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Abstract: Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffective-
ness, is critical to patients’ outcomes. However, many orally administered therapeutic drugs are
susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome
P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which con-
tributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of
CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and
drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism
and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise
dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug
bioavailability. These drug carriers are designed to target different intestinal regions, including
(1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4
bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular
uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed
from clinical practice due to serious drug-drug interactions, but also provide alternative approaches
to reduce pharmacokinetic variability.

Keywords: oral drug delivery; drug-drug interaction; bioavailability; CYP3A4; BDDCS; gastroin-
testinal tract; P-glycoprotein; biological barrier; nutraceutics; lipid-based nanoparticles

1. Introduction

Failed drug therapy due to unintended drug-drug interactions occurs widely in clin-
ical medicine and could impact drug efficacy and safety [1–3]. According to the World
Health Organization, the annual financial cost of medically-related harm globally is ap-
proximately $42 billion USD [4]. In order to exert a therapeutic effect, drugs must be
absorbed via a certain route of administration, such as oral, intravenous, intramuscular,
nasal and subcutaneous, among which oral delivery is the most preferred method due to
several well-recognized reasons, including convenience, non-invasiveness, extended drug
release, suitability for long-acting medication and a long shelf-life [5,6], but the liver and
small intestine constitute the main sites of drug metabolism, leading to pharmacokinetic
(PK) variability (i.e., different drug concentrations in the blood or at sites of action) [7,8].
Special populations, such as the elderly, children, women, pregnancy, hospitalized patients
and even certain ethnicities, are particularly vulnerable to certain prescribed oral medi-
cation(s), because their physiological differences (e.g., metabolism) and/or ongoing life
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circumstances (e.g., polypharmacy, comorbidities) may result in unpredictable drug-drug
interactions [9].

Before reaching the target site of action, orally administered drugs encounter a host
of obstacles in the gastrointestinal tract (GIT), such as a substantially changing pH in the
stomach, upper and lower intestinal segments, extensive enzymatic degradation (e.g.,
lipase, trypsin, amylase), varied GI motility (e.g., gastric emptying, peristalsis), complex
bacterial diversity and physical barriers of the mucus and mucosal layers [10,11]. Among
those complex GIT environmental factors, pre-systemic metabolism of Cytochrome P450
(CYPs) enzymes expressed in the intestine and liver is the main factor that significantly
contributes to the variability in drug response [12]. Particularly, out of all the CYPs involved
in human drug biotransformation, CYP3A4 is the most important oxidation enzyme by
virtue of the fact that at least 50% of marketed drugs metabolized by CYPs are metabolized
by CYP3A4 [8,13]. The amount and activity of CYP3A4 is considerably regulated by
inflammation, fasting state and a broad spectrum of xenobiotics, including top prescribed
pharmaceuticals (e.g., midazolam, felodipine), common foods (e.g., grapefruit juice) and
widely used herbal medicines (e.g., St. John wort (SJW)) [14–16] (Figure 1). However,
drug development selects the most effective and safe dose in the study population (not
the individual) without any regard for such drug response variability due to CYP3A4
metabolism, as it is impractical to investigate many different doses in different patients.
Yet, from a clinical medicine point of view, “one-dose-fits-all” regimen can be potentially
dangerous for patients as huge inter- and intra-individual variability in CYP3A4 may
lead to varied systemic drug concentrations, in turn, causing unpredictable therapeutic
outcomes and intolerable adverse effects [17].

Despite incongruity between industrial and clinical sectors in how to determine
drug dosing, for most drugs, the prediction of their in vivo efficacy and toxicity relies
on free (i.e., bioavailable) drug concentration at the site of action [18]. However, before
reaching systemic circulation, the passage of orally administered drugs through the GIT
could be attenuated by the presence of drug transporters (e.g., P-glycoprotein (P-gp)) and
metabolizing enzymes (e.g., CYP3A4) in the small intestine. The additional barrier of
first-pass metabolism, as the portal vein flows through the liver, also contributes to drug
elimination.

Once systemically available, drugs may partition into other tissues such as the lung
and heart, depending on their physiochemical properties such as lipophilicity. In addition,
food intake has a strong effect on the extent of oral drug absorption [19–21]. Particularly,
postprandial state with a high fat meal can have both positive and negative impact on
the drug bioavailability by altering the dissolution, the rate and extent of absorption [22].
Ingested dietary lipids (e.g., triglyceride, monoglyceride, fatty acids) are known to increase
dissolution and solubilization of lipophilic compounds with log P > 5, modulate GIT transit
and inhibit CYPs activity [22,23]. Because of this, the U.S. Food and Drug Administration
(FDA) has issued guidance for “Food-Effect Bioavailability and Fed Bioequivalence Studies”
to label some medications that are strongly influenced by a meal [24]. All of these factors
could confound the predication of a therapeutically relevant dose, and partially attribute
to the decline in accumulative clinical success rate (i.e., ~11.6%) [25,26]. As a result, the
question of whether adequate drug concentrations at the target have been achieved may
underpin variability in drug response.
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Figure 1. Illustration of intestinal CYP3A4 regulation and the effect of its content and activity variation on orally admin-
istered drugs. Top left: CYP3A4 ligands belong to BDDCS Class 1 and Class 2 with varied solubilities and extensive me-
tabolism, highlighted by the black rectangle; Bottom panel: intra-enterocytic CYP3A4 regulation by endogenous factors 
under disease conditions and xenobiotics from oral intake (e.g., drugs or food constituents). Normally, a PXR ligand enters 
the enterocyte and binds to PXR intracellularly. This then dimerizes with retinoid X receptor (RXR) and binds to the xe-
nobiotic response enhancer module (XREM) to upregulate the CYP3A4 gene. Systemic inflammatory conditions such as 
cancer, infection and obesity increase circulating cytokines, such as IL-6, which activate the STAT3-MAPK pathway to 
downregulate CYP3A4 gene regulation. Intra- and inter-individual CYP3A4 variation can cause varied drug clearance, 
resulting in undesirable toxicity and ineffective therapy of drugs with a narrow therapeutic index. Abbreviation: RXR, 
retinoid X receptor; XREM, xenobiotic response enhancer module (XREM); STAT: signal transducer and activator of tran-
scription-3; MAPK: a family of signaling cascade including Jun N-terminal kinase and mitogen-activated protein kinase 1 
pathways. 
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istration (FDA) has issued guidance for “Food-Effect Bioavailability and Fed Bioequiva-
lence Studies” to label some medications that are strongly influenced by a meal [24]. All 
of these factors could confound the predication of a therapeutically relevant dose, and 
partially attribute to the decline in accumulative clinical success rate (i.e., ~11.6%) [25,26]. 
As a result, the question of whether adequate drug concentrations at the target have been 
achieved may underpin variability in drug response. 

The influence of those physiological GIT barriers (e.g., CYP3A4, pH) as well as ex-
trinsic regulatory variables (e.g., diet, health conditions) on absorbed drug concentrations 
can be largely determined by the properties of the oral dosage form, which in turn de-
pends on its design and manufacture [27]. For example, in a randomized crossover study, 
Mueller et al., compared two marketed cyclosporin formulations, Sandimmune vs. 

Figure 1. Illustration of intestinal CYP3A4 regulation and the effect of its content and activity variation on orally admin-
istered drugs. Top left: CYP3A4 ligands belong to BDDCS Class 1 and Class 2 with varied solubilities and extensive
metabolism, highlighted by the black rectangle; Bottom panel: intra-enterocytic CYP3A4 regulation by endogenous factors
under disease conditions and xenobiotics from oral intake (e.g., drugs or food constituents). Normally, a PXR ligand
enters the enterocyte and binds to PXR intracellularly. This then dimerizes with retinoid X receptor (RXR) and binds to the
xenobiotic response enhancer module (XREM) to upregulate the CYP3A4 gene. Systemic inflammatory conditions such as
cancer, infection and obesity increase circulating cytokines, such as IL-6, which activate the STAT3-MAPK pathway to down-
regulate CYP3A4 gene regulation. Intra- and inter-individual CYP3A4 variation can cause varied drug clearance, resulting
in undesirable toxicity and ineffective therapy of drugs with a narrow therapeutic index. Abbreviation: RXR, retinoid X
receptor; XREM, xenobiotic response enhancer module (XREM); STAT: signal transducer and activator of transcription-3;
MAPK: a family of signaling cascade including Jun N-terminal kinase and mitogen-activated protein kinase 1 pathways.

The influence of those physiological GIT barriers (e.g., CYP3A4, pH) as well as extrinsic
regulatory variables (e.g., diet, health conditions) on absorbed drug concentrations can be
largely determined by the properties of the oral dosage form, which in turn depends on its
design and manufacture [27]. For example, in a randomized crossover study, Mueller et al.,
compared two marketed cyclosporin formulations, Sandimmune vs. Sandimmune Neoral®,
and found that the long chain triglyceride-based Neoral® was much less influenced by fat-
rich meals, indicating that lipid-based formulations to deliver the drug was advantageous
when individualizing a dosage regimen [28,29]. Especially, lipid-based formulations, which
account for approximately 2–4% of the pharmaceutical market, represent one of the most
popular approaches to improve the solubilization of poorly water-soluble compounds
and to overcome the GIT barriers. Pharmaceutical grade lipid excipients in lipid-based
formulations are physiological or physiologically related, including fatty acids (e.g., oleic
acid, myristic acid), ethyl esters (e.g., ethyl oleate), triglycerides of long- or medium- chain
fatty acids (e.g., corn oil, Miglyol®), and non-digestible mineral oil [30]. The intraluminal
process (e.g., bile salts) of ingested lipids from formulations forms solubilised phases to
facilitate the drug absorption [30,31].

Among diverse lipid-based formulations, lipid-based nanosystems (LNS) have been
an ever-growing segment of pharmaceutics that primarily involves FDA’s Biopharma-
ceutics Classification System (BCS) Class 2 & 4 drugs with low solubility and/or poor
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permeability [32]. LNS encompasses various subtypes with different nanostructures, in-
cluding solid lipid nanoparticles (SLN), liposomes, nanostructured lipid carriers (NLC),
polymer-lipid hybrid nanoparticles (PLN), and self-nanoemulsifying drug delivery systems
(SNEDDS) [33–37]. Because of combined attributes of both lipidic carriers and nanosized
particles, LNS can facilitate the delivery of active pharmaceutical ingredients (API) into the
blood circulation via either the hepatic portal vein or the GIT lymphatic system [38]. Partic-
ularly, for LNS containing triglycerides, cholesterol esters or long chain fatty acids, they are
incorporated into the large lipoprotein chylomicrons (75–1200 nm) upon re-esterification
and preferentially trafficked via the intestinal lymphatic system, thus effectively evading
first-pass metabolism in the liver [39]. In recent years, an increasing body of evidence has
shown that certain components (e.g., surfactants, lipids and polymers) used in LNS can
reduce intra-enterocyte metabolism [40]. Using CYP3A4 substrate midazolam as the probe,
studies of effects of common surfactants, co-solvents and oils (e.g., Tween, PEG, poloxamer,
oleic acid) on the drug disposition found 68.2% of tested excipients significantly inhibited
CYP3A4 biotransformation activities [41,42]. In addition, with advancing nanotechnology,
LNS can be adapted by modulating their lipid composition and decorating them with
polymers or ligands to target different regions of the GIT, in order to achieve a controlled,
sustained, and targeted drug delivery [43].

In this review, we explore the essentiality of overcoming intestinal CYP3A4 as a
critical physiological barrier in the GIT. Then, we have selected orally administered drugs
using Benet’s Biopharmaceutics Drug Disposition Classification System (BDDCS) and daily
dietary constituents or herbal extracts that involve CYP3A4 interactions, respectively. We
highlight lipid-based drug delivery strategies that could potentially modulate or bypass
intestinal CYP3A4 metabolism. With the aid of computer modeling and advanced micro-
and nanotechnologies, LNS with controlled drug release kinetics may potentially tackle
in vivo variability of CYP3A4 susceptible drugs with a narrow therapeutic index.

2. Intestinal CYP3A4 as a Critical GIT Barrier
2.1. Contribution of Gut Wall to Drug Metabolism

CYP3A4 is prominently expressed in both the liver and small intestines, where the
total amount of intestinal CYP3A4 content averages about 40% of the liver content [8,44].
As such, it was previously thought that the liver has a greater role in the overall first-pass
metabolism of many drugs. However, studies in both humans and animals have suggested
the substantial contribution of intestinal CYP3A4 to primary metabolism of drugs and the
spatially independent regulation of intestinal CYP3A4 activity from hepatic ones [45–47].
In paired human liver and small intestinal specimens, the content of enterocyte CYP3A4
and drug efflux transporter P-gp were three times and seven times, respectively, greater
than hepatocytes, and there was a good positive correlation between CYP3A4 intestinal
expression and catalytic activity, such as the maximum rate of metabolism (Vmax) of its
substrate drug (i.e., verapamil) [47].

The selective expression of CYP3A4 in mature enterocytes at the tips of villi mostly
in the duodenum and proximal jejunum is evolutionarily strategic, as this is the first-line
gating mechanism to prevent absorption of harmful xenobiotics in the body. Yet, the oral
bioavailability of several clinically used drugs are limited by intestinal CYP3A4 metabolism,
including hydroxylmethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, calcium
channel blockers and benzodiazepines [46,48]. In transgenic knockout CYP3A4 -/- mice
in either the intestine or the liver, expression of CYP3A4 in the intestine virtually blocked
absorption of orally administered chemotherapeutic drug docetaxel, whereas hepatic
expression facilitated systemic drug clearance [49].

2.2. Drug Metabolism Variation by Enterocytic CYP3A4

In humans, there are huge intra- and inter-individual variations of intestinal CYP3A4
content and activity [50]. Firstly, CYP3A4’s broad specificity is due to its active site
ability to simultaneously accommodate molecules of different sizes and kinds within two
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substrate-binding sub-pockets and one “effector” binding region [51]. CYP3A4 exists in
multiple conformations, allowing for high range in activity modulation from effectors (e.g.,
inhibitors or inducers) in the allosteric sites located close to the active site [51]. For example,
one study examined the substrate dependent CYP3A4 inhibition kinetics and found that
tested inhibitors exhibited a host of the half maximum inhibitory concentration (IC50)
from 0.001 µM to 100 µM depending on the probe substrate used, such as midazolam,
testosterone, nifedipine and terfenadine [52].

Secondly, although most people follow a trend where CYP3A4 activity decreases along
the intestines from the proximal duodenum to the distal ileum, the fold of inter-variability
is high. Intestinal CYP3A4 activity from different sections of human donor intestinal
tissues using midazolam as a test substrate and its 1’-hydroxy metabolite showed that peak
CYP3A4 activity varied as much as 50-fold between each donor [53]. From the analysis
of six donor intestines, one showed a near constant CYP3A4 activity, and one showed
low proximal activity that spiked in the medial section but reverted back to low distal
activity [53]. Because of such CYP3A4 variations at the gut wall, stimuli-responsive (e.g.,
pH) or sustained dosage forms may exhibit varied pharmacokinetic profiles of systemic
drug concentration depending on release location and rate along the GI tract.

Thirdly, CYP3A4’s expression is coordinately regulated by nuclear receptors, partic-
ularly pregnane X receptor (PXR) (Figure 1). PXR has the highest mRNA expression in
the small intestine and liver, and a broad substrate specificity, including frequently pre-
scribed drugs such as rifampin, phenytoin, phenobarbital, carbamazepine, dexamethasone,
paclitaxel, topotecan, and omeprazole [54,55]. Whether or not this broad specificity is the
cause of CYP3A4’s own broad specificity remains unclear, but in the same cohort study,
CYP3A4 expression was strongly correlated with expression data of PXR [56]. PXR is also
downregulated during disease conditions, such as inflammation, cancer, infection and
obesity [57]. During inflammation, cytokines [e.g., interleukin-1 (IL-1) or interleukin-6
(IL-6), tumor necrosis factor (TNF)] modulate nuclear receptors, including PXR, in an IL-6
dependent mechanism to downregulate gene expression of CYP3A4 during host defense
mechanisms, which leads to potentially increased concentrations of drugs toward toxic
levels [14,58].

It is worth noting that genetic factors of CYP3A4 (e.g., nucleotide polymorphisms,
mRNA alternative splicing) may not substantially contribute to the pre-metabolism of
drug substrate [59]. Unlike other CYPs metabolic enzymes (e.g., CYP2D6) affected by
its genetic polymorphisms, large inter-individual variation of CYP3A4 activity exists
as a wide Gaussian distribution compared to a classic bimodal distribution of CYP2D6,
suggesting that different enzyme isoforms (or variants) of CYP3A4 do not lead to neither
poor or extensive metabolizing phenotypes, but rather the variation is most likely due to
environmental factors that cause changes in gene expression of CYP3A4 [8].

3. Select Compounds Involving CYP3A4 Interaction and Their Classification

The wide substrate variability from the top prescribed pharmaceuticals, herbals and
food has made CYP3A4 one of the main causes of metabolic drug-drug interactions in clin-
ical practice (Tables 1 and 2) [60–92]. The domain of the CYP3A4 active site is hydrophobic,
thus CYP3A4 prefers large, lipophilic molecules with relatively high log P values greater
than 1, indicating these compounds tend to have low aqueous solubility that compromises
oral bioavailability [2,93]. According to FDA’s Biopharmaceutics Classification System
(BCS), drugs involved in CYP3A4 interaction can fall into any of the categories, for which
the majority are in Class 2 with high permeability-low solubility, some in Class 4 with
low permeability-low solubility, and a few in Class 1 or 3 with high solubility and varied
permeability (Table 1) [60–72,94]. However, the criteria of BCS (i.e., solubility and per-
meability) are not sufficiently powered to predict the oral bioavailability of compounds
involving CYP3A4 interaction. That means, even for the Class 1 drugs in BCS with well
absorbed properties, systemic availability could be low due to the extensive metabolism
and clearance by the intestine and liver.
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Table 1. Clinically used oral drug formulations involving CYP3A4 interaction and their pharmaceutical classification.

Interaction with
CYP3A4 a Drug Examples Drug Class Indications Formulations b BDDCS

Class c BCS Class d Log P e

Substrates

Alprazolam Benzodiazepine Anxiety disorders and panic disorder Tablet, concentrated
liquid Class 1 Class 2 2.12

Atorvastatin HMG-CoA reductase
inhibitor Hypercholesterolemia Tablet Class 2 Class 2 6.36

Carbamazepine Anticonvulsant Seizures, bipolar disorder, trigeminal neuralgia,
diabetic neuropathy

Tablet, capsule,
suspension Class 2 Class 2 2.45

Cyclosporine Immuno-suppressant Prevention organ rejection severe psoriasis, severe
rheumatoid arthritis Capsule, solution Class 2 Class 2 1.4

Dexamethasone Steroid derivative Different inflammatory conditions: allergic disorders,
psoriasis, rheumatoid arthritis, ulcerative colitis Tablet, solution Class 1 Class 1/Class 3 1.83

Ethinyl estradiol Hormone derivative Contraceptive, menopausal symptoms Tablet Class 1 Class 1 3.67
Felodipine Calcium channel blocker Hypertension Tablet Class 2 Class 2 3.86
Indinavir HIV protease inhibitor Cocktails for HIV infections Capsule Class 2 Class 4 3.49

Itraconazole Azole antifungal Infections caused by fungus, including the lungs,
mouth or throat, fingernails. Capsule, tablet, solution Class 2 Class 2 5.66

Lovastatin HMG-CoA reductase
inhibitor Hypercholesterolemia Tablet Class 2 Class 2 4.26

Ritonavir HIV protease inhibitor Cocktails for HIV infections Capsule, tablet, solution Class 2 Class 4 6.27
Saquinavir HIV protease inhibitor Cocktails for HIV infections Capsule, tablet Class 2 Class 4 4.7

Sildenafil cGMP Phosphodiesterase-5
inhibitor

Erectile dysfunction, pulmonary arterial
hypertension

Tablet, capsule,
suspension Class 1 Class 2 2.75

Simvastatin HMG-CoA reductase
inhibitor Hypercholesterolemia Tablet, suspension Class 2 Class 2 4.68

Tadalafil cGMP Phosphodiesterase-5
inhibitor Erectile dysfunction, enlarged prostate Tablet Class 2 Class 2 1.42

Triazolam Benzodiazepine Insomnia Tablet Class 1 n/a 2.42

Vardenafil cGMP Phosphodiesterase-5
inhibitor

Erectile dysfunction, pulmonary arterial
hypertension Tablet Class 1 Class 2 2.79

Verapamil Calcium channel blocker Hypertension, angina, cardiac arrhythmias Tablet Class 1 Class 1 3.79 at pH 9.0;
2.15 at pH 7.0
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Table 1. Cont.

Interaction with
CYP3A4 a Drug Examples Drug Class Indications Formulations b BDDCS

Class c BCS Class d Log P e

Inhibitors

Clarithromycin Macrolide antibiotic Bacterial infections: stomach ulcers caused by
Helicobacter pylori Tablet, suspension Class 3 Class 2 3.16

Erythromycin Macrolide antibiotic Different types of bacterial infections Capsule, tablet, liquid Class 3 Class 3 3.06
Fluconazole Azole antifungal Fungus infections, cryptococcal meningitis Powder, tablet Class 3 Class 1 0.5

Ketoconazole Azole antifungal Fungus infections Tablet Class 2 Class 2 4.34
Midazolam Benzodiazepine Anesthesia, anxiety, panic disorder, seizures Syrup Class 1 Class 1 4.33
Nicardipine Calcium channel blocker Hypertension, angina, cardiac arrhythmias Capsule Class 1 Class 2 3.82
Nifedipine Calcium channel blocker Hypertension, angina, cardiac arrhythmias Tablet Class 2 Class 2 2.20

Tacrolimus Immuno-suppressant Prevention of graft rejection following solid organ or
bone marrow transplantation Capsule, granule, tablet Class 2 Class 2 3.03

Inducers
Phenobarbital f Anticonvulsant Seizures, sedation, insomnia Elixir, tablet Class 1 Class 1 1.47

Phenytoin Anticonvulsant Seizures, arrhythmia Capsule, tablet,
suspension Class 2 Class 2 2.47

a Effect of each drug on CYP3A4 is obtained from Philip et al., 2015 [60]; b the indication and formulation of each drug is found in MedlinePlus (https://medlineplus.gov/) and Drugs.com (https:
//www.drugs.com/); c BDDCS class for each drug is obtained from Benet et al., 2011 [61]; d BCS class for each drug is found from the following references [62–71]; e the Log P value of each drug is obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/), and the detailed references are listed in the Supplementary Materials; f Interactions between Phenobarbital and CYP3A4 was obtained from FDA [72].

Table 2. Widely consumed dietary and herbal products that contain CYP3A4 modulating compounds.

Effect on CYP3A4
Activity Diet & Herbal Main Use Modulating Constituent a References

Inhibition Grapefruit Fruit, juice Bergaptol, flavonoids (naringin, naringenin, kaempferol and quercetin), furanocoumarins (bergamottin and
DHB), paradisin C [73,74]

Inhibition Seville orange Fruit, juice, marmalade DHB, bergamottin, [75,76]

Inhibition Red wine drinks Polyphenolic (trans-resveratrol), red wine solids (flavonoids and other polyphenols), gallic acid [77,78]
Inhibition Garlic Food, flavoring agent, supplement Flavonoids (tangeretin, nobiletin, rutin, quercetin), garlic sulfur containing compounds (DADS, DAS, AMS) [79,80]

Inhibition Cranberry Fruit, juice, supplement Triterpenes (maslinic acid, corosolic acid, and ursolic acid), anthocyanidins, anthocyanins [81,82]

Inhibition/Induction St. John’s wort Herbal/dietary supplement Hyperforin, hypericin, quercitrin [83,84]

Inhibition/Induction Ginkgo biloba Alternative medicine Bilobalide, ginkgolide A [85,86]

Inhibition Goldenseal Botanical supplement Individual isoquinoline alkaloids (berberine, hydrastine) [87,88]

Inhibition Green tea Drinks, dietary supplement Green tea catechins, EC, EGC, ECG, EGCG [89,90]

Induction Ergot alkaloids Medicine Ergotamine [91,92]
a abbreviation: DHB:6′-7′- dihydroxybergamottin; DADS: garlic’s diallyl disulfide; DAS: diallyl sulfide; AMS: allyl methyl sulfide; EC: (-)-epicatechin; EGC: (-)-epigallocatechin; ECG: (-)-epicatechin-3-O-gallate;
EGCG: epigallocatechin-3-gallate.

https://medlineplus.gov/
https://www.drugs.com/
https://www.drugs.com/
https://pubchem.ncbi.nlm.nih.gov/
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The systemic bioavailability of drug formulation, termed as F, is defined by the
following two equations:

F = (AUCoral × Dosei.v.)/(AUCi.v. × Doseoral) (1)

and:
F = fa × (1 − FTM) × (1 − EH) (2)

where the area under the plasma (blood) curves (AUC) distinguishes between intravenous
(i.v.) and oral administration, fa is the fraction absorbed from the intestinal lumen, FTM is
the degree of GI metabolism (or in the lumen), and EH is the hepatic extraction. Benet’s
BDDCS takes into account the extent of drug metabolism, and classifies drugs based on
the criteria of drug solubility and the intestinal permeability rate: Class 1 high perme-
ability/metabolism and high solubility, Class 2 high permeability/metabolism and low
solubility, Class 3 low permeability/metabolism and high solubility and Class 4 low perme-
ability/metabolism and low solubility (Figure 1) [20,95]. Because highly permeable drugs
can be reabsorbed from unchanged drug excreting routes and thus can be only cleared by
metabolism, it is believed that high intestinal permeability is correlated with extent of drug
metabolism [95]. As shown in Table 1, using the BDDCS, most drugs involved in CYP3A4
interactions as substrates, inhibitors and inducers fall into Class 1 and Class 2 with high
permeability and metabolism. Especially for Class 2 CYP3A4 substrates in BDDCS with low
solubility, these drugs do not achieve adequate concentrations in enterocytes to saturate the
enzyme. Increasing the solubility of these substrates by rationally designed dosage forms
would overwhelm CYP3A4 so that any pre-systemic metabolism would be negligible (see
Section 4 “LNS strategies of overcoming pre-systemic CYP3A4 metabolism”).

CYP3A4 activity is also particularly sensitive to dietary constituents that is related to
drug-food and drug-herb interactions, for which several classic reviews have discussed
this field of study [96,97]. Table 2 lists common foods and herbals used in the general
population that have been shown to inhibit or induce CYP3A4 activity or expression [73–92].
The best-known example is grapefruit-drug interactions that causes marked and variable
increases in plasma concentration up to 250% of various orally administered CYP3A4
substrate drugs, including felodipine and nifedipine for treating hypertension, midazolam
for anesthesia and cyclosporin for immunosuppression [74,98–101].

The study of six human subjects with borderline hypertension showed that grapefruit
juice, but not orange juice, caused more frequent vasodilatation related adverse effects
with felodipine compared to water intake [98]. It was found that the furanocoumarin
derivatives from grapefruit juice strongly inhibit the catalytic activity of CYP3A4 in an
reversable manner and downregulate intestinal CYP3A4 protein expression by more than
50% [102,103]. Besides traditional foods like fruits, teas and beverages, increasing popular-
ity in complementary alternative medicine (CAM) and concomitant use with medications
has resulted in the potential negative clinical consequences of interactions between intesti-
nal CYP3A4 and extracted herbal compounds, such as polyphenols [104]. For example, the
widely used herbal St. John’s wort (SJW) for the treatment of depression has been shown
to induce the activity of CYP3A4 and P-gp transporter in the intestine [105]. Particularly,
SJW extracted hyperforin content of greater than 1 mg daily intake is associated with
substantial changes in systemic exposure of drugs, such as digoxin, cyclosporin, and oral
contraceptives [106,107]. Therefore, careful consideration must be given to prescribing
drugs that involve CYP3A4 metabolism and nutraceutical formulations, where potential
dietary isolate constituents affecting pre-systemic metabolism needs to be recognized.

4. LNS Strategies of Overcoming Pre-Systemic CYP3A4 Metabolism

Many drugs are victims of CYP3A4 interactions. Unfortunately, interactions with
CYP3A4 restrict the clinical use for these drugs that ultimately impact patient treatments.
If these drugs can be formulated to avoid CYP3A4 binding, then they can be successfully
used in therapy. Many lipid-based, polymeric and inorganic drug carriers have been
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used clinically and experimentally with great success to overcome the limitation of free
therapeutics (e.g., solubility) and heterogenous biological barriers (e.g., systemically, mi-
croenvironmentally, and cellularly) across patient populations and diseases because of their
capability of being engineered in a more personalized manner [108]. Figure 2 illustrates
three potential approaches of orally administered LNS to address enterocytic CYP3A4
metabolism and in turn, drug-response variability.
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Figure 2. Different absorption strategies of LNS to address drug-response variability by intestinal CYP3A4 metabolism.
Left panel (1): at the proximal small intestine, intra-enterocytic CYP3A4 activity can be locally saturated or inhibited
by LNS delivered API or excipients; Middle panel (2): CYP3A4 metabolism is minimized via lymphatic drug transport;
Right panel (3): Targeting the distal end of the small intestine where CYP3A4 activity is the least. Depending on the
approach, various LNS types can be designed, from left to right: Mucoadhesive, CYP3A4 inhibitor-conjugated (combined),
Chylomicron-mediated, M-cell mediated, pH-responsive and vitamin B12-mediated.

In Table 3, select LNS examples and their delivered drugs based on BDDCS class are
presented to demonstrate their mechanistic strategies of improving oral
bioavailability [109–129]. By taking advantage of existing physiological characteristics
of the small intestines, the following six strategies have the potential to use nanoparticle
(NPs) formulations to address intestinal CYP3A4 metabolism and to enhance the absorp-
tion of drugs and NPs across enterocytes: (1) incorporating mucoadhesive polymers or
lipids that are attracted to the unstirred water layer adjacent to the intestinal epithelia,
allowing drugs to be in close proximity which increases the flux into epithelial cells to
overwhelm CYP3A4 metabolism; (2) CYP3A4 inhibitor-containing LNS locally inhibits
intestinal CYP3A4 during transcytosis; (3) using highly lipophilic lipid NPs to traverse
enterocytes straight into lymphatic vessels; (4) formulating LNS targeting M cell integrins
for endocytosis that carries the drug to lymphatic vessels; (5) pH-sensitive formulation
that selectively releases drug in the ileum where there is a lower expression of intestinal
CYP3A4; (6) vitamin B12 targeting cubilin in the terminal ileum for absorption via receptor
mediated endocytosis. Those strategies are GIT region dependent, so we discuss them
separately below.



Pharmaceutics 2021, 13, 1261 10 of 24

Table 3. Examples of orally administered LNS formulations for improving drug bioavailability.

LNS a Delivery
Mechanism Nanoformulations b Drug Payload BDDCS Class c Study Models Main Effects b Reference

Lipid NPs

Mucoadhesive SLN Cyclosporin A Class 2 Young pig - low variation in drug bioavailability [109]

Mucoadhesive VP16-NLC Etoposide Class 3 Rat intestinal
membrane, Healthy rat

- ↑ intestine permeability
- ↑ bioavailability by 1.8-fold compared

to VP16 suspension
[110]

Clathrin-mediated
endocytosis DRD-SLN Dronedarone

hydrochloride Class 2 Healthy rat

- ↑ bioavailability by 2.68-fold
compared to DRD suspension

- possible transport via lymphatic
absorption

[111]

Lymphatic
transport via
chylomicrons

EFV-SLN Efavirenz Class 2

Chylomicron blocking
rat model, Mesenteric

lymph duct cannulated
rat model

- ↑ drug amount in the liver
- ↑ accumulation in the spleen [112]

Lymphatic
transport via
chylomicrons

AT-NLC Atorvastatin Class 2 Both High-fat diet
treated and health rats

- ↑ bioavailability by 3.6- and 2.1-fold
compared to AT suspension and
Lipitor®

- improved efficacy of AT by reducing
serum levels of TC, TG and LDL

[113]

Portal vein and
lymphatic pathway

transport
Darunavir-SLN Darunavir Class 2

Everted rat intestine,
Chylomicron blocking
rat model, Healthy rats

- ↑ bioavailability by 2-fold compared to
marketed Darunavir tablet

- uptake by enterocyte via endocytosis
[114]

Portal vein and
lymphatic pathway

transport
AM-SLNs Asenapine maleate Class 1

Caco-2 monolayer,
Chylomicron blocking

rat model

- ↑ bioavailability by 50.19-fold
compared to AM dispersion [115]

Lymphatic
absorption CLA-SLN Clarithromycin Class 3 Healthy rat

- ↑ bioavailability by 5-fold compared to
CLA suspension [116]

Lymphatic
absorption GEN-loaded SLN Genistein CYP3A4 inhibitor

In vitro characterization
of chylomicrons Caco-2

cells, Ex vivo porcine
duodenum

- 2-fold increase in uptake of intestinal
mucosa and enterocyte [117]

Lymphatic
transport via
chylomicrons

micelles 5-
demethylnobiletin N/A Caco-2 monolayer

- ↑ enterocytic metabolism of 5DN
- fatty acid types affected differently on

intestinal uptake of the drug and
chylomicron formation

[118]
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Table 3. Cont.

LNS a Delivery
Mechanism Nanoformulations b Drug Payload BDDCS Class c Study Models Main Effects b Reference

Portal vein and
lymphatic pathway

transport
CCN Candesartan

cilexetil Class 4

Caco-2 monolayer, in
situ single-pass

intestine perfusion,
ligated intestinal loop
model, Healthy rats

- internalized into enterocytes by
clathrin-mediated endocytosis

- ↑ permeability in the duodenum,
jejunum and ileum

- ↑ plasma AUC by 10-fold than free CC
suspension

[119]

PLN

Mucus penetration pSLN Doxorubicin Class 1

Caco-2/HT29
co-culture, Everted rat

intestine, Intestine loops
model, Healthy rat

- ↑mucus penetration
- ↑ bioavailability by 1.99-fold

compared to non-PEGylated SLN
[120]

Mucoadhesive Chitosan coated
liposome Alendronate Class 3 Caco-2 monolayer,

Healthy rat

- strong adsorption with mucins
- ↑ bioavailability by 2.6-fold compared

to alendronate solution
[121]

Enterocyte adhesive
via WGA-lectin

binding
LPSN Paclitaxel Class 2 A549 cells, Healthy rats

- ↑ retention time in blood compared to
free PTX

- ↑ plasma AUC, peak concentration,
t1/2 compared to free PTX

[122]

M-cell phagocytosis,
TJ opening, and

caveola-mediated
endocytosis

HACC-DTX-SLN Docetaxel Class 2 Caco-2 monolayer, FAE
monolayer, Healthy rat

- high Peyer’s patch accumulation
- Reversable regulation of tight junction [123]

Lymphatic uptake NCC-SLN Curcumin CYP3A4 inhibitor Healthy rat

- ↑ plasma AUC by 9.5-fold compared
to curcumin solution

- 6.3-fold higher accumulation in lymph
nodes than curcumin solution

[124]

pH responsive drug
release (i.e., pH 1.2

and pH 7.4)
EuC-NLS Alendronate

sodium Class 3 Healthy rabbit
- ↑ bioavailability by 12-fold than ALS

tablets without enteric coating
polymer

[125]

pH-responsive drug
release, (i.e.,

pH>7.0)
IRSLNF3

Irinotecan
hydrochloride

trihydrate
Class 1 Healthy mice, HT-29

bearing mice

- ↑ 1.62-fold in plasma AUC compared
to NPs without coating pH sensitive
microbeads

- ↑ inhibition of tumor growth
[126]

Targeting MCT1
transport DTX-ACSL-Lip Docetaxel Class 2 4T1 and Caco-2 cells,

Healthy rats

- ↑ 10.70-fold in plasma AUC compared
to non-targeted DTX-lip

- GSH responsive release at tumor
[127]
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Table 3. Cont.

LNS a Delivery
Mechanism Nanoformulations b Drug Payload BDDCS Class c Study Models Main Effects b Reference

Targeting ASBT in
the distal ileum DSLN-CSG Docetaxel Class 2

Lymph fistula rat
model, Healthy rats and

tumor bearing mice

- ↑ bioavailability by 5-fold compared to
non-modified NPs

- plasma DTX profile sustained up to
24 h

- enhanced tumor growth inhibition
and prevention

[128]

Targeting VB12
mediated

endocytosis
H/VC-LPN Curcumin CYP3A4 inhibitor

Caco-2/HT29-MTX
co-culture, Healthy

mice & rats

- mucus penetration
- ↑ plasma AUC by 13.89 folds and Cmax

by 7.9 folds compared to curcumin
suspension

- multiple pathways absorption,
including M cells and transcytosis
across epithelium

[129]

a Abbreviations: AM-SLNs: Asenapine maleate (AM) loaded solid lipid nanoparticles; AT-NLC: Atorvastatin (AT) nanostructured lipid carriers; CCN: Candesartan cilexetil (CC) loaded nanoemulsion;
CLA-SLN: Clarithromycin (CLA) loaded solid lipid nanocarriers; Darunavir-SLN: Darunavir loaded solid lipid nanoparticles; DRD-SLN: Dronedarone hydrochloride (DRD) loaded solid lipid nanoparticles;
DSLN-CSG: docetaxel (DTX)-loaded solid lipid nanoparticle (DSLN) coated with a glycocholic acid-chondroitin sulfate conjugate (CSG); DTX-ACSL-Lip: ACSL (Chitosan (CS) modified with acetic acid (A)
and lipoic acid (L)) modified docetaxel (DTX) Liposomes; EFV-SLN: Efavirenz solid lipid nanoparticles; EuC-NLS: Eudragit-coated alendronate sodium (ALS) nanoliposomes; 5DN: 5-demethylnobiletin;
GEN-loaded SLN: Genistein (GEN) loaded solid lipid nanoparticle; GSH: L-Glutathione; HACC-DTX-SLN: Hydroxypropyl trimethylammonium chloride chitosan (HACC) modified docetaxel-loaded solid lipid
nanoparticles; H/VC-LPN: hydrophilic copolymer pHPMA associated with vitamin B12-grafted chitosan-modified lipid polymeric nanoparticles; IRSLNF3: Folic acid-grafted solid lipid nanoparticles (SLNs)
bearing irinotecan hydrochloride trihydrate; LDL: Low-density lipoprotein; LPSN: WGA lectin conjugated paclitaxel (PTX) -loaded colloidal lipid nanostructures; NCC-SLN: N-carboxymethyl chitosan (NCC)
coated curcumin-loaded solid lipid nanoparticles; pSLN: PEG2000-stearic acid modified solid lipid nanoparticle; SLN: Solid lipid nanoparticle; TC: Total cholesterol; TG: Triglyceride; VP16-NLCs: Etoposide
(VP16) loaded nanostructured lipid carriers; b BDDCS class for each drug is obtained from Benet et al. [61].
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4.1. Local Saturation or Inhibition of Enterocytic CYP3A4 Activity at Proximal GIT

The duodenum and proximal jejunum are the main absorptive sites of designed
lipophilic drug formulations due to the different morphology and mucosal cell differenti-
ation [130]. First, the thickness of adherent mucus layers of proximal GIT is the thinnest
among other regions (e.g., stomach, ileum, colon); in humans, the small intestine mucus
layer has a uniform thickness of 15.5 µm compared to 135 µm in the colon [131,132]. Also,
pH is substantially increased from the extremely acidic stomach (~0.8–5) to less acidic
duodenum (~7) [132]. As a result, API from pH-responsive formulations are often locally
released at high luminal concentrations. This increases the concentration at the cell surface
and could potentially increase the transport gradient into enterocytes according to Fick’s
first law of diffusion, which states that diffusive flux into a compartment is proportional to
the concentration gradient in a linear dimension. Mathematically, this can be expressed as:

J ∝ −∂C/∂x (3)

where J is the diffusion influx, C is the concentration of substance, and x is the thickness or
length. Since CYP3A4 activity is the highest in the duodenum, increasing the intracellular
concentration of drug substrate would saturate and overwhelm drug metabolizing enzyme
CYP3A4 to improve absorption (Figure 2). Yet, because of rapid proximal GIT peristalsis
from oral to anal side, for drugs to be locally absorbed, incorporation of mucoadhesive
polymers is sometimes required to prolong residence time of LNS at this region [133,134].
Once adhered to the mucin or epithelial surface, the rate of drug release in vivo depends
on the chemical composition of LNS (Table 3). In a study of an oral formulation of SLN
encapsulating cyclosporin A, the mixture of the stabilizer, such as lecithin or sodium
cholate, of the SLN resulted in fast degradation and drug release, while using poloxamer
caused steric hinderance towards epithelial adsorption that resulted in slower degradation
and drug release [109,135,136]. It was expected that an intermediate release profile can be
achieved by mixing the proportion of lecithin and poloxamer in the stabilizing layer of SLN.
In addition, not only used as mucoadhesive and carrier components, some polymers and
fatty acids (e.g., different chain length) also serve as permeability enhancers to influence
regulation of intestinal tight junctions. As a result, both released and encapsulated drugs
are absorbed via paracellular route with transiently opened tight junctions, which in
turn avoids intra-enterocyte CYP3A4 metabolism [137,138]. For example, enhancing NPs
adsorption at the mucus layer, surface coating of liposomes with the cationic polysaccharide
chitosan can electrostatically interact with negatively charged mucin secreted from small
intestines [121]. When chitosan was thiolated (known as thiomers), the thiol group can
reversibly open gap junctions, as shown using the thiomer matrix system [139].

The use of small molecule enzyme inhibitors, co-administered with CYP3A4 sus-
ceptible drugs, remains problematic as these agents have a toxic potential caused by the
inhibition of physiological enzyme activities [137]. So far, the study of LNS delivery
with respect to CYP3A4 inhibition is limited but applying polymeric nanoformulations
to resolve the toxicity issue of enzyme inhibition is promising [140,141]. For example,
encapsulation of a CYP3A4 inhibitor (i.e., ritonavir) in solid drug nanoformulations can
lower the cytotoxicity of inhibitors and also enhance CYP3A4 inhibition and permeability
across intestinal Caco-2 cells [141]. To allow transcellular delivery of susceptible drugs
by LNS into the systemic circulation without being subjected to CYP3A4 metabolism, the
more practical strategy is to select pharmaceutical excipients known for causing induction
or inhibition of CYP3A4 (Figure 2 left panel), although their extent is not as significant as
known enzyme inhibitors. Readers could refer to the recent review for effects of pharma-
ceutical excipients on drug metabolism [40]. The most potent inhibitors of CYP3A4 are
surfactants and the least effective ones are organic solvents. Tompkins et al., has shown that
polysorbate-80 (PS-80), which is a surfactant, inhibited CYP3A4 activity by 70% [142]. The
authors believe that its mechanism of CYP3A4 inhibition is probably through extracellular
membrane signaling since PS-80 is unlikely to cross the cell membrane due to its high
molecular weight and polarity. This type of interaction can be used in future studies as a
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milder form of bypassing CYP3A4 enzymes without using highly potent inhibitors such as
ritonavir, to avoid complicating drug-drug interactions. Drug-excipient interactions also
have the added benefit of the excipients being pharmacologically inert, so patients would
not experience unnecessary side-effects. This method can be combined with mucoadhesive
systems as described above to further improve bioavailability.

4.2. Minimizing CYP3A4 Drug Metabolism via Intestinal Lymphatic Drug Transport

Highly lipophilic LNS, particularly containing triglycerides, are degraded through
lipolysis in the intestinal lumen and further absorbed by enterocytes for re-assembly into
chylomicron intracellularly. Because of the leaky nature of the lymphatic capillaries, drug-
incorporating chylomicrons are secreted into the mesenteric lymph and preferentially
shunted into the lymphatic vessel instead of the portal vein (Figure 2 middle panel). The
major benefit of such delivery approach for the absorption of drugs is avoiding hepatic
first-pass metabolism and targeting lymphatic regions of intestine. In order to use this
approach for enhanced drug absorption, drugs must have a large log P value (preferably
log P > 5) (e.g., efavirenz and atorvastatin in Table 3), have a lipid solubility >50 mg/g,
and must be encapsulated or co-ingested with lipids [143]. Ingested lipids from high-fat
meals or formulations stimulate the packaging of the drug into chylomicrons for lymphatic
transport. Furthermore, a higher intracellular lipid load in enterocytes may form larger
lipid droplets that reduces access for the lipid-dissolved drug into metabolizing enzymes
(e.g., CYP3A4) [143]. Drugs of interest can be modified by attaching fatty acids to mimic
the lipid absorptive process. Alternatively, lipophilic side groups or ester linkages can
increase the lipophilicity of the drug to stimulate lymphatic absorption [144]. Furthermore,
there have been some studies that use unsaturated fatty acid formulations to enhance
absorption, and it is believed that the unsaturated fatty acids compartmentalize in and
disrupt the phospholipid bilayer’s interior by interacting with the polar head of phos-
pholipids [145–147]. The lipid NPs protect CYP3A4 susceptible drugs from pre-systemic
metabolism without releasing them during transcytosis (Table 3). It is worth noting that
blocking chylomicron formation by cycloheximide in vivo noticeably reduced AUC of
plasma drug concentration, but the lipid NP can transverse enterocytes into the portal vein
to compensate the lymphatic blockage [119].

Adapted lipid NPs with surface modification of polymers, such as PLN, can enter
intestinal lymphatics via microfold (M) cells. There are regions of gut-associated lymphoid
tissue in the intestines called Peyer’s patches, and these are localized mainly in the ileum
where protection from bacteria in the large intestines is needed. M cells located in the
Peyer’s patches are specialized cells that non-specifically endocytose luminal fluid for the
presence of antigens [148]. Because these cells have a high propensity for endocytosis,
this could be a method to transport protein-based macromolecules (e.g., antigen, insulin,
erythropoietin, growth hormone and clotting factors) that are degraded by proteases in the
GI lumen or are too large to diffuse through the intestinal membrane [149,150]. Because
the M cells can transport antigens into the immune-inductive environment of the Peyer’s
patches (Figure 2 middle panel), oral immunization using NPs entrapped with the whole
virus has been developed, such as an oral vaccine for pertussis used to prevent whooping
cough [150,151]. However, exploitation of the potential of M cell uptake and transport by
LNS can be extended to include any drugs that have extensive pre-systemic and first-pass
metabolism. Because of the large proportion of drugs that are metabolized by CYP3A4,
any mechanism that avoids this enzyme could be beneficial to avoid drug interactions and
other adverse drug reactions.

Strategies to target M cell delivery have been designed by mimicking the entry of
pathogens (e.g., Yersinia, Salmonella, and Shigella) into these cells, or targeting specific recep-
tors (e.g., integrins) on the apical surface of M cells for internalization. Polyethylene glycol
(PEG) is a useful stabilizer for NPs because it prevents interactions with macrophages
and prolongs the residence time of drug in the body. This can be used with covalently
attached RGD (arginine-glycine-aspartate) derivatives to target M cell integrins for internal-
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ization [152]. Alternatively, studies on NPs conjugating with Salmonella extract or Yersinia
adhesin (i.e., invasin) have shown increased intestinal absorption into M cells [153,154].
One of the drawbacks for this strategy of drug absorption is that M cells only comprise of
1% of the total intestinal surface, making the therapeutic exploitation of this route probably
unrealistic [151,152]. Multifunctional LNS with uptake across absorptive enterocytes and
paracellular junction is likely to be needed to complement the systemic drug delivery. For
example, a PLN surface modified with positively charged hydroxypropyl trimethylammo-
nium chloride chitosan is designed to take multiple pathways for delivery of docetaxel,
a BDDCS Class 2 drug with extensive metabolism (Table 3) [123]. In both an in vitro
follicle-associated epithelium (FAE) model and in vivo examination of Peyer’s patches,
PLN had high accumulation, suggesting extensive phagocytosis of M cells in addition to
tight junction opening and enterocyte endocytosis.

4.3. Targeting Distal GIT to Exploit the Least CYP3A4 Activity

The distal jejunum and ileum represent another spatiotemporal target for LNS in
the GIT to improve oral drug bioavailability. Physiologically, the CYP3A4 activity in this
region is not as high as the proximal segments, indicating lower drug metabolism, and
a distinct pH range exists: in typical healthy individuals, the pH of the stomach is 2,
the pH of the duodenum ranges from 2.4 in the proximal duodenum to 6.8 in the distal
duodenum, the pH of the jejunum ranges between 6 and 7, and the pH of the ileum is
approximately 8. These characteristics can be exploited during drug delivery if a drug
formulation releases its drug at a specific pH. Most CYP3A4 substrates and modulators
are lipophilic (Tables 1 and 2); as a result, these compounds are relatively able to easily
traverse the apical membrane into enterocytes, but their low solubility prevents them
from achieving a high concentration to overwhelm the enterocyte’s CYP3A4 enzymes. By
formulating a pH-sensitive LNS, which typically comprises of a lipidic core for loading
drugs and a pH-responsive polymeric shell structure to release the drug specifically in the
distal small intestine, a higher concentration can be achieved in the lumen. With the high
influx of drug molecules into the enterocyte, the resultant high intracellular concentration
of drug would supersaturate and overwhelm intestinal CYP3A4 enzymes causing a greater
amount to bypass metabolism (Figure 2 right panel).

Enteric coating polymers, such as polymethacrylates (Eudragit®), cellulose esters, and
polyvinyl derivatives, have been widely used in the design of pH-sensitive oral dosage
forms and delivery systems for drug protection and controlled release [155–157]. For ex-
ample, Eudragit L100-55 is pH-sensitive methacrylic copolymer that has been successfully
used in oral nanoformulations to increase the bioavailability of insulin and an experimental
HIV protease inhibitor drug [158,159]. The achieved relative bioavailability of 87.4% for the
HIV protease inhibitor drug can be explained by an increase in surface area, more rapid dis-
solution and a greater dispersion in the NP matrix [159]. To leverage the delivery efficiency
for drugs with low water solubility and high first-pass metabolism, various monolithic and
multiparticulate systems are designed by combining the use of enteric coating and other
formulation methods (Table 3) [126]. In the study of oral delivery of BDDCS Class 1 drug
irinotecan to the colon tumor, the multiparticulate system was designed to incorporate folic
acid grafted SLN into microbeads of alginates coated by a pH-responsive enteric polymer
(i.e., Eudragit 5100). The colon tumor accumulation and systemic concentration of SLN
were markedly higher in microbeads coupled than non-coupled ones [126].

The distal ileum is characterized with unique receptors (e.g., vitamin B12 (VB12) recep-
tor) and transporters (e.g., apical sodium-dependent bile acid transporter (ASBT) for bile
acid transport), which can be exploited by LNS to avoid extensive CYP3A4 metabolism in
the duodenum and jejunum. Most large orally ingested molecules are absorbed in the in-
testines through specific influx transporters, such as peptide transporter 1 (PEPT1), organic
anion transporting polypeptides (OATPs) and monocarboxylate transporters (MCT1) [160].
These molecules may be metabolized in the enterocytes and continue along into the portal
vein where they may be subjected to further metabolism in the liver. In two studies of de-
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livering the BDDCS Class 2 drug docetaxel for cancer treatment, targeting highly expressed
MCT1 or ASBT using acetic acid or glycocholic acid conjugated chitosan modified lipo-
somes significantly enhanced docetaxel bioavailability compared to non-targeted lipid NPs
(Table 3) [127,128]. Alternatively, in the human body, the intricate absorption mechanism of
VB12 can be exploited to enhance drug absorption. VB12 is a fairly large molecule and when
ingested, it becomes attached to a gastrically secreted intrinsic factor where it is recognized
by cubilin, a VB12 transporter in the terminal ileum to be absorbed by receptor mediated
endocytosis [161]. Since most tumor cells have an over-expression of VB12 receptors, some
drug molecules or polymers are chemically linked to VB12, and it has been suggested that
conjugation at the 5′-hydroxyl moiety of the ribofuranoside of VB12 has the least effect on
intrinsic factor binding [162]. Although the capacity for humans to absorb VB12 is limited
to only 1–2 µg per dose [163], increasing the frequency of administration or formulating
a sustained-release delivery system can increase absorption since cubilin recycles every
30 min [164]. In addition, a mucus penetrating LNS may be needed to facilitate contacting
enterocytes, as the mucus layer in the distal region of intestine is much thicker (9-fold)
compared to proximal small intestines. For example, encapsulation of poorly water-soluble
curcumin, a CYP3A4 inhibitor, into VB12 targeted PLN improved its systemic concentration
via multiple cells pathways at the ileum section (Table 3) [129].

5. Translating LNS for Personalized Medicine

In precision medicine-relevant applications, engineering intelligent NPs allow for
tailored drug therapies to overcome the heterogeneity across patient populations and
diseases [108]. Computer modeling has been utilized to determine similarities in substrates,
inducers, and inhibitors of CYP3A4 as well as other drug metabolizing enzymes and drug
transporters. For example, it is hypothesized that one type of drug efflux transporter, P-gp,
may act synergistically with CYP3A4 due to overlapping drug specificity, contributing
to low bioavailability of drugs [47]. Computer modeling can aid medicinal chemists and
pharmaceutical industries to design drugs that avoid binding to arrays of enzymes and
transporters, in turn to minimize drug metabolism and drug interactions. Moreover, oral
forms of medications containing “inactive” ingredients are found to be associated with
adverse reactions in patients, and the complexity of the formulation landscape requires
in-depth understanding of biological interactions [165]. Some commonly used excipients
(e.g., lipids, surfactants, polymers) are found to interfere with intestinal metabolism or
efflux mechanisms, such as Cremophor RH40 inhibiting both CYP3A4 and P-gp, and
Tween-20 and Pluronic P85 increasing the transporter activity of breast cancer resistance
protein [166,167]. Using molecular dynamics stimulation, El-Sayed et al., found that the
inhibition mechanism of CYP3A4 by NPs is due to blocking the exit channel for substrate
products (i.e., testosterone and its metabolite 6β-hydroxy testosterone), and the surface
modification of NPs with PEG attenuated the inhibitory capability of NPs [168].

Achieving controlled release at targeted GIT regions without drug precipitation is
critical for oral solid dosage forms and delivery systems. For LNS, chylomicron or mi-
celles containing drugs may not be formed, as released poorly soluble drugs have a high
propensity to precipitate in the gut lumen upon dissolution. Rational combination of
LNS with the pharmaceutically prepared controlled release amorphous solid dispersion
systems (CRASD) may provide consistent and predictable drug absorption. For example,
celecoxib is non-steroidal anti-inflammatory drug taken orally for pain relief, and it belongs
to BDDCS Class 2 with low solubility and extensive metabolism. Different CRASD of
celecoxib were formulated using the excipients polyvinylpyrrolidone (PVP) and polyvinyl
acetate (PVAc) as controlled release agents. Incorporation of PVAc in two commercial
forms, Kollidon® SR powder and Kollicoat® SR30D aqueous dispersion, showed distinct
drug release. Matrix formed granules had rapid drug release but greatest improvement
of celecoxib solubility, while membrane-coated beads demonstrated a sustained release
thereby greatly alleviating the possibility of precipitation during dissolution [157]. Even for
high solubility drugs without concern of precipitation, the capacity of fine-tuning the drug
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release is desired to protect the drugs from being metabolized by CYP3A4 in enterocytes.
Yet, most lipid NPs exhibit the initial burst of drug release and the released drug amount
depends on the formulation matrix. Combining the pH-responsive polymers into LNS
may alleviate the issue of unwanted drug release. For example, the release of diltiazem,
a BDDCS Class 1 drug, from ethylcellulose-coated dosage forms can be fine-tuned at
both pH 6.8 (intestine) and pH 1.2 (stomach) by incorporating and adjusting the levels
of pH-responsive polymer-based poly(methacrylic acid)-polysorbate 80-grafted-starch
terpolymer nanoparticles (TPNs) (i.e., 5%, 10%, 15% TPN) [156]. In addition, food-based
polymers have been applied in oral drug delivery due to their GIT friendly property, large
production and facile chemical modification. For example, purified rapeseed protein isolate
can be biochemically modified in a controllable manner to be amphiphilic and pH-resistant,
which can be combined with LNS to deliver various drugs with different physiochemical
properties [169–171]. These results implicate that combing LNS with proper oral solid
dosage forms may potentially resolve the drug release issue encountered by LNS, paving
the way for precise delivery of drugs with extensive metabolism.

Of particular interest is the recent oral delivery of antiviral drugs such as remdesivir
or protease inhibitors for treating coronaviruses (COVID-19) or HIV, and nutraceuticals,
such as phytochemicals(e.g., ellagic acid, curcumins) [172]. With mild to moderate daily
doses, those compounds can substantially interact with CYP3A4, causing severe adverse
effects [61,173]. Therefore, LNS can be combined with micro- and nano- device platforms,
such as micro-patches or needles and multi-compartment capsules, to deliver these drugs
to intestines [132], which in turn may accelerate the clinical translation of LNS to benefit
across different patient populations.

6. Conclusions

In summary, there are many drug-drug interactions that occur due to the CYPs system.
This usually should not pose a major issue because adverse drug reactions usually occur
when drug concentrations are very high, very potent inhibitors are used, or when drugs are
suicide substrates. However, drug-drug interactions are still occurring, especially in today’s
society where people are engaging in polypharmacy. By designing orally administered
LNS to address intestinal CYP3A4 metabolism, these strategies have the potential to
improve bioavailability and reduce drug-drug interactions for susceptible CYP3A4 drug
candidates. Pharmaceutical knowledge in the field of drug metabolism is important to
reduce toxicity, reduce drug-drug interactions, and reduce the occurrence of beneficial
drugs being removed from the market.
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Abbreviations

API Active pharmaceutical ingredient
AUC Area under the plasma (blood) curves
BCS Biopharmaceutics Classification System
BDDCS Biopharmaceutics Drug Disposition Classification System
CAM Complementary alternative medicine
CRASD Controlled release amorphous solid dispersion systems
CYPs Cytochrome P450
Cmax Maximum (peak) drug concentration in the plasma, serum or whole blood
ER Endoplasmic reticulum
F the extent of drug bioavailability
GIT Gastrointestinal tract
HMG-CoA Hydroxyl-methyl-glutaryl coenzyme A
LNS Lipid-based nanosystems
Microfold cells M cells
NP(s) Nanoparticle(s)
NLC Nanostructured lipid carriers
NPs nanoparticles
PK pharmacokinetics
PLN Polymer-lipid hybrid nanoparticles
PXR Pregnane X receptor
SLN Solid lipid nanoparticles
SJW St. John wort
SNEDDS Self-nanoemulsifying drug delivery systems
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