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A crucial step for accelerating tuberculosis drug development is bridging the gap between preclinical and clinical trials. In
this study, we developed a preclinical model-informed translational approach to predict drug effects across preclinical sys-
tems and early clinical trials using the in vitro-based Multistate Tuberculosis Pharmacometric (MTP) model using rifampicin
as an example. The MTP model predicted rifampicin biomarker response observed in 1) a hollow-fiber infection model, 2) a
murine study to determine pharmacokinetic/pharmacodynamic indices, and 3) several clinical phase IIa early bactericidal
activity (EBA) studies. In addition, we predicted rifampicin biomarker response at high doses of up to 50 mg/kg, leading to
an increased median EBA0-2 days (90% prediction interval) of 0.513 log CFU/mL/day (0.310; 0.701) compared to the stan-
dard dose of 10 mg/kg of 0.181 log/CFU/mL/day (0.076; 0.483). These results suggest that the translational approach
could assist in the selection of drugs and doses in early-phase clinical tuberculosis trials.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� The current treatment paradigm (drugs and doses) used in
treatment of tuberculosis is not based on pharmacokinetic and
pharmacodynamic (PK/PD) principles.
WHAT QUESTION DID THIS STUDY ADDRESS?
� How to optimally select clinical antituberculosis drug doses from
preclinical studies using a translational pharmacometric approach.
WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� The study describes a model-informed, in vitro-based, trans-
lational approach to accurately predict the biomarker response

across other preclinical systems and phase IIa early bactericidal
activity studies using rifampicin as an example.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
� The approach described in the study may help to inform
decision-making for dose selection in the planning of phase II
studies using tuberculosis in vitro information. In addition, the
effects of high-dose rifampicin were evaluated suggesting a clini-
cal potential for doses up to 50mg/kg considering only efficacy
and not safety/toxicity.

The current treatment paradigm for drugs and doses used in the
treatment of tuberculosis (TB) is not based on pharmacokinetic
and pharmacodynamic (PK/PD) principles.1 To make progress
more rapid, we need to harness the power of PK/PD principles
when developing new regimens. The Multistate Tuberculosis
Pharmacometric (MTP) model is a semimechanistic pharmaco-
metric model describing the growth and drug effects on different
bacterial substates, including phenotypically resistant noncultura-
ble (dormant) bacteria.2,3 This transient phenotypic resistance
allows the bacteria to persist under drug exposure, to a much
larger degree than bacteria that exhibit active multiplication, and
is thus thought to be a cause of patient relapse.4 As such, the esti-
mation and prediction of drug effects on this phenotypic resis-
tant subpopulation is crucial in order to develop and predict a

successful treatment regimen. The MTP model was developed
using in vitro information from classical time-kill experiments
and has been successful in describing the effects after exposure to
rifampicin, not only for in vitro in monotherapy but also for
assessing efficacy of drug combinations in vitro together with the
General Pharmacodynamic Interaction model,5,6 in vivo mono-
therapy,7 in vivo assessment of drug combinations,8 and clinical
settings9 suggesting its value for describing drug effects as well as
for translational applications.
Phase IIa is the first trial conducted in patients for TB drug

development. These trials are most often monotherapy trials
designed to provide information on a compounds’ bactericidal
activity after different doses.10–12 Traditionally, the measure of
activity is early bactericidal activity (EBA), which is the daily
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decrease in log10 colony forming units (CFU) during the first 2
days of treatment (EBA0-2) or the first 14 days of treatment
(EBA0-14).

13 The currently employed approach to dose selection
for phase IIa trials is based on targeting a PK/PD index using prob-
ability of target attainment (PTA) where the target often is defined
from long-term mouse experiments.14 Quantitative information
on the PK/PD relationship for the antibiotics is ignored by using
such summary variables as PK/PD index. This may be particularly
important in the field of TB, where the effect is not immediate but
takes a long time until cure is reached, i.e., the response cannot
only be predicted using drug exposure and sensitivity (MIC) but
biomarker response needs to be incorporated into the predictions.
The MTP model has been shown to be superior in defining statis-
tically significant drug effects in early clinical trials in TB drug
development compared to standard approaches.15

The in vitro hollow fiber system model of TB (HFS-TB) is an
in vitro preclinical system that has shown accuracy in predicting
PK/PD indices16 and which recently received a positive qualifica-
tion opinion by the European Medicines Agency’s Committee
for Medicinal Products for Human Use for exploring dose and
regimen selection in anti-TB drug development programs.17

In this work, we aimed to develop a translation approach using
in vitro information in order to predict biomarker response in
other preclinical systems and in early clinical trials using the
MTP model as a framework.18 Finally, a sensitivity analysis was

performed to explore the impact of the translational factors on
the predictions of biomarker response in preclinical systems and
in EBA trials.

RESULTS
The translational MTP model
All model components, i.e., the human rifampicin PK model,19 the
epithelial lining fluid model (ELF) model,20 and the MTP model2

were developed earlier and linked in this work (Figure 1). All
parameter values used for the translational predictions are presented
in Table 1. The following translational factors were included in the
linked models, which were required to accurately predict the target
systems (hollow-fiber infection model, murine lung infection
model, and clinical phase IIa early bactericidal activity study):

1) The minimal inhibitory concentration (MIC); We devel-
oped an MIC scaling term to account for differences in myco-
bacterial susceptibility between the mycobacterial isolates used
in the different systems. The MIC scaling term was used to
scale the drug potency measures (EC50 or slope) of the MTP
model to predict from the original system to the target system.
2) The postantibiotic effect (PAE); i.e., persistent drug effects
that are present after removal of the drug. The PAE model was
developed in this work using PAE information from Gumbo
et al.21 The final PAE model consisted of an effect

Figure 1 Compartmental sketch of the translational Multistate Tuberculosis Pharmacometric (MTP) model; left: pharmacokinetic models of each target
system; right: pharmacodynamic MTP model; abbreviations are explained in the article text and in Table 1.

1209CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 104 NUMBER 6 | December 2018

        ARTICLE



Table 1 Parameters of the translational Multistate Tuberculosis Pharmacometric (MTP) model used for the translational predica-
tions into the target systems

Parameter Description Value Source reference

Pharmacodynamics (MTP model)

kFN [days21] Transfer rate from fast- to non-multiplying
state

0.897 3 1026 (4)

kSN [days21] Transfer rate from slow- to non-multiplying
state

0.186 (4)

kSF[days21] Transfer rate from slow- to fast-multiplying
state

0.0145 (4)

kNS [days21] Transfer rate from non- to slow-multiplying
state

0.123 3 1022 (4)

kFS,lin [days22] Time-dependent transfer rate from fast- to
slow-multiplying state

0.166 3 1022 (4)

S0 [mL21] Initial bacterial number of slow-multiplying
state

9770
9770�50 (hollow-fiber)

(4) scaled up from (4)

kG [days21] Fast-multiplying bacterial growth rate 0.150 (hollow-fiber)
0.206 (mice)

0.206 (human)

estimated (4) (4)

F0 [mL21] Initial bacterial number of fast-multiplying
state

4.1 4.1�50 (hollow-fiber) (4) scaled up from (4)

Bmax [mL21] System carrying capacity 2.02�109 (hollow-fiber)
4�106 (mice)

2.42�108 (human)

(17) estimated from (39) (4)

FGk [L�mg21] Linear inhibition of fast-multiplying bacterial
growth

0.017 (4)

FDEmax [days21] Maximal fast-multiplying bacterial death rate 2.15 (4)

FDEC50 [mg�L21] Rifampicin concentration at which half FDEmax

is reached
0.52 (4)

SDEmax [days21] Maximal slow-multiplying bacterial death rate 1.56 (4)

SDEC50 [mg�L21] Rifampicin concentration at which half SDEmax

is reached
13.4 (4)

NDk [L�mg�days-1 Linear non-multiplying death rate 0.24 (4)

Link between pharmacokinetics and pharmacodynamics

ke,in [days21] Transfer rate constant into the effect
compartment

150 estimated from (22)

ke,out, max [days21] Maximal transfer rate from the effect
compartment

1.091 estimated from (22)

ke,out,50 [mg�L21] Rifampicin concentration at which
half ke,out,max is reached

0.662 estimated from (22)

Pharmacokinetics Hollow fiber system

t1/2 [h] Half-life of elimination 3 (22)

fu [-] Fraction unbound 0.2 (22)

Vd [L] Volume of distribution 60 (22)

Murine lung infection model

CL [L�days21] Clearance 0.66 (dose�1 mg/kg) 1.03 (1 mg/
kg< dose<90 mg/kg) 2.29

(dose�90 mg/kg)

estimated from (39)

ka [days21] Absorption rate constant 19.6 estimated from (39)

Table 1 Continued on next page
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compartment with a fast zero-order rate (ke,in) from the rifam-
picin concentrations into the effect compartment and a satura-
ble Michaelis–Menten kinetics (parameterized by ke,out,max and
ke,out,50) describing the elimination from the effect compart-
ment. This model had a 12-point lower Akaike Information
Criteria compared to a model with first-order linear equilib-
rium rate constant. Predicted PAE vs. observed PAE values are
presented in Table 2.

3) Differences in the maximum bacterial burden (Bmax) in the tar-
get system; The estimate for Bmax was obtained from Gumbo
et al.21 for prediction of the hollow-fiber study and estimated for
the murine lung infection model from the digitalized experimental
data of the mouse study.22 For the prediction of the clinical phase
IIa EBA study, Bmax was set to the value obtained in vitro due to the
lack of this information in EBA studies, as bacterial burden without
drug treatment is commonly not obtained due to ethical reasons.

Table 1 Continued

Parameter Description Value Source reference

Vd [L�kg21] Volume of distribution 1.3 estimated from (39)

fu [-] Fraction unbound 0.03 (40)

Clinical phase IIa

Vmax [mg�h21�70 kg21] Maximal elimination rate 525 (20)

km [mg�L21] Rifampicin concentration at which half Vmax is
reached

35.3 (20)

Vd [L�70 kg21] Volume of distribution 87.2 (20)

ka [h21] Absorption rate constant 1.77 (20)

MTT [h] Mean transit time 0.513 (20)

NN [-] Number of transits 23.8 (20)

Emax [-] Maximal increase in enzyme production rate 1.16 (20)

EC50 [mg�L21] Rifampicin concentration at which half the
Emax is reached

0.0699 (20)

kENZ [h21] First-order rate constant for enzyme pool
degradation

0.00603 (20)

Fmax [-] Maximal increase in relative bioavailability at
doses above 450 mg

0.504 (20)

ED50 [mg] Difference in dose above 450 mg at which
half the Fmax is reached

67.0 (20)

IIV Vmax [%] Interindividual variability in Vmax 30.0 (20)

IIV km [%] Interindividual variability in km 35.8 (20)

IIV Vd [%] Interindividual variability in Vd 7.86 (20)

IIV ka [%] Interindividual variability in ka 33.8 (20)

IIV MTT [%] Interindividual variability in MTT 38.2 (20)

IIV NN [%] Interindividual variability in NN 77.9 (20)

IOV km [%] Interoccasion variability in km 18.9 (20)

IOV ka [%] Interoccasion variability in ka 31.4 (20)

IOV MTT [%] Interoccasion variability in MTT 56.4 (20)

IOV F [%] Interoccasion variability in F 15.7 (20)

Correlation Vmax-km [%] 38.9 (20)

fu [-] Fraction unbound 0.2 (21)

kELF [h21] Transfer rate constant from plasma to epithe-
lial lining fluid

41.58 (21)

RELF/plasma [-] Epithelial lining fluid/plasma concentration
ratio

0.26 (21)

IIV, interindividual variability; IOV, interoccasion variability.
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4) The bacterial growth state, which was controlled by the pre-
incubation period before rifampicin treatment was initiated,
which was 4 days and 30 days for the hollow-fiber system and
mouse study, respectively. For prediction of the phase IIa EBA
study, a period of 150 days was assumed before treatment was
initiated. The linked models (PK, ELF, MTP) including all
translational factors is referred to as the translational MTP
model in the following. A detailed description of the components
of the translation MTP model is given in the Methods section.

All predictions were made using the translational MTPmodel with
translational factors and with no parameters estimated from the target
experimental or clinical data apart from the bacterial growth proper-
ties for the hollow-fiber system and themouse experiments.

Prediction of hollow-fiber experiments
The predictions of the different hollow fiber experiments with
and without rifampicin (growth control, 600mg once daily,
2,100mg twice weekly, or 4,200mg once weekly) using the
H37Ra in vitro strain is presented in Figure 2. The translational
MTP model predicted the hollow-fiber regimens very well apart
from some overprediction at >4 days after start of rifampicin
treatment in the once-weekly scenario.

Prediction of PK/PD indices in a murine lung infection model
The rifampicin drug effect at day 6 in a murine lung infection
model (Figure 3, upper panel) correlated best with the PK/PD
index AUC0-8/MIC (R2 5 0.93) and Cmax/MIC (R25 0.78).
The patterns of the predicted PK/PD indices by the translational
MTP model (Figure 3, lower panel) were in good agreement with
the observed PK/PD indices and identified the same indices to be
correlated with the effect of rifampicin (AUC0-8/MIC: R2 5 0.97,
Cmax/MIC: R25 0.97, %T>MIC: R

2 5 0.67). Moreover, the trans-
lational MTP model also predicted the magnitude of the observed
in vivo effects. For instance, for a half-maximum reduction of log
CFU/mL in the mice, a Cmax/MIC of 58 or an AUC0-8/MIC of
4,320 was required, whereas a Cmax/MIC of 168 or an AUC0-8/
MIC of 2,040 was predicted by the translational MTPmodel.

Prediction of clinical early bactericidal activity phase IIa
studies
The translational MTP model including variability of rifampicin
in PK and PD predicted the clinical dose–response curve for up

to 14 days as observed in EBA trials (Figure 4a). For EBA0-2days

and a dose of 10mg/kg, a median EBA (90% prediction interval)
of 0.181 log CFU/mL/day (0.076; 0.483) was predicted. The
EBA0-5days was 0.201 (0.078; 0.484), and the EBA0-14days was
0.202 (0.087; 0.343) for the 10mg/kg rifampicin dose. The
EBA0-2 days for 35mg/kg high dose regimen23 was 0.442 log
CFU/mL/day (0.238; 0.674). The EBA0-5days was 0.465 (0.259;
0.682), and the EBA0-14days was 0.327 (0.227; 0.677) for the
35mg/kg rifampicin dose. The predictions of the translational
MTP model were in accordance with the results of several clinical
trials14,23–27 (Figure 4a).
We also assessed a further increased rifampicin dose to 50mg/

kg, which exceeds the current clinically investigated dose range
capped at 35mg/kg. The 50mg/kg dose was predicted to yield an
EBA0-2 days of 0.513 log CFU/mL/day (0.310; 0.701), i.e., a mod-
est increase compared to the 35mg/kg dose. The EBA0-5days was
0.542 (0.333; 0.711), and the EBA0-14days was 0.465 (0.249;
0.711) for the 50mg/kg rifampicin dose, where a more substan-
tial increase in the EBA0-14days was observed compared to the
35mg/kg dose.
The MIC as a source of interindividual variability in EBA is

depicted in Figure 4b. The predicted median EBA0-2days at
10mg/kg and an MIC value of 0.125mg/L was 0.235 log CFU/
mL/day (0.175; 0.286). However, a much lower median
EBA0-2days of 0.083 log CFU/mL/day (0.062; 0.103) was pre-
dicted for MIC values of 0.5mg/L at a dose of 10mg/kg daily.
An increased dose of 35mg/kg predicted a higher EBA and
might be particularly beneficial for patients with high MIC,
where a median EBA0-2days of 0.254 log CFU/mL/day (0.203;
0.297) was predicted for MIC values of 0.5mg/L (Figure 4b).
Another source of variability in EBA originated from interin-

dividual differences in rifampicin PK (Figure 4c,d). It is evident
that the interindividual variability in rifampicin concentrations is
particularly high during the first days of rifampicin treatment due
to interindividual variability in onset of enzyme autoinduction
processes (Figure 4d).
An outline of the different components of the final preclinical

to clinical forecasting in tuberculosis drug development using the
translational MTP model approach is seen in Figure 5.

Sensitivity analysis
A sensitivity analysis was performed to assess the impact of the
translational factors on the predictions. Each of the translational
factors was excluded one at a time. Omitting a translational fac-
tor did not negatively influence the translational predictions in
all target systems similarly, but resulted in worse predictive per-
formance in at least one target system.
Exclusion of the PAE model substantially affected the predic-

tions of the hollow-fiber system (underprediction of the effect,
Figure S1) and the clinical phase IIa EBA trial (underprediction
of the median effect, Figure S4a), while the impact on the PK/
PD index study in mice was less pronounced (Figure S3a).
Exclusion of the MIC scaling term or a wrong MIC scaling

affected the PK/PD index study (underprediction of the effect,
Figure S3b) and the phase IIa trial (underprediction of

Table 2 Observed (in vitro) vs. predicted postantibiotic effects
(PAE) obtained after exposure to various rifampicin concentra-
tions (0–14 mg/L) for 0–7 h

Time; concentration Observed PAE [days] Predicted PAE [days]

0; 0 0 0

7 h; 2 mg/L 5.3 5.2

1 h; 7 mg/L 12.3 12.0

2 h; 7 mg/L 12.3 12.9

0.5 h; 14 mg/L 19.9 19.3

Observed data from Ref. 22.
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variability, Figure S4b), while the hollow-fiber system
(Figure S2) was least affected.
When a wrong preincubation period was used, all target sys-

tems were affected. When the preincubation period was wrongly
set to 150 days instead of 4 days in the hollow-fiber prediction, a
tendency to a lower drug effect was observed due to the lower

susceptibility due to the higher abundance of S and N state
mycobacteria (Figure S5). Conversely, if a preincubation period
of 4 days instead of 30 days was used for the prediction of the
murine lung infection model, a tendency to overprediction of the
antibacterial effects was observed (Figure S6). For clinical predic-
tion, a preincubation period of 4 days instead of 150 days

Figure 2 Prediction of hollow-fiber system experiments with rifampicin against M. tuberculosis H37Ra; GC: growth control experiment; 600 mg once daily
(OD) dosing, 2,100 mg twice daily; 4,200 mg once weekly; unbound rifampicin (RIF) pharmacokinetics (upper panels) and pharmacodynamic effect over
time (lower panels); circles (experimental data, CFU/mL); predictions of the N state (red), S state (yellow), F state (green) and CFU/mL (black dashed;
sum of F1S).
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Figure 3 Prediction (upper panel) of PK/PD indices Cmax/MIC, AUC0-8/MIC, and %T>MIC of rifampicin as observed (lower panel) in a murine lung infection
model at day 6; red line represents regression line from an inhibitory sigmoidal maximum effect model.

Figure 4 (a) Prediction (median, 10th to 90th percentile) of clinical early bactericidal activity (EBA0-2days, EBA0-5days, EBA0-14days) for rifampicin doses of
2.5 to 50 mg/kg and observed EBA (points) for clinical trials. (b) Predicted impact of the mycobacterial minimum inhibitory concentration (MIC) on the
obtained EBA for the 10 mg/kg dose (left) and the 25 mg/kg dose (right). (c) Predicted impact of pharmacokinetic variability (expressed as fAUC24h and
fCmax) on the obtained EBA of rifampicin. (d) Pharmacokinetic variability of rifampicin exemplified for the 35 mg/kg dose.
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particularly affected the prediction of EBA0-5days and EBA0-14days,
where even a negative EBA was predicted at low doses due to the
active growth of the mycobacteria (Figure S7). In the clinical
data, no variability of ELF penetration was quantifiable due to
the study design; however, assumption of 30% variability in
RELF/plasma only marginally increased the variability in EBA
(Figure S8).

DISCUSSION
In this study we developed a model-informed MTP translational
approach for predicting biomarker response from in vitro time-
kill studies, while taking into account differences in drug suscepti-
bility, postantibiotic effect, PK, and target site distribution along
with innovative and quantitative PK/PD modeling methods. We
were able to demonstrate a good predictive performance for this
innovative translational approach, since it correctly predicted the
results from other preclinical systems (hollow-fiber model and
murine lung infection model) and phase IIa dose ranging studies
using rifampicin as a model drug.
The good predictive performance of our approach for predict-

ing important preclinical and clinical phase IIa TB trials suggest
that this approach can be used prospectively to design several key
studies in TB drug development, and might be even more useful
when extended to drug combinations. Optimization of doses and
combinations prior to phase III is still a critical obstacle in the
TB drug development pathway. Although the acceptance of PK/
PD methods throughout drug development is increasing, the reli-
ance on traditional methods for assessing drug effects is trouble-
some. This is especially worrying for diseases with weak market
incentives and few active drug development programs, such as
TB, where failure due to clinically unpredictive methods is unac-
ceptable, which makes our suggested approach a relevant tool to
aid in TB drug development.
The current employed approach for dose selection in phase II

for antibiotics relies on the use of PK/PD indices that have been
shown to be sensitive to both experimental design, MIC, and PK,
suggesting that this approach may not be optimal for dose selec-
tion for early clinical trials.28–31 For TB, this may be particularly
relevant due to the difficulty in validating PK/PD indices in the
clinic, requiring extensive trial durations for studying relapse (18

months) and the general high treatment success rate for the stan-
dard treatment regimen (95%). Further, only considering drug
exposure and bacterial susceptibility (MIC) might be a too sim-
plistic approach in the field of TB, where cure occurs after a long
treatment period as compared to more general infections with a
much shorter treatment period and where the aim is to “hit hard
and fast.”
What differentiates this translational framework from previous

more simplistic preclinical to clinical prediction efforts32 are
mainly that our translational MTP approach is driven by target
site concentration together with human plasma concentrations
instead of only the latter, and consideration of MIC strain differ-
ences according to EUCAST published distributions as well as
dynamic drug exposure by inclusion of PAE. In future studies,
the PAE model may be refined by estimating its parameters from
measured CFU vs. time curves instead of using the rather impre-
cise PAE itself. This requires a slightly more labor-intense setup
of the PAE experiment, but will increase the precision of the
parameters of the PAE model in further applications of our
approach. Moreover, optimally designed ELF studies are highly
warranted to better characterize the variability of ELF penetra-
tion. However, perhaps the most important aspect is that the
MTP model allows for quantification of drug effects on nonmul-
tiplying (dormant) bacteria.2 Nonmultiplying bacteria can be
quantified using resuscitation promoting factors (RPFs).33 The
MTP model approach allows for a correct estimation of drug
effect against nonmultiplying bacteria, which is crucial for a
model-based translational approach. This aspect will be particu-
larly important when the approach will be extended to prediction
of later endpoints such as the occurrence of relapse or to explore
shortening of the treatment duration, which were not addressed
in the present study.
Rifampicin was used as model drug in this work, which is rele-

vant because rifampicin is part of current core treatment for sus-
ceptible TB and is under current clinical investigation for
increasing the dose. A wide dose range of rifampicin has been
studied and our predictions were validated against results of con-
temporary high-dose rifampicin studies of up to 35mg/kg daily.
In addition, the response following 50mg/kg was predicted—a
dose level not yet studied. These predictions indicate that a

Figure 5 An outline of the different components of the final preclinical to clinical forecasting in tuberculosis drug development using the translational
MTP model approach.
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further, but modest, increase in rifampicin EBA might be attain-
able at 50mg/kg compared to 35mg/kg. Although the concen-
trations achieved with a 50mg/kg dose were covered by the PD
side of our approach, PK was formally only studied up to 40mg/
kg,19 and hence our predictions represent a slight extrapolation
out of the data space. As the maximum effects of all identified
nonlinearities in rifampicin PK have been well captured, the
accuracy of the extrapolation might be acceptable in this case.
Although our prediction of 50mg/kg rifampicin is encouraging,
it should be highlighted that our suggested approach only pre-
dicts the bacteriological response and does not incorporate
safety/toxicity components that could limit the use of even
higher doses, as, e.g., the occurrences of flu-like symptoms
observed with large intermittent dosing of rifampicin or yet
unknown adverse effects. In future studies, our approach might
be also useful to help in the identification of an intermittent dos-
ing regimen that provides similar efficacy as daily dosing
regimens.

METHODS
The MTP model
The MTP model was previously developed based upon the hypoxia-
driven in vitro information described above.2 The mathematical model
consists of three bacterial states: fast (F), slow (S), and nonmultiplying
(N) bacteria. In the MTP model, the sum of F and S is assumed to repre-
sent culturable bacteria, i.e., CFU, while N represents a nonculturable
state of the mycobacteria that does not appear on solid media.2,33 The
differential equation systems for F (Eq. 1), S (Eq. 2) and N (Eq. 3) bacte-
rial states were as follows:

dF
dt

5kG � F � log
Bmax

F1S1N

� �
� ð12FGk � CRIFÞ1kSF � S2kFS � F

2kFN � F2
FDEMAX � CRIF

FDEC501CRIF

� �
� F

(1)

ds
dt

5kFS � F1kNS �N2kSF � S2kSN � S2
SDEMAX � CRIF

SDEC501CRIF

� �
� S

(2)

dN
dt

5kSN � S1kNS �N2kFN � F2NDk �N (3)

The definitions and values of parameters used are listed in Table 1.

Pharmacokinetics of rifampicin in the different target systems
To account for PK differences between the in vitro system used to esti-
mate drug effects in the MTP model and the target systems for transla-
tional prediction, i.e., hollow-fiber infection model, mouse and human, a
relevant PK model of the target system was linked to the MTP model.
For the hollow-fiber system, the PK parameters were obtained from
Gumbo et al.21 and are presented in Table 1. For predictions in the
mouse, the unbound murine plasma concentration–time profiles were
linked to the MTP model. The murine PK parameters were estimated
from digitalized PK data from Jayaram et al.22 and are presented in
Table 1. For prediction of the clinical phase IIa EBA study, the
concentration–time profile in the epithelial lining fluid, predicted using
the General Pulmonary Distribution model20 and a human plasma PK
model,19 were linked to the MTP model. The covariates of the human

PK rifampicin model (weight and height) were set to values typically
observed in TB patients19 and sampled from log-normal distributions
with a geometric mean of 60 kg for weight and 1.75m for height. Geo-
metric standard deviation was set to 10% for weight and 7.5% for height,
respectively.

Translational factors and development of the translational
MTP model
The PK model for each translational target, as described above, was
linked to the MTP model. The following translational factors were
accounted for in the MTP model in order to create the model-informed
MTP translational approach: PAE, mycobacterial susceptibility, bacterial
carrying capacity, and the bacterial growth phase. An outline of the
translational MTP model is presented in Figure 1.

We utilized the MIC to account for differences in mycobacterial suscep-
tibility between the in vitro system and the predicted target systems
(hollow-fiber system, mouse, and human). The MIC values in the target sys-
tem (MICtarget) in relation to the MIC in the in vitro system used to esti-
mate drug effects (MICorigin) were used to scale the parameters for drug
effects in the target system, i.e., EC50target (Eq. 4) or slopetarget (Eq. 5) from
the parameters obtained from the in vitro data (EC50origin or slopeorigin):

EC50target5EC50origin3
MICtarget

MICorigin

� �
(4)

slopetarget5slopeorigin=
MICtarget

MICorigin

� �
(5)

The uncertainty in MIC determination is usually assumed to be within
61 log2 units, also for mycobacteria.34 In order not to bias our predic-
tions by the use of a singular MIC value, we performed a literature
search for the two common preclinical strains H37Ra (used in the
hollow-fiber study21) and H37Rv (used for development of the MTP
model2) and determined the most-likely ratio, i.e., the mode of
MICtarget/MICorigin distribution by means of bootstrapping.35 The MIC
distributions used for bootstrapping are presented in Figure S9. For
prediction of clinical phase IIa EBA studies, the EUCAST clinical MIC
distribution of rifampicin was used36 from which random samples were
drawn to parameterize the MICtarget/MICorigin ratio.

An effect compartment model, here termed the PAE model, was
developed which was linked to the PK and the MTP model to account
for persistent drug effects after removal or decline of rifampicin concen-
trations. The PAE model was developed by modeling the PAE experi-
ment data described in Gumbo et al.21 and derived the time to grow 1
log CFU/mL as a function of drug concentration and exposure time.
Different parametrizations of the PAE model (first-order or zero-order
effect delay rate constants) were evaluated to describe the PAE of rifam-
picin. The final PAE model accounted for a rapid equilibrium of rifam-
picin in the effect compartment with rifampicin concentrations at the
target site (CPAE), followed by a Michaelis–Menten type decay of the
concentrations in the PAE compartment:

dCPAE

dt
5ke;in2

ke;out;max3CPAE

ke;out;503CPAE
(6)

with ke;in5ke;in if CPAE � Ctareget siteand ke;in50 if CPAE > Ctareget site

and where ke,out,max is the maximal elimination rate from the PAE com-
partment, ke,put,50 is the concentration at which 50% of the ke,out,max is
seen, and ke,in is the rate constant for rifampicin entering into the PAE
compartment.

For differences in the maximal growth capacity in the system, the bac-
terial carrying capacity parameter Bmax was adapted to the target system
(Table 1). The bacterial growth phase of the target system was
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accounted for by simulating a preincubation period before rifampicin
treatment was initiated. The simulated preincubation period was identi-
cal to the experimentally employed preincubation periods in the target
systems, which were 4 days and 30 days for hollow-fiber system and
mouse study, respectively. For prediction of the phase IIa EBA study, a
period of 150 days was assumed before treatment was initiated to simu-
late an established infection.

Translational prediction from in vitro to the target systems
The translational MTP model was utilized to predict three typically used
systems in preclinical and early clinical TB drug development: 1) the
hollow-fiber infection model, 2) the murine-based PK/PD indices, and
3) clinical EBA studies. The model parameters used for the translational
predictions into the three systems are presented in Table 1.
For translational prediction of rifampicin in hollow-fiber experi-

ments,21 several scenarios were predicted: a growth control (GC),
600mg rifampicin once daily, 2,100mg rifampicin twice weekly, and
4,200mg rifampicin once weekly, each over a period of 7 days.
For prediction of a murine dose fractionation study,22 total doses of 2,

6, 18, 60, 180, 540, 1,080, or 1,620mg/kg rifampicin were fractionated as
either one, three, or six times in a treatment period of 144 hours. Doses of
4,860 or 3,240mg/kg were not included in the simulations as in the origi-
nal study for toxicity reasons.22 Three different PK/PD indices: Cmax/
MIC, AUC0-8/MIC, and %T>MIC were calculated from the simulations
as in the original study22 using the noncompartmental PK estimates pre-
sented in the original article22 in order to ascertain comparability. The
model-predicted PK/PD indices were then compared to the indices
observed in mice. Nonlinear regression analysis was utilized to assess the
correlation between log CFU/mL at day 6 and the predicted PK/PD indi-
ces by the coefficient of determination (R2). For a quantitative compari-
son, the PK/PD index at half of the maximum reduction of log CFU/mL
was calculated for the observed and predicted PK/PD indices.
The predicted clinical phase IIa EBA study consisted of 14 days of

rifampicin once daily of monotherapy at 2.5, 5, 10, 15, 20, 25, 30, 35, or
50mg/kg. Early bactericidal activity was calculated as the difference in
log10 CFU/mL before treatment and at 2, 5, or 14 days. The predicted
EBA was compared to observed EBA 0–2 days, 0–5 days and 0–14 days
from numerous clinical studies.14,23–27

Sensitivity analysis
To explore the impact of the translational factors on prediction of the
three translational target systems, a sensitivity analysis was performed by
excluding or modifying one translational factor at a time from the final
translational MTP model.

Software, estimation, and simulation
All modeling and simulation tasks were performed in “R” (v. 3.3.3). Dif-
ferential equation systems were solved using the lsoda routine of the
“deSolve” package (v. 1.14). The predictions in “R” were successfully
crossvalidated against NONMEM (7.3, ICON, Hanover, MD) and the
results were identical to 1e-8. “ggplot2” (v. 2.2.1) was used for generating
plots. Parameters of the PAE model (kin, kout,max, kout,50) and murine
PK parameters (CL, ka, Vd, cf. Table 1) were estimated using the R
package “optim” using extended least squares regression. Nested models
were compared using the likelihood ratio test, e.g., a 3.84 difference in
the objective function value was required to select a more complex model
for one degree of freedom and at a significance level of 5%. For compari-
son of nonnested models, the Akaike criterion was used,37 where a lower
Akaike score is favorable.

Additional Supporting Information may be found in the online version of
this article.
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