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Abstract: Designing and modifying nanoporous metal foils to make them suitable for supercapacitor
and catalysis is significant but challenging. In this work, CuxO nanoflakes have been successfully
in situ grown on nanoporous Cu foil via a facile electrooxidation method. A Ga-assisted surface
Ga-Cu alloying–dealloying is adopted to realize the formation of a nanoporous Cu layer on the
flexible Cu foil. The following electrooxidation, at a constant potential, modifies the nanoporous Cu
layer with CuxO nanoflakes. The optimum CuxO/Cu electrode (O-Cu-2h) delivers the maximum
areal capacitance of 0.745 F cm−2 (410.27 F g−1) at 0.2 mA cm−2 and maintains 94.71% of the
capacitance after 12,000 cycles. The supercapacitor consisted of the O-Cu-2h as the positive electrode
and activated carbon as the negative electrode has an energy density of 24.20 Wh kg−1 and power
density of 0.65 kW kg−1. The potential of using the electrode as oxygen evolution reaction catalysts
is also investigated. The overpotential of O-Cu-2h at 10 mA cm−2 is 394 mV; however, the long-term
stability still needs further improvement.

Keywords: nanoporous copper; dealloying; copper oxide; supercapacitor; oxygen evolution reaction

1. Introduction

Though dealloying has gained fruitful achievements during the past decades, the
exploration of applying dealloyed materials in catalysts, sensors, and energy-storage
devices never stops [1–4]. Dealloying is a top-down strategy that dissolves the active
elements from an alloy and generates a nanostructure (mostly nanoporous structure) after
the diffusion/reorganization of the less active elements [5,6]. Nanoporous noble metals, e.g.,
Au, Ag, and Cu, are among the most common materials created by dealloying. Nanoporous
Au has been a prototype to study the mechanisms of dealloying, and it is widely applied
as catalysts for fuel cells, methane pyrolysis, supercapacitors, actuator, and solar steam
generation, etc. [4,7–11]. Nanoporous Cu has also been extensively studied, due to the
relatively low price and great potential applications.

The study of dealloying Cu-based alloys can be dated back to the 1980s, when Cu-
Mn alloys were dealloyed to probe into the morphology and composition of dealloyed
products [12]. Raney® Cu, produced by dealloying Al2Cu in a NaOH solution, is a suc-
cessful catalyst for methanol production from synthesis gas [13]. Similar to Raney® Cu,
most of the dealloyed Cu materials are powdery. In addition to powdery nanoporous Cu,
a self-supporting nanoporous Cu film is necessary for some application scenarios, e.g.,
electrodes of supercapacitors and lithium-ion batteries [14–16]. Nanoporous metal films
can be fabricated through dealloying metallic glass ribbons, which are flexible due to the
amorphous structure [17–19]. Another approach is to create an alloy layer on the metal
film, followed by surface dealloying to generate a nanoporous layer. For instance, Diao
et al. used a co-sputtering and dealloying method to fabricate bi-continuous and flexible
nanoporous Cu films integrated onto the Cu foil [20]. In a previous study, the Ga-Cu
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alloy layer was created on a Cu foil via the mutual diffusion of Ga and Cu; a nanoporous
Cu layer was generated after dealloying. The as-fabricated Cu foil was flexible with a
nanoporous surface layer [21]. This method could be a facile and powerful technique to
fabricate flexible nanoporous Cu foil for various applications. CuO or Cu2O oxide layers
can easily form on the surface of nanosized Cu, which could act as catalysts or electrodes
for supercapacitors [22–28]. Dong et al. applied an electrooxidation method to the Cu foam
in an H2C2O4 solution to form a Cu2O/Cu electrode for the supercapacitors [27]. Li et al.
fabricated a Cu2O/CuO nanosheet layer on nanoporous Cu via heat treatment [23].

Inspired by the above investigation, we fabricated a nanoporous Cu layer on the Cu
foil via a Ga-Cu alloying and dealloying strategy in this work. Following the dealloying
process, an electro-oxidized method was used to form a CuxO layer on the nanoporous
Cu surface. Through electrooxidation at a constant potential for different durations, CuxO
consisting of different Cu2O and CuO amounts were formed. The co-existence of Cu2O and
CuO might benefit the electrochemical performance of the electrode. The self-supporting
CuxO/Cu was applied as a positive electrode in supercapacitors. The optimum electrode
delivered a maximum areal capacitance of 0.745 F cm−2 (410.27 F g−1) at 0.2 mA cm−2 and
maintained 94.71% of the capacitance after 12,000 cycles. We assembled an asymmetric
supercapacitor using the CuxO/Cu foil as the positive electrode and active carbon (AC) as
the negative electrode. The supercapacitor device had an energy density of 24.20 Wh kg−1,
corresponding to the power density of 0.65 kW kg−1. This study also used the as-fabricated
electrodes as the oxygen evolution reaction catalysts. Although the OER performance was
acceptable, more work would be necessary, in order to improve the long-term stability.

2. Experimental
2.1. Preparation of CuxO/Cu Foils

The commercial Cu foils (50 µm thick, 99.9 wt.%, Kejing, Shenzhen, China) were
cleaned with deionized water and alcohol before painting. A certain amount of Ga ingot
(Macklin, 99.99 wt.%, Macklin, Shanghai, China) was placed on a hotplate at 50 ◦C to
guarantee the liquid state. The cleaned Cu foils were fixed on another hotplate (maintained
at 40 ◦C) during the painting process. Liquid Ga was brushed onto the Cu foil using a
paintbrush, then annealed at 150 ◦C for 8 h in a vacuum oven to form Ga-Cu alloys via
reaction–diffusion. The annealed foils were dealloyed in a 0.2 M HNO3 solution at 40 ◦C,
until no bubbles emerged. The dealloyed foils were preserved in a vacuum tank at room
temperature. The electrooxidation process was conducted using a two-electrode system
containing a dealloyed Cu foil and graphite rod. The dealloyed foils were electro-oxidized
in a 1 M KOH solution using a two-electrode system at 1 V for 15 min, 30 min, 1 h, 2 h, and
5 h, respectively, to form a copper oxide layer on the foil surface. The obtained samples
were named O-Cu-Xm or O-Cu-Xh, where X referred to the electrooxidation time; ‘m’ is
short for ‘minute’, and ‘h’ is short for ‘hour’. For instance, O-Cu-15m refers to the sample
that was electro-oxidized for 15 min.

2.2. Fabrication of Asymmetric Supercapacitor Devices

In the asymmetric supercapacitor device, the CuxO/Cu foil was used as the positive
electrode, and the active carbon (AC) powders deposited on the Ni foams acted as the
negative electrode. The fabrication details of the negative electrode can be seen in ref. [27].
The positive and negative electrodes were positioned face-to-face and separated by cellulose
paper in a 1 M KOH electrolyte.

2.3. Characterizations of Catalysts

The phase compositions of the samples were characterized by X-ray diffraction (XRD,
X’pert Pro, Malvern Panalytical, Almelo, Netherlands). The microstructural features were
investigated by a field emission scanning electron microscope (SEM, Zeiss Sigma 500, Birm-
ingham, UK) and transmission electron microscope (TEM, JEM F200, JEOL, Tokyo, Japan).
The surface status of the samples was analyzed by X-ray photoelectron spectroscopy (XPS,
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K-Alpha, Thermo Scientific, Loughborough, UK). Raman spectra analyses were performed
on a HORIBA LabRAM HR Evolution (HORIBA, Kyoto, Japan), using a laser source of 488
nm. The concentration of Cu ions in the electrolyte after OER tests was determined via
inductively coupled plasma-optical emission spectrometry (ICP-OES, Agilent 5110, Santa
Clara, CA, USA).

2.4. Electrochemical Measurements

The electrochemical performance of the electrodes and devices was analyzed on an
electrochemical workstation (CHI660E, Shanghai, China) in a 1 M KOH electrolyte. A Pt
electrode, Ag/AgCl electrode, and as-synthesized electrodes were used as the counter,
reference, and working electrodes, respectively, in a three-electrode system. The cyclic
voltammetry (CV) was operated under various scan rates from 5 to 100 mV s−1, between
0−0.6 V vs. Ag/AgCl. The galvanic charging and discharging (GCD) was conducted
under the current densities of 0.2 to 1 mA cm−2, between 0−0.5 V vs. Ag/AgCl. The
electrochemical impedance spectroscopy (EIS) was obtained at open circuit potential in
the frequency range from 0.01 Hz to 1 MHz with a 5 mV amplitude. The O-Cu-2h//AC
asymmetric supercapacitor was tested via CV under various scan rates of 5, 10, 30, 50, 70,
and 100 mV s−1, between 0.6−1.6 V, as well as GCD under current densities of 2, 3, 4, 5, 6
and 7 mA cm−2, between 0.6−1.6 V. The calculation details of areal capacitance, specific
capacitance, and energy and power densities can be found in references [29,30]. To estimate
the mass of CuxO on the surface, we measured the weight of the dealloyed Cu foils before
and after oxidation. To obtain accurate mass loading, at least three foils were weighted for
each oxidation time.

Linear sweep voltammetry (LSV) was used to verify the possibility of using the electro-
oxidized foils as OER catalysts. LSV tests were carried out in an O2-saturated 1 M KOH
electrolyte, with a scanning rate of 5 mV s−1 at the potential range of 0.1 to 1.1 V vs.
RHE. All LSV curves were iR-compensated to exclude the influence of solution resistance.
Electrochemical impedance spectroscopy (EIS) was conducted in the same electrolyte from
1 MHz to 0.01 Hz at 0.7 V vs. Hg/HgO, with an amplitude of 5 mV. All the potentials were
converted to the reversible hydrogen electrode (RHE) reference, according to E (vs. RHE) =
E (vs. Hg/HgO) + 0.0591pH + 0.098.

3. Results and Discussion
The Composition and Microstructure Analysis

A previous study reports that dealloying Ga-Cu alloy in an acidic solution resulted in
the formation of nanoporous Cu [21]. In that report, the Ga-Cu alloy layer was formed via
annealing at 100 ◦C for 5 h and generated a nanoporous structure after dealloying. Here,
we fabricated a nanoporous structure on the surface of Cu film using the same strategy,
followed by electrooxidation in an alkaline solution, the detailed procedure of which can
be seen in Figure 1. After painting the Ga and annealing, the Ga2Cu phase (PDF #25-0275)
formed on the surface of Cu foil (Figure 2a). The back-scattered SEM image shows the
grain boundaries of the annealed Ga2Cu layer (Figure S1a). EDX elemental mapping shows
the distribution of the Ga and Cu elements (Figure S1b–d). The EDX spectrum indicates
that the Ga atomic concentration is 76.64 at.%, with that of Cu being 23.36 at.%, indicating
that Ga was excessive on the surface after 8 h annealing at 150 ◦C (Figure S1e). The Ga2Cu
layer can be fully dealloyed in a 0.2 M HNO3 solution with only Cu retained, as confirmed
by the XRD pattern in Figure 2a. An electrooxidation method was applied to generate a
Cu oxide layer on the dealloyed Cu surface. It has been reported that Cu2O nanoneedles
could be grown on the etched Cu foam via CV cycling at –0.3–0.3 V vs. Ag/AgCl in the
1 M KOH solution [27]. Further oxidation at 0–0.6 V could transform Cu2O to CuO [31].
In another study, a Cu2O/CuO hybrid layer was formed on a nanoporous Cu ribbon by
anodizing at the constant current densities in the 0.5 M KOH solution [23]. Inspired by
the above method, we electro-oxidized the dealloyed Cu foil at a constant potential of 1
V in a two-electrode system, expecting to create a CuxO layer on nanoporous Cu. Extra
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peaks are observed in the XRD patterns after electrooxidation for 15 min, 30 min, 1 h, 2
h, and 5 h. As shown in Figure 2b, a peak that appeared at 2θ 36.5◦ can be indexed to
Cu2O (PDF #05-0667) [32]. With the electrooxidation time increasing to longer than 30 min,
the relative intensity of the Cu2O peaks decreases. It shows almost only the CuO phase
(PDF #48-1548), when the electrooxidation time is 5 h. The Raman spectra in Figure 2c
demonstrate the presence of peaks at ~280, 330, and 620 cm−1, confirming the generation
of CuO after electrooxidation [33,34]. Extra peaks can be found at 148 and 217 cm−1 for
sample O-Cu-15m, ascribed to the characteristic Raman bands of Cu2O [35]. To further
probe into the surface compositions of the Cu films, we conducted XPS on samples electro-
oxidized for 15 min and 2 h. The XPS full surveys of O-Cu-15m and O-Cu-2h prove the
existence of Cu and O (Figure S2). The O 1s spectra of both samples can be deconvoluted
into three peaks at ~529.8, 531.2, and 532.3 eV, corresponding to lattice oxygen O2−, OH−,
and adsorbed H2O on the surface (Figure 2d). From the deconvoluted results, the content
of O2− is calculated as 22.61 at.% for Cu-15min and 61.60 at.% for Cu-2h, indicating the
generation of more CuO with extended oxidation duration. Cu 2p3/2 and Cu 2p1/2, along
with their satellite peaks, are observed from the Cu 2p XPS spectra (Figure 2e). As for
O-Cu-15m, a fitting peak located at 932.8 eV corresponds to Cu+, while the peak at 934.4 eV
is indexed to Cu2+. Similar fitting results are observed in sample O-Cu-2h. The atomic
ratio of Cu+ to Cu2+ is 1.49 for O-Cu-15m and 0.58 for O-Cu-2h, again indicating that more
Cu2O exists in O-Cu-15m sample. The Cu LMM Auger spectra with the peak located at
~568.7 eV further prove the formation of Cu2+ (CuO) in both samples (Figure 2f).
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After dealloying in 0.2 M HNO3 solution, nanoporous structures evolved on the
Cu foil surface, as shown in Figure 3a,b. The grain boundaries can be observed on the
surface of the dealloyed Cu foil, which inherits from the Ga-Gu alloys, as shown from
the back-scattering SEM image (Figure S1a). The diameter of the dealloyed Cu ligament
is ~200 nm, and no Ga reserves after dealloying (Figure S3). After electrooxidation in a
1 M KOH solution at 1.0 V vs. Ag/AgCl for 15 min, two distinct microstructures can be
observed on the surface: nanobelts and nanoflakes. The EDX obtained from the rectangle
area in Figure S4a,b shows the presence of Cu and O, with the atomic concentration of
34.29 and 65.71 at.%. The concentration ratio of Cu to O is 1.92, and it is approaching 2.0
for Cu2O. The EDX point scan from one typical nanoflake presents that the atomic ratio of
Cu to O is 2.26; the atomic ratios from two typical nanobelts are 1.88 and 1.81 (Figure S4c).
The EDX results further confirm the formation of Cu2O after electrooxidation for 15 min.
With a prolonged oxidation length of 30 min, the microstructure (Figure 3d) is similar to
O-Cu-15m. The atomic ratio of Cu to O from nanoflake and nanobelt areas are 1.50 and
1.33 (Figure S5), respectively, both smaller than that from O-Cu-15m. The microstructures
of O-Cu-1h and O-Cu-2h are almost the same, while the nanoflakes seem thinner after
5 h oxidation (Figure 3e–g). At the initial oxidation stage, the nanoneedle Cu2O phase
formed on the surface [27]. As the oxidation time increased, the nanoneedle or nanobelt
became longer but less stable. Therefore, after 2 or 5 h oxidation, the nanobelts would
grow into interlinked nanoflakes to make the structure more stable; the morphology can be
observed in some CuO-based materials [23,36]. The atomic ratio of Cu to O from O-Cu-1h
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and O-Cu-2h keeps approximately 1, indicating that the dominated phase might be CuO
(Figure 3i and Figure S6). After 5 h oxidation, the atomic ratio of Cu to O decreases to 0.73,
which might suggest that the Cu was oxidized to higher valence after long-term oxidation
(Figure S7). Moreover, a typical cross-section view of the oxidized foil displays that the
oxidation layer is ~9.5 µm (Figure 3h). The cross-section view proves that the nanoflakes
grow across the entire dealloyed layer.
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Figure 2. XRD patterns of (a) annealed Ga-Cu before and after dealloying and (b) dealloyed Cu film
after being electro-oxidized for a different time; (c) Raman spectra; (d–f) XPS spectra of O 1s, Cu 2p,
and Cu LMM for O-Cu-15m and O-Cu-2h.

TEM and HRTEM were conducted to probe the microstructural features of O-Cu-15m
and O-Cu-2h. Corresponding to the SEM results, nanobelts and nanoflakes are observed
from O-Cu-15m (Figure 4a). The nanobelts are 10–30 nm in width. From the HRTEM
result in Figure 4b, we observe two lattice distances, corresponding to (111) lattice plane
from CuO and (111) lattice plane from Cu2O, respectively. The same lattice planes are also
found in the nanoflakes (Figure 4c), indicating that both Cu2O and CuO generated during
electrooxidation. For the O-Cu-2h sample, the lattice planes observed from one typical flake
indicate the co-exitance of the CuO (002) and Cu2O (200) planes (Figure 4d,e). Another
nanoflake shows the lattice plane from CuO (002) and Cu2O (111) (Figure 4f). The HRTEM
analyses prove the formation of CuO and Cu2O after electrooxidation, which agrees with
the XRD results. In a previous study, pure CuO could be fabricated by anodizing the
dealloyed nanoporous Cu at 15 mA cm−2 and then calcining at 200 ◦C for 2 h [18]. This
work also obtained the mixture of CuO and Cu2O after one-step electrooxidation at a
constant potential. The XPS results prove that more CuO generated with a longer oxidation
time. The electrode is nominated as CuxO/Cu electrode in the following section.

Cu2O or CuO is an excellent candidate for supercapacitors [37–39]. In this work, the
CuxO layer was grown on the flexible Cu foil, which could be potentially applied as a
self-standing supercapacitor electrode. The performance of the as-synthesized CuxO/Cu
as a supercapacitor electrode was evaluated in a three-electrode cell containing a 1 M KOH
electrolyte. Figure 5a compares the CVs of the oxidized and dealloyed samples recorded in
the potential ranging from 0–0.6 V vs. Ag/AgCl at a 5 mV s−1 scan rate. The five electro-
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oxidized samples show almost the same CV curve shapes, indicating a similar reaction
mechanism, which has been found in some other CuxO-based electrodes [25,36]. The CV
shape is different from those with an ideal rectangular shape generated from the electric
double-layer capacitance [9,27]. O-Cu-2h has the largest integrated CV area, suggesting
the most significant specific capacitance. In contrast, the pristine dealloyed Cu foil shows
almost no capacitance at a 5 mV s−1 scan rate. Figure 5b displays the GCD curves of
the samples oxidized for different times at a charge/discharge current density of 0.4 mA
cm−2, and the curves also show a quasi-linear shape, suggesting the pseudocapacitive
property [40]. It can be concluded from CV and GCD curves that O-Cu-2h has the maximum
capacitance. Figure 5c presents the CV curves of O-Cu-2h recorded at scan rates ranging
from 0–100 mV s−1, indicating a positive correlation between the integrated CV area and
scan rate. The CV curves of the other four samples are displayed in Figure S8, which show a
similar variation trend with O-Cu-2h. The areal capacitance calculated from the CV curves
is exhibited in Figure 5d. The areal capacitance of O-Cu-2h can reach 0.394 F cm−2 at 5 mV
s−1, and it decreases to 0.196 F cm−2 when the scan rate is 100 mV s−1. The areal capacitance
values decrease in the sequence of O-Cu-2h, O-Cu-5h, O-Cu-1h, O-Cu-30m, and O-Cu-15m.
At the current density of 0.2–1.0 mA cm−2, all the GCD curves have symmetrical triangle
shapes, again indicating the pseudocapacitive property (Figure 5e). The GCD curves of
the other four samples are displayed in Figure S9, showing the same charge/discharge
features with O-Cu-2h. Figure 5f exhibits that O-Cu-2h has areal capacitance values of 0.745,
0.709, 0.691, 0.680, and 0.676 F cm−2 at 0.2 to 1.0 mA cm−2 current densities. The areal
capacitance values calculated from GCD have the same performance sequence as those
calculated from CV results. It is worth noting that O-Cu-5h has low capacitance, compared
to O-Cu-2h. After oxidation for 5 h, almost all Cu2O transformed to CuO. Therefore, the
pseudocapacitance that originated from the reversible reaction between Cu2O and CuO
became less efficient. Moreover, the thicker oxide layer of O-Cu-5h may block the ionic
transfer during the charge/discharge, resulting in lower capacitance. The mass loading
of CuxO was estimated via weighing the foil before and after electrooxidation, shown in
Figure S10. It can be seen that the mass loading increased with longer electrooxidation
times, namely increased from 1.13 to 1.82 of O-Cu-15m, and further to 4.15 mg cm−2 after
5 h oxidation. It should be mentioned that after 5 h oxidation, the oxide layer tends to be
exfoliated from the foil during the operation. The specific capacitance normalized to the
mass of CuxO versus the scan rate, and current density is shown in Figure 5g,h, respectively.
For instance, the sample O-Cu-2h presents the highest specific capacitance, possessing
410.27 F g−1 at 0.2 mA cm−2, much higher than 144.31, 226.01, and 246.42 F g−1 for O-Cu-
15m, O-Cu-30m, and O-Cu-1h, respectively. O-Cu-5h has the lowest specific capacitance
(117.30 F g−1 at 0.2 mA cm−2), due to the largest CuxO mass on the surface. EIS was used
to compare the conductivity and electrochemical dynamics of the electrode under different
oxidation duration. Taking O-Cu-2h and O-Cu-15m as examples, the Nyquist plots of
the two samples obtained in the frequency range of 1 MHz to 0.01 Hz are displayed in
Figure S11. The internal resistance of O-Cu-15m is smaller than that of O-Cu-2h, indicating
the thicker oxide layer with a longer oxidation duration. In the low frequency region,
the steeper slope of O-Cu-2h reveals faster ionic diffusion between the oxide layer and
electrolyte. The cycling stability of O-Cu-2h was evaluated via CV cycling at 100 mV s−1 for
12,000 cycles. The areal capacitance decreased from the initial value of 0.171 to 0.162 F cm−2

after cycling, retaining 94.71% of the initial capacitance (Figure 5i). The electrode has
unchanged phase compositions after cycling, and the CuxO flakes become thicker than the
initial structure (Figure S12 and inset of Figure 5i). We compared the specific capacitance of
CuxO-based electrodes, as shown in Table S1 [25–27,36,38,39,41–45], and the results reveal
that our electrode is comparable to the pure CuxO material but inferior, compared to the
CuxO-based composites. Further investigations might be carried out to fabricate hybrid
electrodes based on our materials.
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Figure 4. (a) TEM image of O-Cu-15m, (b) HRTEM image of a nanobelt area, (c) HRTEM image of a
nanoflake area; (d) TEM image of O-Cu-2h, (e,f) HRTEM image of two typical nanoflake areas.
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Figure 5. (a) Electrochemical performance of O-Cu-15m, O-Cu-30m, O-Cu-1h, O-Cu-2h, and O-Cu-5h
in 1 M KOH. (a) CV curves at 5 mV s−1. (b) GCD profiles at 0.4 mA cm−2. (c) CV curves of O-Cu-2h
at various scan rates ranging from 5 to 100 mV s−1. (d) Areal capacitance as a function of scan rate.
(e) GCD profiles of O-Cu-2h at different current densities. (f) Areal capacitance versus the current
density. (g) Specific capacitance normalized to the CuxO mass as a function of scan rate. (h) Specific
capacitance normalized to the CuxO mass versus the current density. (i) Cyclic performance of
O-Cu-2h measured at 100 mV s−1. The inset is the SEM image of O-Cu-2h after 12,000 cycles.

The electrochemical properties of AC under various scan rates and current densities
are present in Figure S13. The CV curves of the AC electrode show no redox peaks,
and the symmetrical GCD curves have the typical characteristics of electric double-layer
capacitance [27]. The asymmetric supercapacitor constructed with O-Cu-2h foil and AC
decorated Ni foam was investigated, in order to prove its potential in energy storage
devices. Figure 6a presents the supercapacitor’s CV curves at scan rates ranging from
5 to 100 mV s−1 and a potential window of 0.6–1.6 V. The areal capacitance calculated
from the CV curves is shown in Figure 6b. The areal capacitance reaches 0.53 F cm−2 at
the 5 mV s−1 scan rate and decreases to 0.30 F cm−2 with a 100 mV s−1 scan rate. GCD
curves in Figure 6c show an IR drop at the initial state of the discharging stage, which is
an indicator of the internal resistance of the device [46]. The GCD curves present a non-
linear feature, suggesting the faradaic process [40]. The areal capacitance under different
current densities is calculated and shown in Figure 6d. The maximum areal capacitance
is obtained at 2 mA cm−2, reaching 0.60 F cm−2. The areal capacitance decreases to
0.52 F cm−2 when the current density increases to 7 mA cm−2. The energy and power
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densities are essential for evaluating the performance of an energy storage device. Figure 6e
shows the Ragone plots (areal and mass) of the asymmetric supercapacitor calculated
from the GCD curves. The energy densities of our device are in the range of 20.86 to
24.20 Wh kg−1 (0.26 to 0.30 Wh cm−2), corresponding to the power densities of 2.14 to
0.65 kW kg−1 (26.49 to 8.08 W cm−2). The energy densities are competitive with some
other CuxO-based supercapacitors (Table S2) [26,27,36,38,39,43–45]. For instance, a 3D
Cu2O@Cu nanoneedle arrays electrode had an energy density of 26.0 Wh kg−1 at power
density of 1.8 kW kg−1 [27]. An all-solid-state supercapacitor using 3D nanostructured
CuxO-modified Cu foam, as an electrode showed an energy density of 25 µWh cm−2 when
the power density was 3 mW cm−2 [36]. An all-solid-state asymmetric supercapacitor with
CuxO NWs NWs@CoS2, as the electrode delivered an energy density of 49.8 Wh kg−1 at
a power density of 0.226 kW kg−1 [47]. Unfortunately, the areal capacitance decreased
gradually from 0.357 to 0.227 F cm−2, only retaining 63.59% of the initial capacitance after
10,000 cycles at 100 mV s−1 (Figure 6f). More modifications of the CuxO/Cu foil should be
explored, in order to improve the stability of the device.

There have been reports that CuO nanosheet bundles could be applied as efficient
oxygen evolution reaction (OER) electrocatalysts [48]. In this study, we also investigate the
OER property of the as-prepared samples. LSV curves of the pristine Cu foil, dealloyed
Cu foil, and five oxidized samples are shown in Figure 7a. It can be seen that O-Cu-30m,
O-Cu-1h, O-Cu-2h, and O-Cu-5h have comparable OER performance. The overpotential
of O-Cu-2h and O-Cu-5h at 10 mA cm−2 is 394 mV, slightly lower than 401 and 414 mV
of O-Cu-1h and O-Cu-30m, respectively. O-Cu-15m has the largest overpotential of 449
mV, smaller than dealloyed Cu and pristine Cu foil (Figure 7b). The overpotential is higher
than the reported benchmark RuO2 (388 mV) [49]. The Tafel slope of all samples was
around 140 mV dec−1, indicating the inferior catalytic kinetics (Figure 7c). Moreover, a
Tafel slope higher than 120 mV dec−1 might indicate that the first step (M + OH− →MOH)
of OER in an alkaline solution is the rate-determining step [50]. The long-term stability
was evaluated via a potentiostat test. The i-t curve in Figure 7d shows a rapid decline in
the current density from the very beginning of the test, with an 85.3% decrease before it
reaches a steady state. Although the phase compositions showed almost no change after the
stability test (inset of Figure 7d), the surface CuxO aggregated together to form thick flakes
(Figure 7e). Moreover, the atomic ratio of Cu to O became 42.62 to 57.38%, appropriate
to that of O-Cu-5h, indicating the continuous oxidation of the surface (Figure 7f). We
noticed that the electrolyte gradually became light blue during the test. In order to observe
the dissolution of Cu ions into the electrolyte, we also used a Pt plate counter electrode
to conduct the i-t test. After the test, the surface of the Pt electrode clearly showed blue
deposition, which could be deduced to Cu species (Figure S14). The ICP result confirmed
8.23 mg L−1 Cu ions in the electrolyte after the 9 h long-term test (Figure S14). In a previous
study, a CuO nanowire@Co3O4 composite showed an overpotential of 258 mV at a current
density of 10 mA cm−2 and Tafel slope of 72 mV dec−1 [51]. A 2D CuO on a stainless-steel
substrate had an overpotential of 350 mV, with a Tafel slope of 59 mV dec−1 [48]. However,
our electrode presented inferior OER performance, proving that the current as-prepared
CuxO/Cu electrode is unsuitable for OER application. In some previous studies, CuO was
applied as an OER electrocatalyst when embedded or grown on other supporting materials,
e.g., Co3O4 and graphene networks [42,51]. In the further study of the CuxO/Cu materials
in this study, the exploration of constructing some CuxO-based hybrid might promote its
application in OER.
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Figure 6. Electrochemical performance of the O-Cu-2h//AC asymmetric supercapacitor in the 1 M
KOH solution. (a) CV curves at various scan rates. (b) Areal capacitance as a function of scan rate.
(c) GCD curves at different current densities. (d) Areal capacitance as a function of current density.
(e) Ragone plots of the O-Cu-2h//AC asymmetric supercapacitor. (f) Stability of the device for 10 k
cycles.
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Figure 7. The OER performance of the oxidized samples. (a) LSV curves of pristine Cu foil, dealloyed
Cu foil, O-Cu-15m, O-Cu-30m, O-Cu-1h, O-Cu-2h, and O-Cu-5h. (b) Overpotential obtained at 10
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1.65 V vs. RHE. (e) SEM image and (f) EDX spectrum of O-Cu-2h after stability test. The inset of
Figure 6d is the XRD pattern of O-Cu-2h after the stability test.

4. Conclusions

In summary, a CuxO/Cu foil was developed via a Ga-Cu surface alloying–dealloying–
electrooxidation strategy. The alloying process generated Ga2Cu alloys on the surface,
and the following dealloying resulted in the formation of a nanoporous structure with a
ligament size of ~200 nm. CuxO flakes were grown on the Cu ligament, with the assistance
of electrooxidation. The O-Cu-2h electrode had the areal capacitance of 0.745 F cm−2 at
0.2 mA cm−2, and 94.71% of the capacitance could be retained after 12,000 CV cycles. The
O-Cu-2h//AC asymmetric supercapacitor delivered an energy density of 24.20 Wh kg−1,
with a power density of 0.65 kW kg−1. Though the OER stability was inferior, further
investigation could be explored, in order to improve the possibility of using the electrode
as OER catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12122121/s1, Figure S1: The SEM images of Ga-Cu surface.
Figure S2: XPS full survey O-Cu-15m and O-Cu-2h. Figure S3: A typical EDX spectrum of the
dealloyed Ga2Cu film corresponding to Figure 2b. Figure S4: SEM and EDS results of O-Cu-15m.
Figure S5: SEM and EDS results of O-Cu-30m. Figure S6: SEM and EDS results of O-Cu-1h. Figure S7:
SEM and EDS results of O-Cu-5h. Figure S8: CV curves of O-Cu-15m, O-Cu-30m, O-Cu-1h and
O-Cu-5h at various scan rates. Figure S9: GCD curves of O-Cu-15m, O-Cu-30m, O-Cu-1h and
O-Cu-5h at various current densities. Figure S10: The mass loading per unit area of CuxO on the
O-Cu-15m, O-Cu-30m, O-Cu-1h, O-Cu-2h, and O-Cu-5h. Figure S11: Nyquist impedance plots of
O-Cu-2h and O-Cu-15m. Figure S12: XRD pattern and surface SEM image of O-Cu-2h after 12,000
CV cycles at 100 mV s−1. Figure S13: CV and GCD curves of AC. Figure S14: The comparison
photos of Pt electrode before and after i-t test and the ICP result of the electrolyte after i-t test. Table
S1: Comparison of CuxO-based electrode for supercapacitors. Table S2: Comparison of the other
asymmetric supercapacitors and this work of energy density and power density.
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