Å;

Figures S3 and S4) [17,18,34–37]. The GGDEF signature motif in

LapD consists of residues RGGEF, placing a glycine residue at the

position of the active site residue that coordinates a divalent cation

important for catalysis in active cyclases [38] (Figure S3). In

addition, a non-conservative substitution introduces a charge

change in another metal-coordinating residue in PleD (D327),

which is an arginine residue in LapD (R273). Other significant

changes that affect activity concern positive residues in PleD that

interact with the phosphate moiety of GTP (K442 and K327). In

LapD, these residues are glutamates (E388 and E392). In general,

changes rendering LapD inactive for cyclase activity are

comparable to those observed in FimX [36]. Similarly, the EAL

domain of LapD contains non-conservative changes in residues

important for catalysis (Figure S4). Most strikingly, the first residue

of the signature EAL motif, which is involved in the coordination

of a metal ion, is mutated to a lysine residue in LapD (KVL motif)

[34,35,37,39].

LapDdual adopts a compact, bilobal conformation (Figure 1A).

The GGDEF domain, comprising the N-terminal lobe, caps the

dinucleotide-binding pocket of the EAL domain, which forms the

C-terminal lobe of the tandem domain structure. The EAL

domain buttresses the N-terminal S helix via predominantly

hydrophobic interactions, burying 1,170 Å2 (Figure 1). The

binding groove on the EAL domain, which accommodates the

S helix, consists of the helix a6 and an adjacent loop. The latter

has been identified as a conserved motif in catalytically active

EAL domain–containing phosphodiesterases, in which it is

involved in dimerization and catalysis [34,40]. In LapD, the

consensus sequence of the loop determined for active phospho-

diesterases is not conserved [40]. This loop was referred to as

loop 6 in SadR/RocR [40] and b5-a5 loop in the light-regulated

phosphodiesterase BlrP1 [34]. We will refer to this motif as the

switch loop of LapD, in analogy to the switch regions in G

proteins.

In addition to the S helix–EAL domain interaction, the GGDEF

domain contacts the dinucleotide-binding surface of the EAL

domain at multiple points, forming a loosely packed interface that

buries 1,620 Å2 of surface area (Figures 1A, S5A, and S5B). One

such contact, the salt bridge between an arginine residue (R450)

and a glutamate residue (E262), forms a particularly close

interaction (Figure S5A). R450 is located just downstream of the

signature EAL motif (KVL in LapD) at the center of the c-di-

GMP-binding site. E262 is presented by a loop of the GGDEF

domain. While E262 directly occupies the dinucleotide-binding site,

the loop itself is located at its periphery, partially blocking access of

c-di-GMP to the EAL domain (Figure S5B). Although the

conformation of apo-LapD observed in the crystal structure is

incompatible with c-di-GMP binding, the binding site is not

completely occluded (Figure S5B), and there may be a sufficient

proportion of accessible EAL domains in solution to respond to

increasing c-di-GMP concentrations, competing with the inhibi-

tory interactions. In addition, there may be cooperative effects

within the dimeric, full-length receptor that are not apparent from

the structures of the isolated domains.

The loop that connects the S helix to the GGDEF domain

adopts a conformation that is identical to the linkage between

active diguanylate cyclase domains and their regulatory domains

(Figure S5C). The conformation is stabilized by a salt bridge

between two strictly conserved residues that are located at the

beginning of the connecting loop and just upstream of the

signature GGDEF motif (318RGGEF322 in LapD), respectively:

D239 in the loop and R316 in the GGDEF domain of LapD, D174

and R249 in WspR, and D292 and R366 in PleD [17,18,38,41]. This

interaction likely constrains the loop conformation, restricting the

overall rotational freedom of the GGDEF domain relative to its

associated regulatory module, the S helix in the case of LapD and

the response receiver domain in the case of PleD and WspR.

In summary, the structural analysis of the cytoplasmic domain

of LapD reveals that in the absence of c-di-GMP, the protein

resides in a conformation incompatible with dinucleotide binding,

with the GGDEF domain restricting access of c-di-GMP to the

EAL domain. Dinucleotide binding would be accompanied by a

major conformational change disrupting the conformation ob-

served in the crystal structure.

Crystal Structure of LapDEALNc-di-GMP
The crystal structure of LapDEAL bound to c-di-GMP (residues

399–648; LapDEALNc-di-GMP; Figure 2) was solved by molecular

replacement using the EAL domain from apo-LapDdual as the

search model (Table S1). We obtained crystals in two independent

conditions, yielding two different crystal forms (space group

C2221, two molecules per asymmetric unit; and space group

P6522, one molecule per asymmetric unit; Figure S2B and S2C).

While the majority of the crystal packing contacts were different,

both crystal forms maintained a common dimer of EAL domains,

and the resulting structures superimposed almost perfectly (rmsd of

0.6 Å over all atoms). Structures of the apo-EAL domain or c-di-

GMP-bound LapDdual could not be obtained to date, and the

structural comparison will be made between the isolated EAL

domain bound to c-di-GMP and apo-LapDdual.

c-di-GMP binding did not alter the overall conformation of the

EAL domain observed in the apo-LapDdual structure (rmsd of

0.6 Å over all atoms) (Figure 2), consistent with the lack of major

conformational changes upon dinucleotide binding to the EAL

domains of YkuI, TDB1265, and FimX [35–37]. Minor changes

in the dinucleotide-binding pocket are confined to four c-di-GMP-

coordinating residues that adopt an alternate side chain rotamer

conformation (Figure 2A).

Figure 1. Autoinhibited structure of the cytoplasmic domain of LapD. (A) Crystal structure of apo-LapDdual. The domain organization of
LapD from P. fluorescens Pf0-1 is shown. The degenerate sequence of the GGDEF and EAL signature motifs are indicated. The crystal structure of the
LapDdual (residues 220–648) is shown as ribbon presentation and colored according to the domain diagrams (upper panel). The S helix forms an
extension of the second HAMP domain helix. The switch loop is sensitive to the nucleotide-binding state of the EAL domain and is involved in
dimerization and catalysis in active phosphodiesterases. Two views, separated by a 180u rotation, are shown. (B) The S helix–EAL domain interface. A
close-up view of the S helix–EAL domain interface is shown, with residues involved in direct, pairwise interactions shown as sticks. Two views,
separated by a 260u rotation, are shown. Helix a6 and the switch loop form a surface buttressing the S helix.
doi:10.1371/journal.pbio.1000588.g001
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The most notable conformational change in LapDEAL upon c-

di-GMP binding occurs in the switch loop (Figure 2B). Dinucle-

otide binding and the absence of the S helix in the isolated EAL

domain allow the loop to restructure, resulting in the switching of

the conserved phenylalanine residue F566 (Figure 2B). In apo-

LapDdual, the side chain of F566 faces inward and is located at the

center of the S helix–binding interface (Figure 1B). In contrast, the

switch loop adopts a conformation in the c-di-GMP-bound

structure positioning F566 so that it can participate in homo-

dimerization (Figures 2B and 3). Whether this change is due to the

flexibility of the loop, adjusting its conformation to accommodate

the S helix–bound and dimeric states, or depends on dinucleotide

binding awaits further structural analysis.

The symmetric LapDEAL domain dimer is reminiscent of the

oligomeric state in active EAL domain–containing phosphodies-

terases, such as in P. aeruginosa SadR/RocR, Bacillus subtilis YkuI,

Thiobacillus denitrificans TDB1265, and the BLUF domain–regulat-

ed photoreceptor BlrP1 from Klebsiella pneumoniae, where dimer-

ization is involved in positioning an aspartate residue that in the

active protein coordinates a cation for efficient catalysis (Figure S4)

[34,35,37,40]. Most importantly, dimerization of the c-di-GMP-

bound EAL domains is incompatible with the conformation

observed in the crystals of apo-LapDdual (Figure 3C). The surface

occupied by the S helix overlaps significantly with the homo-

dimerization interface, which indicates that dinucleotide-induced

conformational changes will include the displacement of the

GGDEF domain and the S helix. More generally, the preservation

of EAL domain dimerization in LapD and the conformational

change of the switch loop upon c-di-GMP binding suggest their

importance for signaling and regulation in GGDEF–EAL

domain–containing proteins.

Analysis of the Regulatory Mechanisms of LapD in
Solution

Based on the crystallographic data, a simple model would

suggest that LapD is subject to an autoinhibition mechanism. In

contrast to other c-di-GMP receptors with known structures, in

which the dinucleotide-binding site is freely accessible in the apo

state (Figure S6), intramolecular interactions restrict dinucleotide

access to the EAL domain in LapD. c-di-GMP binding would

disrupt these interactions, resulting in a change in conformation of

the receptor. Alternatively, mutations in the regulatory features

predicted to destabilize the interaction should relieve the

autoinhibition and alter the shape and activity of the receptor.

To test this model, structure-guided mutations were introduced

into LapD to assess the functional relevance of the autoinhibitory

conformation and EAL domain dimerization (Figure 4A). Site-

directed mutations were introduced into the S helix that were

predicted to weaken its interaction with the EAL domain without

affecting EAL domain dimerization propensity (F222A, F222E,

S229D, E230A, or L232E; Figure 1B). Another set of mutations

targeted the GGDEF–EAL domain interface, focusing on changes

in the GGDEF domain that would not interfere with EAL domain

function (M252E, E262A, or E333A; Figure S5A). Finally, A602 was

targeted for mutation. A602 was identified as a residue at the center

of the EAL domain dimerization interface (Figure 3B). The

structure of apo-LapDdual showed A602 at the periphery of the S

helix–EAL domain interaction, suggesting that perturbations at

this site may maintain the autoinhibited state (Figure 1B).

Mutations were introduced into LapDdual, the EAL domain,

and the full-length receptor. It is important to note that LapD is a

dimeric receptor via its HAMP and output domains, and therefore

EAL domain dimerization (and dinucleotide binding) represents a

conformational change within the receptor, rather than a change

in its oligomeric state. The comparative analyses described below

reveal the basic properties of the cytoplasmic module of LapD,

especially the correlation between c-di-GMP binding and

dimerization (Figures 4–7). However, the specific interaction

energies will likely be enhanced in the context of the full-length

receptor compared to those of the isolated domains. Cell-based

assays elucidate the functional relevance of these properties in

intact LapD (Figures 8 and 9).

We employed two methods to assess c-di-GMP binding to

LapD. A gel-filtration-based assay essentially measures the off rate

of nucleotide from a preformed complex. The filter binding assay

Figure 2. Comparison between the dinucleotide-free and c-di-GMP-bound EAL domain of LapD. (A) Crystal structure of LapDEALNc-di-
GMP. The c-di-GMP-bound structure of LapDEAL (gray) was superimposed onto the dinucleotide-free structure of LapDdual (orange residues). The S
helix and GGDEF domain were omitted for clarity. A close-up view of the dinucleotide-binding pocket is shown, with residues involved in c-di-GMP
binding presented as sticks. The (|Fo| 2 |Fc|) electron density map is shown as calculated from a model prior to inclusion of dinucleotide and is
contoured at 3.5s. (B) Conformational change of the switch loop. c-di-GMP binding and absence of the S helix allow the switch loop to adopt an
alternative conformation (orange: apo-LapDdual; gray: LapDEALNc-di-GMP). As a consequence, the side chain of F566, a residue involved in both S helix
interaction in LapDdual and dimerization of LapDEAL, changes position.
doi:10.1371/journal.pbio.1000588.g002
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is a semi-quantitative assay that allows for higher throughput and

the generation of titration curves yielding an apparent dissociation

constant (Kd) [24] (Table 1). Mutations in the regulatory motifs

and dimer interface have a measurable effect on c-di-GMP

binding to LapD. A single-point mutation in the S helix increased

the overall dinucleotide binding and the apparent affinity of

LapDdual for c-di-GMP by almost 2-fold (S229D; Figure 4B and

4C). Removal of the glutamate side chain in residue 262 that

occludes the dinucleotide binding site in the LapDdual structure

(E262A) has a similar effect. In contrast, replacing A602 with a

glutamate residue reduced c-di-GMP binding to LapDdual both in

the gel-filtration-based binding experiment and in a filter binding

assay, suggesting an interdependence of dinucleotide binding and

EAL domain dimerization.

We next analyzed the oligomerization state of LapDdual protein

variants in solution, using static multi-angle light scattering

(MALS) (Figure 5). This method provides the population-averaged

absolute molecular weight and hence quaternary state of proteins

eluting from a gel filtration column. The technique measures the

intensity of scattered laser light from a particle at multiple angles,

which is proportional to the product of the molecular weight and

the concentration of the particle, permitting rapid and facile

comparison of oligomeric equilibria across a series of mutants [42].

The wild-type LapDdual protein elutes in a single peak from the

size exclusion column with a molecular weight of 43.5 kDa,

indicating a monomeric state in solution (Figure 5A, left column).

Incubation of the protein with c-di-GMP shifted the peak elution

volume and increased the molecular weight slightly to 54.5 kDa.

While being monomeric in the absence of dinucleotide, both the S

helix–EAL and the GGDEF–EAL interface mutants (S229D and

E262A, respectively) showed more distinct shifts in molecular

weight towards dimeric species upon c-di-GMP binding (77.5 kDa

and 71.4 kDa, respectively; Figure 5A, left column). As predicted

on the basis of the structural analysis, LapDdual variants containing

a glutamate substitution in place of A602 (A602E and S229D/A602E)

are monomeric in solution, independent of the presence of

dinucleotide and unaffected by the additional mutation S229D.

In general, the intermediate molecular weights and non-

Gaussian peak shapes observed for wild-type LapDdual and the

mutants S229D and E262A, predicted to be less inhibited, incubated

with c-di-GMP prior to gel filtration, may indicate a fast exchange

between monomeric and dimeric species relative to the data

acquisition time and/or instability of the complex. To further

investigate this phenomenon, we conducted concentration-depen-

dent experiments by subjecting LapDdual to light scattering

measurements at concentrations between 20 and 320 mM with

or without incubation in c-di-GMP. All samples eluted as single

peaks from the gel filtration column and showed no signs of

unspecific protein aggregation. Protein concentration determina-

tion across the peak volume indicated that samples were diluted

consistently ,15-fold during the chromatography. All LapDdual

variants were monomeric in the absence of c-di-GMP across the

entire concentration range (Figure 5B). LapDdual proteins with a

mutation at the dimerization interface (A602E or S229D/A602E)

were insensitive to c-di-GMP addition and remained monomeric.

Wild-type LapDdual showed signs of oligomerization only at the

highest concentrations tested. In contrast, the molecular weight of

LapDdual variants with single-point mutations S229D or E262A,

predicted to disrupt autoinhibitory features, increased in a

concentration-dependent manner in the presence of c-di-GMP,

indicative of dimerization of the isolated cytoplasmic domain in

solution.

Considering the modest dinucleotide-binding affinities

(Figure 4B and 4C), dissociation of c-di-GMP from LapD during

Figure 3. Dimerization of c-di-GMP-bound LapDEAL. (A) EAL
domain dimerization. In both crystal forms obtained for LapDEALNc-di-
GMP we observe symmetric dimerization between protomers involving
helix a6 and the switch loop. Dimerization buries 1,350 Å2 of surface
area (interface area times two), and was predicted to be energetically
favorable [33]. (B) Dimer interface. A close-up view (left panel) and
cartoon diagram (right panel) of the dimer interface is shown. (C)
Comparison of apo-LapDdual and LapDEALNc-di-GMP. The EAL domain
from the crystal structure of dinucleotide-free LapDdual was superim-
posed on one c-di-GMP-bound EAL domain from dimeric LapDEAL.
LapDdual is colored as shown in Figure 1.
doi:10.1371/journal.pbio.1000588.g003
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gel filtration may also contribute to a destabilization of the dimeric

state. To investigate this possibility, we repeated the experiments

at the highest protein concentration with c-di-GMP present in the

mobile phase (Figure 5). While proteins containing the A602E

mutation (A602E or S229D/A602E) remained monomeric, wild-type

LapDdual and the mutants S229D and E262A exhibited more

pronounced dimerization in the same assay, with molecular

weights close to the theoretical values for dimers calculated based

their sequence. The observation that wild-type LapDdual displayed

only a moderate, c-di-GMP-induced dimer formation when c-di-

GMP was omitted from the mobile phase, but robust dimerization

when the dinucleotide was present throughout the experiment,

distinct from the behavior of the mutants S229D or E262A,

indicates that the c-di-GMP-induced conformational changes and

dimerization are reversible and underscores the interdependence

of dinucleotide binding and EAL domain dimerization (Figure 5).

In order to investigate the propensity for dimer interface

formation under equilibrium conditions, we performed analytical

ultracentrifugation experiments on wild-type LapDdual and on the

S229D mutant. As expected based on the light scattering analysis,

the concentration profiles of the c-di-GMP-free proteins could be

well fit by a monomeric model, assuming a fixed molecular weight

equivalent to the calculated value (Figure 6A and 6B). When

allowed to refine against a monomer:dimer equilibrium, the Kd for

dimerization (Kd
dimer) refined to values of 400 mM (95%

confidence interval: 0 to 6,300 mM) and 420 mM (95% confidence

interval: 600 to 4,700 mM), respectively. Thus, each construct

exhibits only a minimal propensity for dimerization, and apo-

LapDdual is statistically indistinguishable from a pure monomer

population. However, and again consistent with the light

scattering data, in the presence of c-di-GMP, the concentration

profiles of both proteins were poorly modeled unless the bound

state was allowed to form dimers (Figure 6C and 6D). In this case,

the refined Kd
dimer values were 670 nM (95% confidence interval:

370 to 1,000 nM) and 180 nM (95% confidence interval: 80 to

270 nM), respectively. It is thus clear that in the presence of c-di-

GMP, the propensity of the intracellular domain to form a dimer

interface is several orders of magnitude stronger than that of the

apo states of both proteins. Based on the nonoverlapping

confidence intervals, it also appears that there may be a slight,

but statistically significant, enhancement in the dimerization

propensity of the S229D mutant, paralleling its increased affinity

for c-di-GMP and the results from the light scattering experiments.

By and large, comparable results were obtained for the isolated

EAL domain (Figure 7; Table 1). The wild-type domain bound c-

di-GMP with an apparent Kd of 13.1 6 0.9 mM, whereas the

A602E mutant showed a decreased affinity, with an apparent Kd of

36.3 6 5.4 mM (Figure 7A). Similar to LapDdual, the isolated EAL

domain showed concentration-dependent oligomerization in light

scattering experiments only upon incubation with c-di-GMP

(Figure 7B). The presence of c-di-GMP in the mobile phase

stabilized the dimeric species further, although to a lesser extent

Figure 4. c-di-GMP binding of LapDdual in solution. (A) Mutant
categories. Structure-guided, site-directed mutants in LapD are
illustrated. Mutations in brackets were used in experiments shown in
Figures 8 and 9. Structure-based predictions regarding the c-di-GMP
binding and c-di-GMP-dependent dimerization propensities are indi-
cated. (B) Dinucleotide binding to wild-type and mutant LapDdual.

Purified LapDdual (wild-type, S229D, E262A, or A602E) was incubated in the
presence of c-di-GMP. Excess dinucleotide was removed by gel
filtration, and protein-bound c-di-GMP levels were assessed by
reverse-phase HPLC after heat denaturation. Data are expressed relative
to the amount bound to wild-type LapDdual. Data are means 6 standard
deviation (SD) of three independent experiments. (C) Filter binding
assay. The amount of radiolabeled c-di-GMP bound by wild-type
LapDdual and mutant variants is plotted against the concentration of c-
di-GMP. Data are means 6 SD of three independent experiments.
Table 1 summarizes the apparent Kd values obtained by applying a one-
site-specific binding model.
doi:10.1371/journal.pbio.1000588.g004
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Figure 5. Quaternary state of LapDdual in solution. (A) Oligomerization of LapDdual in solution. SEC-coupled MALS analysis of wild-type and
mutant LapDdual in the presence and absence of c-di-GMP is shown. The signal from the 90u scattering detector is shown in color, and the signal from
the refractive index detector is shown as a dashed line. Average molecular weights are plotted in black against the right y-axis as calculated every
second across the protein elution peak. Theoretical molecular weights corresponding to those of a monomer and a dimer are indicated as horizontal
dashed gray lines. Injected protein and dinucleotide concentrations were 250 mM and 500 mM, respectively. In the right panel, the mobile phase
contained c-di-GMP (50 mM). Earlier elution times may indicate a more elongated conformation of certain mutants in solution (for example, of the
mutant S229D compared to wild-type or the E262A variant in the absence of c-di-GMP), which is probably due to a displacement of the GGDEF domain
from the EAL domain. (B) Concentration-dependent dimerization of LapDdual. SEC-MALS experiments were carried out with samples of increasing
LapDdual concentration. The samples of highest concentration correspond to data shown in (A). The data point shown as a star represents data
obtained for samples run in a mobile phase that contained c-di-GMP.
doi:10.1371/journal.pbio.1000588.g005
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then observed with LapDdual. In contrast, the EAL domain

containing the A602E mutation remained monomeric even in the

presence of c-di-GMP. In general, LapDdual shows a higher

propensity for dimer formation than LapDEAL (Figures 5 and 7),

and this behavior correlates with the stability of the nucleotide-

bound complex (see above). The mutation A602E severely affects

dimer formation of LapDdual, and hence nucleotide binding.

Additionally, the contribution of the GGDEF domain to

dimerization in LapDdual would also be consistent with a larger

apparent impact of the A602E mutation on dimerization. The

effect of the A602E mutation is less pronounced for LapDEAL since

this construct forms weaker dimers overall. Together, these data

suggest a similar mode of dimerization of LapDEAL and LapDdual.

However, in comparing the light scattering results in the presence

and absence of c-di-GMP in the mobile phase, the greater

discrepancy in residual dimerization observed for the LapDdual

construct suggests that in the tandem domain the autoinhibited

structure reassembles as nucleotide is withdrawn.

In summary, LapD appears to be autoinhibited for efficient

dinucleotide binding by structural features involving the S helix

and occupancy of the c-di-GMP-binding site by the GGDEF

domain. Based on the observation that the A602E mutation,

located in the EAL domain homodimer interface and outside of

the c-di-GMP-binding site, renders the protein monomeric and

reduces dinucleotide binding, we propose that dimerization and

c-di-GMP binding are interdependent events in LapDdual and

LapDEAL. An additional conformational change in the cytoplas-

mic domain of LapD, accompanied by the release of the

inhibitory S helix and/or nucleotide binding, is likely to occur

as well.

Figure 6. Sedimentation equilibrium analysis of LapDdual dimerization. Experimental sedimentation equilibrium absorbance profiles (A280,
open circles) are shown for wild-type (A and C) and S229D mutant (B and D) forms of LapDdual, in the absence (A and B) and in the presence (C and D)
of 20 mM c-di-GMP. Data are shown for the lowest-concentration channel (,3 mM protein) following equilibration at 20,000 rpm. The corresponding
curves predicted by three-speed, three-channel global fits are shown for monomer-only (dashed line, [A–D]) and monomer:dimer equilibrium (solid
line, [C and D]) models. The deviation between observed and calculated A280 values is shown above each profile for the monomer-only (open circles,
[A–D]) and for the monomer:dimer equilibrium (closed circles, [C and D]) models. Systematic deviations between the monomer-only prediction and
the experimental data in the presence of c-di-GMP are resolved by inclusion of a dimerization equilibrium for the c-di-GMP-bound form of LapDdual

(solid curves). a.u., absorbance units.
doi:10.1371/journal.pbio.1000588.g006
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Effect of Structure-Based Mutations in LapD on Biofilm
Formation

Stable biofilms of P. fluorescens require LapD expression and the

presence of c-di-GMP [24]. To examine the contribution of inter-

domain interactions to LapD’s function in vivo, full-length LapD

variants were assessed for their ability to promote biofilm

formation in a DlapD mutant strain (Figure 8). We observed a

range of phenotypes, from a slight reduction in biofilm formation

relative to the wild-type, to strong hyper-adherent phenotypes

comparable to that observed when LapD is constitutively activated

by mutations in the HAMP domain [24] (Figures 8 and 9). The

mutation that we predict to disrupt the S helix–EAL interface in

the autoinhibited conformation, S229D, caused an ‘‘activated’’

phenotype, consistent with its increased dinucleotide binding and

dimerization propensity in vitro (Figures 4–6). Similar results were

obtained with the mutant F222E, whereas a less disruptive alanine

substitution was tolerated at this position.

In the apo-LapDdual structure, the E262 residue is positioned

such that it would occlude binding of c-di-GMP to the EAL

domain (Figure S5B). Consistent with this and its increased

binding of c-di-GMP (Figure 4), the E262A mutation results in an

increase in biofilm formation relative to the wild-type allele

(Figure 8A). Yet, the E262A mutant phenotype is not as extreme as

that exhibited in the case of the S229D mutation, despite

comparable increases in c-di-GMP binding and dimerization by

these proteins in vitro (Figures 4 and 5). This suggests that the

E262A mutant is still subject to autoinhibition in vivo, albeit with

higher sensitivity for c-di-GMP than the wild-type protein.

Structurally, this may be explained by removal of the side chain

that directly occupies the c-di-GMP-binding site without disturb-

ing the S helix–EAL domain interaction. Other mutations showed

intermediate (L232E and M252E) or no significant changes (F222A,

E230A, and E333A) in phenotype, roughly corresponding to their

surface exposure in the autoinhibited state structure (Figures 1B,

8A, and S5A).

The A602E mutation, which disrupts the dimerization interface

of the EAL domain and reduces steady state c-di-GMP binding in

vitro (Figures 4, 5, and 7), led to a small but significant decrease in

biofilm formation relative to the wild-type allele (Figure 8). The

observation that the A602E mutant showed a minor loss of function

in vivo, distinct from the more pronounced loss of function

observed with mutants in the dinucleotide binding pocket [24],

argues that dimerization increases the stability of the dinucleotide-

bound state rather than being required for c-di-GMP binding per

se. While this modest reduction in function in vivo seemed

incongruous with the severe defect in dimerization and binding

exhibited by the dual-domain and EAL domain construct in vitro,

we further tested its significance by introducing the A602E

mutation into activated alleles of LapD, S229D, and F222E. The

reduction in biofilm formation in the double mutants was

significant, corroborating that EAL domain dimerization plays a

role in LapD function in vivo (Figure 8B).

The single mutants were also tested for their response to

phosphate starvation, a physiological input for LapD-mediated

signaling that leads to a reduction of cellular c-di-GMP

concentration [24,28]. At low c-di-GMP concentration, wild-type

LapD activity is downregulated, which results in the release of the

adhesin LapA from the cell surface and thus a reduction in biofilm

Figure 7. c-di-GMP binding and quaternary state of LapDEAL in
solution. (A) c-di-GMP binding. The amount of radiolabeled c-di-GMP
bound by LapDEAL (wild-type or A602E) is plotted against the
concentration of c-di-GMP. Data are means 6 SD of three independent
experiments. Data were fitted to a one-site-specific binding model. (B)
Oligomerization in solution. SEC-MALS analysis of wild-type and mutant
LapDEAL in the presence and absence of c-di-GMP at increasing protein
concentration is shown. The protein molecular weight was determined
based on the intensity of the scattered light at multiple angles.
Theoretical molecular weights corresponding to those of a monomer
and a dimer are indicated as horizontal dashed gray lines. Injected

protein and nucleotide concentrations were 250 mM and 500 mM,
respectively. Experiments at the highest protein concentration were
carried out in the absence (circles) or presence of c-di-GMP (star) in the
mobile phase.
doi:10.1371/journal.pbio.1000588.g007
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formation (Figure 9A, top) [24]. Mutations in the S helix–EAL

domain interface (F222E and S229D) failed to respond to phosphate

starvation efficiently, showing little to no reduction in biofilm

formation (Figure 9A). The effect was comparable to a deletion

mutant described previously, in which a helical segment of the

HAMP domain was removed, yielding a constitutively active,

deregulated receptor (Figure 9A) [24]. In contrast, mutation of the

residue in the GGDEF domain that occupies the c-di-GMP-

binding site (E262A) showed an intermediate response to phosphate

starvation, suggesting that mutant receptor function is still

controlled by c-di-GMP, albeit not as effectively as in wild-type

LapD (Figure 9A). Similar to the trends observed in the static

biofilm assay (Figure 8A), other mutations in LapD showed more

subtle effects in the phosphate starvation experiments (Figure 9B).

Collectively, these results suggest that the S helix–EAL domain

interface stabilizes the off state. The interaction is the dominant

autoinhibitory feature responsible for positioning the GGDEF

domain to occlude the c-di-GMP-binding pocket and therefore

ensure appropriate control of LapD activation in vivo. In addition,

EAL domain dimerization via a conserved mode of interaction is

likely to contribute to the efficiency of the signaling system by

stabilizing the activated conformation, although it appears to be a

secondary component of the activation mechanism.

Crystal Structure of LapD’s Output Domain: A Conserved,
Domain-Swapped Periplasmic Domain

In order to shed light on how changes in the cytosolic domain

are sensed in the periplasm, we determined the structure of the

entire output domain (residues 22–151; Figure 1A). Crystals grown

with selenomethionine-derivatized protein diffracted X-rays to a

maximum resolution of 1.8 Å (Table S1). The structure was solved

by single-wavelength anomalous dispersion phasing. The final

model consists of two molecules per asymmetric unit spanning

residues 23–150 (Figures 10A and S7A).

The periplasmic output domain of LapD forms an extensively

interwoven, domain-swapped dimer sharing 3,429 Å2 interfacial

surface area between the protomers (1/3 of LapD’s output domain

molecular surface) (Figures 10 and S7B). The dimer adopts an

overall V-shaped conformation. Each arm of the fold consists of

two a-helices and two b-strands contributed by one of the two

protomers, complemented by two b-strands flanked by helical

segments from the other. The N- and C-terminal helices of LapD’s

output domain presumably connect directly to the transmembrane

helices and the HAMP domains. The two half sites are linked via a

long connecting segment that crosses over at the center of the

dimer. The two protomers superimpose well except for a subtle

rigid body rotation around the linker (Figure S7A).

A DALI (distance-matrix alignment) search comparing LapD’s

output domain to proteins in the RSCB Protein Data Bank (PDB)

revealed structural similarity of its domain-swapped arms to the

periplasmic domain of the sensor histidine kinase CitA (Z-score =

5.4, rmsd of 2.5 Å) [43–45]. The periplasmic modules of CitA and

related proteins show some homology to PAS domains and have

been classified as PDC (PhoQ-DcuS-CitA) protein domains

[46,47]. Such domains occur in many other bacterial transmem-

Figure 8. Phenotypic analyses of lapD mutants. (A) Biofilm
phenotypes. Biofilm formation of DlapD cells expressing full-length,
wild-type LapD, LapD point mutants, or the insert-less expression vector
was assessed. Crystal violet-stained biofilms (top) and their quantifica-

tion (bottom) are shown. Data are means 6 SD of eight replicates.
Protein levels were determined by Western blotting using a primary
antibody that recognizes His6 epitope at the C-terminus of LapD. The
asterisk marks a residue at the center of the EAL domain dimerization
interface. (B) Biofilm phenotypes of double mutants. The analysis was
carried out as described in (A). Data are means 6 SD of eight replicates.
doi:10.1371/journal.pbio.1000588.g008
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brane proteins, but unlike LapD’s output domain, they are

found to form a variety of regular, non-swapped dimers

[44,47,48].

A sequence alignment of 18 sequences was constructed,

including LapD homologs from other Pseudomonas strains and

extending to more distantly related sequences from other bacterial

genera (Figure S1; Table 2). Mapping sequence conservation onto

the accessible molecular surface revealed a few potentially

important motifs (Figures 10C and S8. The PxWF and LW

segments (residues 103–106 and 144–145 of LapD, respectively)

form a continuous surface at the bottom of the dimer. While the

LW segment is part of the surface that accommodates the long N-

terminal helix of the adjacent protomer, the PxWF is likely to

interact with the inner membrane. The other striking feature is a

strictly conserved loop connecting the strands b3 and b4 formed

by the conserved GWxQ motif (residues 124–127 of LapD). W125

forms the most distal point of the periplasmic domain located at

the center of the loop, and its side chain is in an outward-facing

rotamer conformation (Figure 10C).

Given its strict conservation and peculiar conformation, we

targeted W125 in a site-directed mutagenesis study, replacing its

side chain non-conservatively with a glutamate residue. The

mutant output domain expressed and purified indistinguishably

from the wild-type protein but had distinct functional properties.

In a purified system using hexahistidine (His6)–tagged LapG, a

periplasmic cysteine protease that binds to LapD’s output domain

in a c-di-GMP-dependent manner (see Newell et al. [29]), we

could efficiently pull down the untagged wild-type output domain

(Figure 10D). Luminescent detection-based quantification indi-

cates a binding stoichiometry of two LapG molecules per output

domain dimer at saturating conditions. This result indicates that in

the absence of the transmembrane and cytoplasmic domains, the

output domain adopts a LapG-binding-competent state. In

contrast, the output domain mutant W125E failed to interact with

LapG in this assay. Consistent with these results, a full-length allele

harboring the W125E mutation failed to restore LapD-dependent

biofilm formation in a DlapD genetic background (Figure 10E).

The periplasmic loss-of-function mutation is also dominant over

Figure 9. Phosphate-regulated c-di-GMP signaling via LapD. (A) Phosphate-regulated c-di-GMP signaling. Phosphate (Pi) starvation leads to
the expression of the active phosphodiesterase RapA and a reduction in cellular c-di-GMP concentration [24]. LapD mutants were tested for their
response to limiting phosphate concentration. Biofilm formation was monitored over 90 min after physiological activation of the Pho system in low-
phosphate medium, and compared to biofilm formation in phosphate-rich medium. The mutant DH1 contains an activating deletion in the HAMP
domain and has been described previously [24]. Data are means 6 SD of eight replicates. (B) Mutants showing intermediate responses. The analysis
was carried out as described in (A). Data are means 6 SD of eight replicates.
doi:10.1371/journal.pbio.1000588.g009
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the highly activating S229D mutation when introduced in the same

allele, underlining the functional importance of W125 in transmit-

ting cytosolic signaling events to the periplasm.

Structure-Based Model for the Regulation of Periplasmic
Proteases in Bacteria

Our structural analyses of LapD revealed an autoinhibited

conformation of the cytosolic domains in the absence of c-di-

GMP, a dimeric state of c-di-GMP-bound EAL domains in the

active state, and a domain-swapped dimer of the periplasmic

output domain that is competent for LapG binding. The HAMP

domain was modeled based on available structural information for

this relay module, with the S helix forming a continuous extension

of the HAMP domain’s second helix [49,50]. In conjunction with

the biochemical and genetic analyses described in an accompa-

nying manuscript, we propose the following model for the

activation of LapD and its mechanism of inside-out signaling

across the inner bacterial membrane (Figure 11). The S helix and

GGDEF domain function as a physical lock, gating access of c-di-

GMP to the EAL domain. In this conformation, LapD’s output

domain is held in a LapG-binding-incompetent state, and hence

LapG gains access to and cleaves LapA, releasing this critical

biofilm adhesin from the cell surface. An increase in the cellular c-

di-GMP level, concomitant with a sampling of a c-di-GMP-

binding-competent conformation of LapD, will outcompete the

inhibitory interactions in the cytoplasmic domains, likely accom-

panied by a large conformational change allowing EAL domain

dimerization. Coupling between dimerization and c-di-GMP

binding may further contribute to the efficiency of the activation

switch, by preventing reversal to the autoinhibited state. Many

mutations in the cytoplasmic module including the HAMP

domain lead to aberrant, constitutive activation of LapD

(Figures 8 and 9) [24]. These data suggest that intrinsic

autoinhibitory interactions are indeed necessary to prevent the

system from adopting a constitutively active conformation.

Based on the primary sequence and secondary structure

predictions, the HAMP domain is directly linked to the

GGDEF–EAL domain module via the S helix. HAMP domains

occur in a large number of predominantly transmembrane sensor

proteins that transmit signals from the environment across the cell

membrane to elicit an intracellular response (outside-in signaling)

[21]. Rotation of the helices in HAMP dimers has been described

as the main mechanism for signal transmission [49]. It is

conceivable that the EAL domain–S helix interaction stabilizes

the off state, and that the release of the EAL domain from the S

helix will allow the receptor to relax. The disengagement may

trigger a rotation in the HAMP domain in a similar fashion to in

other HAMP domains [49,50], yielding a conformational change

in the output domain and allowing the periplasmic domain of

LapD to sequester LapG.

What is the relevance of the unusual fold of LapD’s output

domain? Unlike CitA and related sensor proteins, which bind

small molecules in the periplasm and relay this information to the

inside of the cell, LapD sequesters a periplasmic protein upon

receiving a cytosolic signal. We speculate that a domain-swapped

fold would respond more efficiently and precisely in coupling

conformational changes in the cytosolic domains across the

membrane than canonical dimeric periplasmic domains. One

may consider the periplasmic domain of LapD as a single domain

given the extensive sharing of structural elements and a negligible

monomer–dimer transition. Given the functional importance and

the particular position of W125, we hypothesize that the output

domain may act as a molecular ruler, with the tryptophan residues

forming the tips of a caliper. Varying the angle between the arms

of the V-shaped fold upon c-di-GMP-triggered HAMP domain

rotation could form the basis for modulating binding of LapG in

the periplasm, assuming that both tryptophan residues of the

dimeric, periplasmic fold interact with LapG (monomers or

dimers).

Although competent for specific LapG binding, the isolated

LapD output domain failed to compete for LapG sequestration

with the full-length c-di-GMP-bound receptor (P. D. N.,

unpublished data). It is likely that the intracellular and

transmembrane domains facilitate the formation of a stable,

high-affinity state. In addition, removal of the domain from its

native context may alter its conformation. The observation that

the isolated output domain can bind LapG is consistent with a

model in which the dinucleotide-free, intracellular domains hold

the receptor in an autoinhibited conformation that relaxes into a

LapG-binding state upon activation. Consequently, deletion of the

regulatory domains would allow for the output domain to adopt

the active, LapG-binding conformation. In addition, potential

higher-order oligomerization of LapD into lattices may contribute

to sequestering LapG over larger membrane surfaces and to the

fine-tuning of the signaling system. Two crystal structures

described here, of the output domain and the c-di-GMP-bound

EAL domain, show some potentially relevant higher-order

interactions (Figure S7C and S7D). Further experiments will be

required to determine the oligomeric state of full-length LapD in

the absence and presence of c-di-GMP.

Conservation of Signaling Systems Involving LapD
Homologs

Based on sequence conservation, LapD homologs in other

Pseudomonas strains, including P. putida and P. aeruginosa, are likely to

function in a similar fashion (Figure S1; Table 2) [24,27]. While

LapD and LapG from P. aeruginosa (PA1433 and PA1434,

respectively) show a high degree of sequence conservation and

functionally rescue deletions in these genes in P. fluorescens, no

biofilm phenotype has been associated with this signaling system in

their native strain [23], consistent with the absence of an obvious

LapA homolog in this species. In contrast, we identified similar

effector systems and targets in more distant genera including

Legionella and various Vibrio strains. In all these bacteria, lapD and

Table 1. Apparent affinity of LapDdual or LapDEAL for
c-di-GMP.

Protein Mutation Apparent Kd (mM) Bmax
a,b

LapDdual Wild-type 27.064.7 5.46106

S229D 15.161.8 5.36106

E262A 15.361.7 5.66106

A602E .1 mM n.d.

S229D/A602E .1 mM n.d.

LapDEAL Wild-type 13.160.9 5.56105

A602E 36.365.4 5.66105

aFor LapDdual variants containing the A602E mutation, maximum binding at the
highest c-di-GMP concentrations was significantly lower compared to LapDdual

lacking this point mutation. Assuming similar binding capacity of the various
proteins, the data of the A602E-containing constructs of LapDdual could not be
fitted accurately, and estimated Kd values are much larger than the highest c-
di-GMP concentration used in the titrations.

bLapDEAL shows an overall weaker dimerization propensity than LapDdual, which
affects the stability of the nucleotide-bound state.

n.d., not determined.
doi:10.1371/journal.pbio.1000588.t001
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Figure 10. Structure–function analysis of the periplasmic output domain of LapD. (A) Crystal structure of LapDoutput. The crystal structure
of the periplasmic output domain of LapD (residues 22–151) is shown as a ribbon presentation, with the two protomer chains colored in pink and
gray, respectively. The relative position of the inner cell membrane (gray bar) and connection to the flanking transmembrane (TM) helices are
indicated. Two orthogonal views are shown. (B) Topology diagram. The diagram illustrates the domain-swapped structure of the dimeric output
domain. (C) Surface conservation. Based on an alignment of 18 sequences of LapD homologs, the sequence conservation was mapped onto the
accessible surface of the output domain. One protomer is shown as a surface presentation, the other is shown as a ribbon presentation. Conserved
motifs and individual residues are highlighted. (D) LapDoutput–LapG complex formation. Purified His6-tagged LapG (His6-LapG) was bound to NiNTA,
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lapG homologs with conserved, functionally important residues

exist within the same operon (Figure S1; Table 2). LapD from V.

cholerae El Tor represents a special case since its EAL domain is

encoded by a second gene, separated from the transmembrane

receptor containing the output, HAMP, and GGDEF domains.

While the relevance of this finding requires further investigation,

these genes have been found upregulated in rugose strains of V.

cholerae, associated with increased biofilm formation [51].

The bioinformatic analysis also detected the presence of

associated ABC transporters in genomes encoding LapD homo-

logs, as in the case of P. fluorescens. Putative substrates of the

cysteine protease LapG may fall into one of two categories. Newell

et al. [29] identified the large adhesin LapA as a LapG substrate,

involved in biofilm formation and stability in P. fluorescens. Based

on the cleavage site sequence, other LapA homologs were

identified in a variety of strains. In addition, we predict that

LapG homologs may have different substrates in systems for which

no clear LapA-type proteins could be identified. Regions with

homology to the LapG-cleavage site of LapA have been identified

in RTX-like bacterial toxins, and for the majority of such

candidate substrates, these proteins are encoded in close genetic

proximity to lapD and lapG homologs.

The GGDEF–EAL domain–containing proteins described here

are degenerate with respect to their active sites, lack catalytic

activity, and function as c-di-GMP receptors. A similar system has

been previously described in Escherichia coli. Unlike LapD, the

transmembrane HAMP–GGDEF–EAL domain–containing pro-

tein CsrD regulates degradation of regulatory RNAs, but we

speculate that the cytosolic module may be autoregulated in a

similar fashion [52]. Other proteins containing the tandem

domain module with a higher degree of conservation at the

putative enzyme active sites exist in association with a HAMP

domain in some bacterial genomes (e.g., V. cholerae). The

mechanism described for LapD may also be applicable to these

systems, in which the HAMP domain and S helix could be

regulatory features to control the phosphodiesterase and/or

diguanylate cyclase activity in the outside-in signaling mechanism,

thus leading to changes in cellular c-di-GMP levels.

Conclusions
Here, we elucidated the molecular mechanism underlying the

function and regulation of P. fluorescens LapD, a transmembrane

receptor essential for biofilm formation in this strain. Similar

receptors are conserved in many bacteria where they control a

LapG-type, periplasmic protease. LapD is autoinhibited with

regard to c-di-GMP binding by interactions of the EAL domain

with the S helix and the GGDEF domain. Receptor activation

requires the concurrent release of the EAL domain from these

interactions and the binding of c-di-GMP, which triggers a

conformational change in the output domain from an incompetent

to a competent state with regard to LapG binding [29]. Mutations

in the regulatory features that weaken the autoinhibitory

interactions render LapD constitutively active even under

phosphate starvation (low c-di-GMP levels; Figure 9). This is in

contrast to other c-di-GMP receptors with known structure, such

as PilZ domain–containing proteins [53,54], VpsT [14], and the

GGDEF–EAL domain–containing protein FimX [36]. In all these

cases, the c-di-GMP-binding site appears to be readily accessible in

the apo states (Figure S6). In PlzD, dinucleotide binding

introduces a conformational change that changes the relative

orientation of its two domains [53]. In FimX, the EAL domains

form the distal tips of an elongated, dimeric protein [36]. c-di-

GMP binding to the isolated EAL domain or the full-length

protein is indistinguishable, and no major conformational change

has been observed for FimX upon dinucleotide binding, suggesting

a mode of signal transmission that may rely on partner proteins

[36,55].

Given the occurrence of the HAMP–GGDEF–EAL domain

module in many other proteins from different free-living and

pathogenic bacterial species, the results discussed here will have

broad implications for receptors predicted to mediate either inside-

out or outside-in signaling involving the bacterial second

messenger c-di-GMP.

Materials and Methods

Protein Expression, Purification, and Crystallography
The dual GGDEF–EAL domain module (LapDdual; residues

220–648), the EAL domain (LapDEAL; residues 399–648), and the

periplasmic output domain (LapDoutput; residues 22–151) of P.

fluorescens Pf0-1 LapD were produced following standard molecular

biology and liquid chromatography techniques. Crystals were

obtained by hanging drop vapor diffusion, and datasets were

collected using synchrotron radiation at the Cornell High Energy

Synchrotron Source (Ithaca, New York). Detailed protocols are

provided in Text S1.

Size Exclusion Chromatography–Coupled Static MALS
For MALS measurements, purified proteins (20–320 mM,

injected concentration) were subjected to size exclusion chroma-

tography (SEC) using a WTC-030S5 (for LapDdual) or WTC-

015S5 (for LapDEAL) column (Wyatt Technology) equilibrated in

gel filtration buffer (25 mM Tris-HCl [pH 8.4] and 250 mM

NaCl). Where specified, wild-type or mutant LapD protein

variants were incubated with c-di-GMP (500 mM), produced

enzymatically (see Text S1), for 30 min at room temperature prior

to SEC. The SEC system was coupled to an 18-angle static light

scattering detector and a refractive index detector (DAWN

HELEOS-II and Optilab T-rEX, respectively, Wyatt Technolo-

gy). Data were collected at 25uC every second at a flow rate of

1.0 ml/min and analyzed with the software ASTRA, yielding the

molecular weight and mass distribution (polydispersity) of the

samples. For data quality control and normalization of the light

scattering detectors, monomeric bovine serum albumin (Sigma)

was used.

Sedimentation Equilibrium Analysis
Ultracentrifugation experiments were performed at 20uC in a

Beckman ProteomeLab XL-A centrifuge equipped with an AN-60

rotor and absorbance optics. Sedimentation equilibrium data were

recorded for 12–15 h each at speeds of 10,000, 14,000, and

20,000 rpm. Scans were taken at 1-h intervals with a 0.001-cm

step size along the radial axis and five replicates per data point.

Attainment of sedimentation equilibrium was verified using the

program WinMATCH (D. A. Yphantis and J. W. Lary; www.

biotech.uconn.edu/auf). Six-sector cells were loaded with 16, 26,

and incubated in the absence or presence of untagged, wild-type LapDoutput, or a LapDoutput mutant in which W125 has been replaced with a
glutamate. The Coomassie-stained gel shows eluates of NiNTA-bound proteins. (E) Biofilm phenotypes and LapD stability. Biofilm formation of DlapD
cells expressing full-length, wild-type LapD, LapD point mutants, or the insert-less expression vector was assessed. Protein levels are shown by
Western blotting for the His6 epitope at the C-terminus of LapD.
doi:10.1371/journal.pbio.1000588.g010
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and 46dilutions of ,12 mM stock solutions of either wild-type or

S229D LapDdual in 25 mM Tris (pH 7.5) and 150 mM NaCl,

either neat or supplemented to a final concentration of 20 mM c-

di-GMP. Curves collected at all three speeds for all three channels

were globally fit. Protein partial specific volume (�vv) and buffer

density and viscosity (r,g) were calculated using the program

SEDNTERP [56]. Sedimentation equilibrium data were analyzed

using the program SEDANAL [57], using either single-species

models or models including dinucleotide binding and protein

dimerization.

Semi-Quantitative c-di-GMP Binding Assays
Proteins (250 mM) were preincubated with excess c-di-GMP

(500 mM) at 4uC and separated from unbound dinucleotide via

SEC. SEC-eluted protein peaks were collected, concentrated to a

final concentration of 200 mM to normalize for protein content,

Figure 11. Structure-based model for LapD inhibition and activation. (A) Structural model of full-length LapD. We derived models for the
autoinhibited and activated, c-di-GMP-bound state of LapD based on the crystal structures described here. Only the c-di-GMP-bound receptor is
capable of LapG binding in the periplasm. The HAMP domains were modeled based on sequence alignments and available structural information
[49,50]. (B) Model for LapD-mediated control of biofilm formation. The cartoon presents the current model for biofilm formation controlled by the c-
di-GMP receptor LapD, based on our structural and functional analyses, previous results [24–26], and the companion paper by Newell et al. [29].
doi:10.1371/journal.pbio.1000588.g011
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heat-denatured, and filtered through Microcon Centrifugal Filter

Units (Millipore, 10 kDa cutoff). Dinucleotide content in the

resulting samples was analyzed on a C18 reverse-phase HPLC

column by using a methanol-phosphate gradient (buffer A:

100 mM monobasic potassium phosphate [pH 6.0]; buffer B:

70% buffer A, 30% methanol) [18]. Purified nucleotides were used

for standardization. Integrated areas of the c-di-GMP peaks from

three independent experiments were plotted relative to those for

the wild-type LapDdual and LapDEAL protein constructs.

Binding of [32P]-c-di-GMP to purified LapDdual or LapDEAL

(1 mM) was assessed by filter binding assays as described before

[24,25]. Unspecific background binding was determined by using

bovine serum albumin, and was subtracted from the data obtained

for LapD-containing samples. Data were fitted to a one-site-

specific binding model Y = Bmax?X/(Kd + X) in GraphPad Prism

(Bmax, maximum specific binding; Kd, apparent binding constant).

Protein Pull-Down Assay
His6-tagged LapG was incubated with NiNTA superflow resin

(Qiagen) in low-salt binding buffer (25 mM Tris-HCl [pH 8.4],

75 mM NaCl, 25 mM KCl, and 40 mM Imidazole). After

removal of any unbound protein in consecutive wash steps,

untagged LapD output domain variants were added to the

reaction and incubated for 1 h at 4uC under nutation. The resin

was extensively washed in low-salt binding buffer. The remaining

affinity-bound proteins or protein complexes were eluted from the

slurry in elution buffer (25 mM Tris-HCl [pH 8.4], 500 mM

NaCl, and 300 mM Imidazole) and visualized using standard

denaturing gel electrophoresis (SDS-PAGE). For quantification,

gels were stained with SYPRO Ruby gel stain (Molecular Probes)

following the manufacturer’s directions, and imaged on a

VersaDoc MP system (Bio-Rad).

Strains and Growth Conditions
Routine culturing of P. fluorescens Pf0-1 and E. coli was done in

lysogeny broth at 30uC and 37uC, respectively. When appropriate,

antibiotics were added to the medium at the following concentra-

tions: E. coli, 10 mg/ml gentamicin; P. fluorescens, 20 mg/ml

gentamicin. Plasmids were introduced into P. fluorescens by

electroporation as described previously [58]. K10T medium for

biofilm assays was prepared as described previously [59]. K10T-p
is 50 mM Tris-HCl (pH 7.4), 0.2% (wt/vol) Bacto tryptone,

0.15% (vol/vol) glycerol, and 0.61 mM Mg2SO4. K10T-1

medium is K10T-p amended with 1 mM K2HPO4. A list of

strains and plasmids used in the cell-based assays is provided in

Table S2.

Quantitative Biofilm Formation and Surface Attachment
Assays

To quantify biofilm formation, strains were grown statically for

6 h in K10T-1 medium as described previously [24]. Biofilm

biomass was stained with 0.1% crystal violet for 15 min, the stain

was dissolved, and the biofilm quantified by spectrophotometry,

measuring the optical density at 550 nm. We analyzed the effects

of inorganic phosphate starvation on attachment by comparing

biofilm levels in high-phosphate (K10T-1) and low-phosphate

(K10T-p) media over time, as done previously [24].

Assessment of LapD Protein Levels by Western Blot
LapD proteins expressed in P. fluorescens Pf0-1 were visualized by

Western blot as described previously [24], with the following

modifications. Blots were probed for the His6 epitope with a rabbit

anti-His6 antibody (Genscript). Samples consisted of clarified cell

lysates prepared by harvesting cells from 3 ml of overnight culture,

sonicating 3610s in 500 ml of buffer (20 mM Tris [pH 8] and

10 mM MgCl2), and pelleting debris at 15,000g for 12 min.

Samples were normalized to protein concentration using the BCA

kit (Pierce).

Accession Numbers
Atomic coordinates and structure factors have been deposited in

the RCSB Protein Data Bank (http://www.pdb.org) under the ID

codes 3pjt, 3pju, 3pjv, 3pjw, and 3pjx.

Supporting Information

Figure S1 Sequence alignment of LapD homologs. A

sequence alignment of LapD homologs from various species was

generated with ClustalW2 [60] and formatted with ESPript [61].

Key residues discussed in the manuscript are marked with closed

green arrows. The degenerate GGDEF and EAL signature motifs

(RGGEF and KVL, respectively) are marked with yellow bars.

Secondary structure elements are shown based on the crystallo-

graphic data and secondary structure predictions for the trans-

membrane and HAMP domains. The following sequences were

used to generate the alignment: P. fluorescens Pf0-1 (LapD,

YP_345864), P. putida KT2440 (NP_742334), P. aeruginosa PA01

(NP_250124), Pectobacterium carotovorum subsp. brasiliensis PBR1692

(ZP_03826388), Citrobacter sp. ATCC 29220 (ZP_06355256),

Polaromonas sp. JS666 (YP_547171), Rhodoferax ferrireducens T118

(YP_524995), Dechloromonas aromatica RCB (YP_286553), Cellvibrio

japonicus Ueda107 (YP_001981887), L. pneumophila str. Lens

(YP_126219), Geobacter sp. M18 (ZP_05313414), V. alginolyticus

12G01 (ZP_01258281), V. parahaemolyticus AQ3810 (ZP_01990882),

V. harveyi HY01 (ZP_01986262), V. shilonii AK1 (ZP_01866121), V.

cholerae 1587 (ZP_01950486), V. fischeri ES114 (YP_207124), and V.

angustum S14 (ZP_01233947).

Found at: doi:10.1371/journal.pbio.1000588.s001 (4.74 MB PDF)

Figure S2 Crystal forms of LapDdual and LapDEALNc-di-
GMP. (A) LapDdual. Two independent crystal forms were

obtained for LapDdual. The resulting structures were superimposed

on the EAL domain and shown as protein backbone traces. (B) c-

di-GMP-bound LapDEAL. Two independent crystal forms were

obtained for LapDEAL. Both crystal lattices show the same dimeric

assembly of EAL domains. Dimers were superimposed on one

EAL domain and shown as protein backbone traces. (C) Stereo

views. Stereo views of the structural comparisons shown in (A) and

(B) are shown. In this view, the EAL domains of LapDdual and

LapDEALNc-di-GMP are shown in a similar orientation.

Found at: doi:10.1371/journal.pbio.1000588.s002 (7.01 MB TIF)

Figure S3 Comparison of the GGDEF domains from
LapD and PleD. (A) Sequence alignment. Sequences of GGDEF

domains with known structure were used to generate the

alignment [17,18,36]. Conserved residues involved in nucleotide

binding and hydrolysis are marked with asterisks [17,38]. The

GGDEF motif is highlighted with a yellow bar. (B) Overview.

Structures of GGDEF domains of LapD and PleD (PDB ID 2v0n)

are shown as a ribbon presentation [38]. A GTP analog bound to

the active site of PleD is shown as a stick presentation. (C) GTP

binding site. A close-up view of the active site is shown. Residues

that in PleD are involved in nucleotide and divalent cation

coordination are shown as a stick presentation. Left labels

correspond to the LapD sequence; right labels correspond to the

PleD sequence.

Found at: doi:10.1371/journal.pbio.1000588.s003 (1.79 MB

TIF)
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Figure S4 Comparison of c-di-GMP-bound LapDEAL and
YkuI dimers. (A) Sequence alignment. Sequences of EAL

domains with known structure were used to generate the

alignment [34–37,39]. Conserved residues in active phosphodies-

terases are marked with asterisks [37]. The EAL motif is

highlighted with a yellow bar. The loop and helix involved in

dimerization are marked with a green and orange bar,

respectively. (B) Overview. Structures of EAL domain dimers of

LapD and YkuI bound to c-di-GMP (PDB ID 2w27) are shown as

a ribbon presentation [35]. c-di-GMP is shown as a stick

presentation. Structures were superimposed on one of the EAL

domains of the dimeric assemblies. (C) c-di-GMP-binding site. A

close-up view of the nucleotide-binding pocket is shown. Residues

involved in c-di-GMP (and, in the case of YkuI, divalent cation)

coordination are shown as a stick presentation. Left labels

correspond to the LapD sequence; right labels correspond to the

YkuI sequence.

Found at: doi:10.1371/journal.pbio.1000588.s004 (7.34 MB TIF)

Figure S5 GGDEF–EAL domain interactions and S
helix–GGDEF domain linker conformation observed in
apo-LapDdual. (A) GGDEF–EAL domain interaction. Close-up

views are shown for regions of direct contact between the GGDEF

and EAL domains in the autoinhibited structure of LapDdual. The

GGDEF and EAL domains are colored in green and orange,

respectively. The S helix is colored in blue. (B) Nucleotide-binding

pocket in apo-LapDdual. A close-up view of the c-di-GMP-binding

pocket of LapD is shown (right panel). c-di-GMP is shown as a

stick presentation after superimposing the crystal structure of

LapDEALNc-di-GMP onto the EAL domain of apo-LapDdual. The

interacting residue pair R450/E262 in LapD is incompatible with c-

di-GMP binding. The left panels show surface presentations of

apo-LapDdual. The middle panel shows accessibility of the c-di-

GMP-binding site, with c-di-GMP taken from LapDEALNc-di-

GMP after superimposition. (C) S helix–GGDEF connector. The

S helix and the GGDEF domain are connected via a short loop

that forms a tight turn. The loop conformation is conserved in

other GGDEF domain–containing proteins, and is stabilized by

the interaction between two residues D239 and R316, which are

strictly conserved in many GGDEF domain–containing proteins

[17,18,38,41]. The arginine residue is directly preceding the

GGDEF domain signature motif (GGDEF or GGEEF in active

cyclases; RGGEF in LapD); the aspartate residue is located at the

N-terminus of the loop. Its strict sequence and conformational

conservation suggest a functional importance of the connector

loop, likely restricting the conformational freedom between

adjacent domains.

Found at: doi:10.1371/journal.pbio.1000588.s005 (9.22 MB TIF)

Figure S6 Structural comparion of LapD with other c-
di-GMP receptors. (A) LapD. The monomoric apo-LapDdual

structure is shown as a surface presentation (top). The middle

panel shows the c-di-GMP-bound EAL domain of LapD in two

orthogonal views. The dinucleotide-binding site is colored in red.

The conformation of c-di-GMP is similar to that observed in other

EAL domains such as FimX, YkuI, and BlrP1 (bottom panel) (see

also Figure S4) [17,18,34–38]. (B) VpsT (PDB IDs 3kln and 3klo).

The transcription factor VpsT from V. cholerae exists in a

monomer–dimer equilibrium. An apo-VpsT monomer is shown

as a surface presentation (top panel). The dimeric species is

stabilized by c-di-GMP binding to the base of the regulatory

receiver domain (middle panel) [14]. Two molecules of c-di-GMP

form an intercalated dimer, similar to the binding mode observed

for the inhibitory site binding in active diguanylate cyclases

[17,38]. The dinucleotide binding site is shown in red. (C) PilZ

domains (PDB IDs 1yln, 2rde, 3yg, and 3kyf). The PliZ domain–

containing protein PlzD/VCA0042 forms homodimers via its

YcgR-N* domain. The PilZ domains form separate lobes of the

protein. PilZ domain–containing proteins have been shown to

bind either one or two mutually intercalated molecules of c-di-

GMP [53,54]. The dinucleotide-binding site is shown in red.

Found at: doi:10.1371/journal.pbio.1000588.s006 (7.57 MB TIF)

Figure S7 Structural analysis of LapDoutput and poten-
tial mechanisms for higher-order oligomerization of
LapD. (A) Comparison between LapDoutput protomers. The

periplasmic output domain of LapD crystallized with two

molecules in the asymmetric unit. The protomers were superim-

posed on the first two helices of the fold, revealing a minor, rigid-

body rotation of one half of the molecule relative to the other half

between the two protomers. The rotation occurs at the connecting

loop between b2 and a3 that forms the crossing-over point in the

domain-swapped dimer. (B) LapDoutput crystal packing. Domain-

swapped dimers of the output domain interact predominantly via

two interfaces in the crystal lattices. One involves bottom-to-

bottom interaction between LapDoutput dimers via a conserved,

hydrophobic patch coinciding with the putative membrane-

interaction surface. The other interface involves hydrophobic

interactions between the arms of the V-shaped output domain

dimers. (C) Potential higher-order oligomerization based on the

structure of LapDoutput. Crystal lattice contacts reveal a potential

mode for higher-order assemblies of LapD. The close-up view

(right panel) shows the hydrophobic contacts between output

domain dimers. (D) Potential higher-order oligomerization based

on the structure of LapDEALNc-di-GMP. In the C2221 crystal

lattice, EAL domains form higher-order lattices that may highlight

a mode for receptor oligomerization in the membrane.

Found at: doi:10.1371/journal.pbio.1000588.s007 (7.15 MB TIF)

Figure S8 Surface conservation and hydrophobicity of
LapDoutput. (A) Surface conservation. Based on an alignment of

18 sequences of LapD homologs (Figure S1), the sequence

conservation was mapped onto the solvent-accessible surface of

the output domain. One protomer is shown as a surface

presentation, the other is shown as a ribbon presentation.

Conserved motifs and individual residues are highlighted. Two

views, separated by a 180u rotation, are shown. (B) Hydrophobic-

ity mapped onto the molecular surface of LapDoutput. The surface

is colored according to the hydrophobicity of accessible residues.

Hydrophobic residues are shown in green; polar and charged

residues are in gray and pink, respectively.

Found at: doi:10.1371/journal.pbio.1000588.s008 (3.66 MB TIF)

Table S1 X-ray data collection and refinement statis-
tics.

Found at: doi:10.1371/journal.pbio.1000588.s009 (0.08 MB

DOC)

Table S2 Strains and plasmids.

Found at: doi:10.1371/journal.pbio.1000588.s010 (0.05 MB

DOC)

Text S1 Supporting information. The file includes supple-

mental Materials and Methods and associated references.

Found at: doi:10.1371/journal.pbio.1000588.s011 (0.07 MB

DOC)
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