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ABSTRACT: A highly infectious coronavirus, SARS-CoV-2, has spread
in many countries. This virus recognizes its receptor, angiotensin-
converting enzyme 2 (ACE2), using the receptor binding domain of its
spike protein subunit S1. Many missense mutations are reported in
various human populations for the ACE2 gene. In the current study, we
predict the affinity of many ACE2 variants for binding to S1 protein
using different computational approaches. The dissociation process of S1
from some variants of ACE2 is studied in the current work by molecular
dynamics approaches. We study the relation between structural dynamics
of ACE2 in closed and open states and its affinity for S1 protein of SARS-CoV-2.
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1. INTRODUCTION

Since the outbreak of coronavirus disease (COVID-19) in
December 2019 in Wuhan, China, more than 210 countries
have become involved. This highly infectious disease is caused
by a coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) by the International Committee
on Taxonomy of Viruses (ICTV).
Coronaviruses are enveloped RNA viruses. They can cause

respiratory, enteric, and nervous system diseases in birds and
mammals.1 SARS-CoV-2 is a β-coronavirus. Among four
genera of coronaviruses, β-coronaviruses contain species that
have caused serious human respiratory tract infections: severe
acute respiratory syndrome (SARS) with outbreaks in 2002−
2004 and Middle East respiratory syndrome (MERS) with
outbreaks from 2012, which were about 10% and 36% lethal,
respectively.2

The main structural proteins of coronaviruses located in the
viral envelope are membrane (M), envelope (E), and spike (S)
proteins. The S proteins form homo-trimers on the virus
surface and are necessary for entrance of the virus into the host
cell. They determine the host range and tissue tropism and
induce host immune response. Each S glycoprotein consists of
the ectodomain, transmembrane, and intracellular regions. The
ectodomain consists of S1 and S2 subunits used for attachment
to receptor proteins and fusion with the membrane of host
cells, respectively. The S1 subunit of the spike protein is
composed of a C-terminal domain (CTD) and N-terminal
domain (NTD). CTD, which is important in binding of S
proteins to protein receptors, is composed of a core region and
a receptor binding domain (RBD).2

The spike protein of SARS-CoV-2 virus attaches to human
angiotensin-converting enzyme 2 (hACE2),3−6 which is also

the target of SARS coronavirus (SARS-CoV).7−9 ACE2 is
expressed in different organs of the body including lungs,
intestines, heart, kidneys, and endothelium.10−13 This protein
is a zinc peptidase involved in converting angiotensin I to
angiotensin 1-9,14,15 and angiotensin II to angiotensin 1-7.11

The ectodomain of ACE2 is composed of a collectrin
homology domain and a peptidase domain more distant from
the cell membrane. The peptidase domain contains sub-
domains I and II that contain N-terminal and C-terminal
regions of the active site cleft, respectively.16 Virus-binding
motifs of hACE2 are recognized on the outer N-terminal
surface away from the catalytic cleft.17 Similar to that observed
for SARS-CoV,17,18 the concave RBD of SARS-CoV-2 interacts
with the convex N-terminal helix of hACE2 mainly through
polar interactions.19−21

Changes in coronavirus spike proteins could alter their
corresponding host.22−26 In the same manner, the affinity
between SARS-CoV spike protein and ACE2 in the first step of
viral attachment was a determining factor in viral infectivity
and host susceptibility and transmissions.27−35 A few variations
in critical ACE2 residues caused a lower affinity of SARS-CoV
virus to mouse, rat, and Daubenton’s bat ACE2 than to human
ACE2.17,27,35,36 Variations in critical amino acids of mamma-
lian ACE2s were predicted to decrease or increase SARS-CoV-
2 recognition.37 Therefore, it is possible that mutations in
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hACE2 affect the affinity and infection severity of SARS-CoV-2
in human hosts.
Iran is one of the countries infected pandemically with the

virus. Iranian people show a variety of genetic backgrounds
throughout the country.38 Beside global mutation databases
such as ENSEMBL,39 Iranome is a database that contains
genetic information on different ethnic groups in Iran.40 On
the basis of Iranome data, the hACE2 gene shows different
mutations in different ethnic groups.
To find out whether the hACE2 missense mutations

observed in human populations affect the affinity of this
protein to SARS-CoV-2 protein, we created the three-
dimensional (3D) structures of the mutated hACE2 proteins
and computed the affinity of these proteins to the SARS-CoV-
2 spike S1 protein. The interaction between S1 and its receptor
in human cells is one of the interesting targets for drug design
to fight the virus in the earliest stages. It is believed that
blocking the virus−host interaction at the molecular level
opens new windows toward therapy. In the current study, we
considered the effect of the reported mutations in ACE2 on its
binding affinity for the S1 protein using some computational
approaches. We studied the dissociation of S1 RBD of SARS-
CoV-2 from the extracellular domain of different mutants of
the hACE2 protein in silico. The described dissociation
process sheds light on the association of the SARS-CoV-2 S1
subunit with the ACE2 protein. We studied the dynamics and
stability of some ACE2 variants using molecular dynamics
approaches. The possible relation between ACE2 dynamics
and its affinity for SARS-CoV-2 S1 subunit is discussed in the
current study.

2. METHODS

2.1. 3D Structures

The 3D structure of RBD of SARS-CoV-2 spike subunit 1
complexed with its receptor, human ACE2, was retrieved from
the Protein Data Bank (PDBID 6VW1).19 The reported
structure is chimeric. Its receptor binding motif (RBM) that
interacts with ACE2 belongs to the SARS-CoV-2 virus. The
3D structures of human ACE2 mutants in association with
spike RBD are generated using the FoldX suite.41 The FoldX
suite is also utilized to compute the folding stability of ACE2
along dissociation simulations. To simulate the dissociation
process of S1 from wild type (WT) ACE2 in its closed state,
we utilized ACE2 bonded to an ACE2-specefic inhibitor, ORE-
1001 (PDBID 1R4L).16 Then, we superimpose and align the
ACE2 structure in the closed state on wild-type ACE2 in
association with S1 to find the primary position of S1 in
association with the closed state of ACE2.

2.2. Missense Mutations

The position of missense mutations in the hACE2 gene is
derived from ENSEMBL release 99, January 2020 with
accession code ENST00000427411.1.39 This list covers the
reported mutations in hACE2 for various human populations
with different geographical distributions. Also, some missense
mutations of ACE2 specific for Iranian ethnic groups are
derived from the Iranome project public data40 and ENSEMBL
database.39

2.3. Prediction of ACE2 Affinity to S1 Protein Using Fast
Methods

We predicted the affinity of the ACE2 mutants to the RBD of
S1 by PISA,42 FoldX,43 Prodigy,44 SEPAS,45 and SAAMBE-

3D.46 We fed the noted tools with complexes whose ACE2
subunits are mutated.

2.3.1. PISA-Based Prediction of Complex Stability.
PISA assigns the dissociation free energy (ΔGdiss) to the
dimers using the following equation:47

σ

Δ = −Δ − Δ

= − Δ + + +

− − + Δ + Δ + Δ
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The solv, rot, and trans subscripts stand for solvation, rotation,
and transition, respectively. Number (N) of hydrogen bonds
(hb), salt bridges (sb), and disulfide bonds (db) are also
considered in the PISA computation. Nonbonded interaction
energy is presented by E. Δσ stands for the buried surface area
during complex formation. F and C are fitting constants. The
hydration energy and other contact-dependent energies are
implemented in ΔGint as the binding energy of subunits. Rigid
body entropy (ΔS) is considered for rotation (rot) and
translation (trans) terms. We recruit the command line version
of PISA modules implemented in the CCP4 suite.48 In the
current study, the input structures for PISA to predict the
dissociation free energy of the complex are FoldX-generated
mutant 3D structures of ACE2 in association with the RBD of
the S1 protein. If the deviation of PISA-computed stability of a
mutant form of ACE2/S1 complex from the stability computed
for WT ACE2/S1 was more than 0.1 kcal/mol, we considered
the mutation as one that changed the free energy of ACE2/S1
dissociation.

2.3.2. FoldX-Based Prediction of Complex Stability.
FoldX computes the stability of protein complexes considering
monomer and dimer stabilities. The computed complex
stability denotes the intersubunit affinity. The stability of
each monomer is computed by using the empirical terms:41

Δ = Δ + Δ + Δ + Δ + Δ

+ Δ + Δ + Δ + Δ + Δ

G G G G G G

G G T S T S T S
vdw solvH solvP wb hbond

el kon tr mc sc
(2)

This equation is a linear combination of various terms with
specific coefficients. The van der Waals (VDW) term’s
contribution to total energy, solvation of hydrophobic and
polar groups, water bridges, hydrogen bonds, electrostatic
interactions, and electrostatic interactions’ contribution to
association constant are abbreviated to vdw, solvH, solvP, wb,
hbond, el, and kon in subscripts of stability terms, respectively.
The translational source of entropy, main-chain-, and side-
chain-defined entropies are abbreviated to tr, mc, and sc in
subscripts of ΔS, respectively. We utilize the stand-alone
academic version of FoldX. The input structures of FoldX to
predict the intersubunit affinity are FoldX-generated mutant
3D structures of ACE2 in association with the RBD of the S1
subunit. If the deviation of FoldX-computed stability of a
mutant form of ACE2/S1 complex from the stability computed
for WT ACE2/S1 was more than 0.1 kcal/mol, we considered
the mutation as one that changed the affinity of ACE2 for the
S1 protein.

2.3.3. Prodigy-Based Prediction of ACE2 Affinity for
RBD of S1 Subunit. Prodigy utilizes inter-residue contacts
between subunits and the noninterface surface to predict the
binding affinity between subunits using the following
equation:44
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ICs stands for inter-residue contacts, and the subscripts
indicate the type of contact or type of noninteraction surface
(NIS). In the current study, we used the stand-alone version of
Prodigy.49 The FoldX-generated 3D structures of ACE2
mutants in complex with S1 are the inputs of Prodigy. If the
deviation of Prodigy-computed affinity of a mutant form of
ACE2 to S1 from the affinity of WT ACE2 to S1 was more
than 0.1 kcal/mol, we considered the mutation as one that
changed the intersubunit affinity.
2.3.4. SAAMBE3D-Based Prediction of Complex

Stability. SAAMBE was introduced to predict the effect of
mutations on dimer stability. It considers MM/PBSA and
knowledge-based descriptors such as amino-acid-specific
dielectric constants to perform its predictions. SAAMBE-3D
is the next generation of the mentioned method that uses a
machine learning approach to compute affinity changes
resulting from mutations using many knowledge-based proper-
ties of residues including volume, hydrophobicity, flexibility,
polarity, distance-based metrics, and many other descriptors.
We utilized the stand-alone version of the mentioned
software.46 The FoldX-constructed 3D structures of ACE2
mutants in complex with RBD of S1 are the inputs of
SAAMBE-3D in the current study. On the basis of the software
criteria, the positive binding energy of a mutant means that
such a mutation weakens the binding free energy. If the
amount of changes in binding energy was more than 0.1 kcal/
mol, we considered the mutation as one that changed the
intersubunit affinity.
2.3.5. SEPAS-Based Prediction of Complex Stability.

The mentioned methods all require the 3D structure of the
protein complex to predict affinity or changes in affinity
between subunits. SEPAS utilizes the 3D structure of one
monomer to perform affinity prediction using the mechanical
softness of the protein binding patch (PBP). It requires the 3D
structure of a PBP region on one monomer to predict the
affinity between the introduced PBP and tentative partners of
the PBP. It predicts the softness of PBP using the following
equation:45,50

=
−( )

Q
Nn

N N( 1)
2 (4)

N represents the count of residues in PBP, and Nn represents
number of unique intra-PBP native contacts. The cutoff
distance for defining the native contact is set at 7.5 Å. To
create ensembles of near-equilibrium structures for all 240
mutants of ACE2 reported in ENSEMBL and Iranome that are
considered in current study, we utilize the anisotropic network
model (ANM) of the complexes.51,52 The ANM approach
provides a pool of 1000 structures for each of 240 mutants of
ACE2 bonded to the S1 protein. The SEPAS-assigned affinity
of ACE2 for S1 is the average of predicted affinities of 1000
samples generated by ANM for each mutant structure. Mainly,
SEPAS predicts the stability in a classwise manner. It predicts
four possibilities for each PBP, i.e., how much the introduced
PBP belongs to high-affinity, high-medium, medium-low, and
low-affinity classes. If a mutation in ACE2 leads to a 5% or

more change in distribution of the computed possibilities
among denoted classes with respect to WT, we count the
mutation as an effective one.
2.4. Adaptive Tempering MD and MM-GBSA Approach

Free energy of ACE2 binding to RBD of SARS-CoV-2 spike
protein 1 is also estimated in the current work by using MM-
GBSA approach for mutations in ACE2 that are reported for
Iranian ethnic groups by NAMD 2.13.53,54 To perform MM-
GBSA, we gradually heat up the complex structures to 300 K in
Generalized Born implicit solvent (GBIS) after minimization
steps. The ion concentration is set at 0.3 molar. The
hydrophobic energy contribution from implicit solvent is
considered in simulations. We use adaptive tempering
molecular dynamics simulation (AT-MD) to enhance the
system sampling.55 The adaptive tempering is a single copy
version of replica exchange MD. In the current work, we let the
langevin thermostat use the updated temperatures from
adaptive tempering for 2 × 106 steps. The resulted ensemble
of structures was also used to study the properties of SARS-
CoV-2 RBD/ACE2 complex for WT and ACE2 mutants. To
estimate the binding energy using MM-GBSA, we utilized the
single-trajectory approach56 by considering the next equation:

Δ = Δ − Δ − ΔG G G G(association) (ACE2/S1) (S1) (ACE2) (5)

We used run-time-analysis feature of NAMD 2.13 to compute
potential energy and its constituent terms in GBIS condition
for all frames of protein complex (ΔG(ACE2/S1)), separated S1
subunit (ΔG(S1)), and separated ACE2 (ΔG(ACE2)). The run-
time analysis is performed for 1000 snapshots derived from 2 ×
106 steps of AT-MD simulation for WT and mutant complexes.
The presented MM-GBSA-predicted affinities of ACE2 for S1
are the average values of the ensemble data.
2.5. Adaptive Biasing Force Approach

To simulate the binding of SARS-CoV-2 S1 protein to human
ACE2 and to predict the binding free energy with higher
accuracy, we utilized adaptive biasing force (ABF) for
complexes between RBD of SARS-CoV-2 S1 protein and
reported mutants of ACE2.57,58 In ABF, we gradually
dissociated monomers of the complexes along the z-axis of
the complexes in a 4−18.5 ns simulation under GBIS
conditions using collective variable features of NAMD 2.13.
ABF is a history-dependent approach to compute free energy
profiles along predefined collective variables. During simu-
lation steps, the free energy surface is smoothed by the
adaptive bias so the system behaves along the defined
collective variable, the z-axis of the bonded subunits, like
when it is able to perform diffusion there. In the current study,
the bin size was set to 0.2 Å. We tested 0.2, 0.4, and 2 ps as the
simulation time before applying the biasing force by ABF in
each bin. Because the standard error of the computed forces
and the computed potentials are not so small in long than in
short bin-scanning and systems experience some binding/
unbinding during some of simulations, here we set 0.2 ps as the
simulation time before applying the biasing force by the ABF
algorithm in each bine. We are interested in comparative rather
than quantitative affinities. The ABF simulation time varies
from 4 to 18.5 ns depending on the considered system. The
total time of ABF simulations in the current study reached 248
ns. The maximum standard error (SE) of the ABF-computed
free energy between two adjacent positions on the reaction
coordinate (points c and b) are computed by the following
equation:59,60
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σ κ= − +c b
N

SE ( ) (1 2 )ABF (6)

The variance of the ABF force is defined by σ2; N denotes
number of points that are sampled to compute PMF; and κ
presents the correlation length of the calculated force. We
compute the SEs for ABF simulations in two scenarios: time-
based and distance-based. For computing the time-based SE,
we split the ABF simulations into windows with 20 ps length.
Each window has a 0.2 ps overlap with its previous window.
For computing the distance-based SE, we split the distance
between two subunits into windows with 0.5 Å length. This
covers 2.5 bins of the original ABF simulations.

2.6. Characterizing Partially Melted Structures

The AT-MD-reported potential energies are used to measure
the progression of systems along a partial unfolding path. The
state that resides in the most negative potential well is
considered as the most stable species. The reported potential
energy and their corresponding temperature are used to define
the temperature of microtransition and the energy barrier
between folded and partially melted states of the protein using
the following equation:55

β= + [Δ − ]P w
E T(1 exp ( ) ) (7)

P stands for the normalized computed potential energy where
1 means folded state and 0 represents melted state, w adjusts
the reported fraction of the melted state, T stands for the
transition temperature, β denotes the reduced dimension of

simulation temperature, and ΔE represents the energy
difference between folded and partially melted states. We use
Cα-based inter-residue distance root mean square (dRMS)
deviation as a structural descriptor of the folded state.61,62

2.7. Miscellaneous

Some structural features like computation of dipole, salt-
bridges, H-bonds, and ASA properties were computed by
house-made Tcl codes run under VMD 1.9.2.63 All MD-based
computations such as pair interaction calculations, adaptive
tempering, MM/GBSA, ABF, and other runtime analyses were
performed by using NAMD 2.13. The utilized force fields for
proteins are CHARMM 22 and 27.64 In all simulations, the
time steps are set at 2 fs. The force filed parameter for the drug
molecule is utilized from SwissParam.65 Prody is recruited to
perform ANM and PRS computations.52 The electrostatic
potential surface for the complexes was computed by
PMEPOT plugin of VMD 1.9.2.

3. RESULTS AND DISCUSSION

There are reports indicating that SARS-CoV-2 utilizes ACE2 as
its receptor for attaching to human cells.4,7 ACE2 is expressed
in a wide range of tissues such as heart, lungs, and intestines.13

It is indicated that SARS-CoV-2 binds to its receptor via the S1
subunit of its surface spike complex.20 The affinity of S1 for its
receptor affects the virulence, its hosts, and the intensity of
virus infection.9 It is observed that in some populations the
incidence of COVID-19 is not similar between members.
Beside variables such as age, sex, and sanitary conditions, the

Figure 1. Predicted affinity of the mutant ACE2 for the S1 protein is presented. The position of each ENSEMBL-reported SNPs for ACE2 protein
is presented in the first row. The mutated residue and its corresponding WT residue are presented in third and second rows, respectively. Rows four
to eight represent the effect of the ACE2 mutation on the stability of the ACE2/S1 complex predicted by different predictors. If a mutation is
predicted as a stabilizer one, it is red, if the mutation leads to a more unstable complex than WT ACE2/S1 complex, it is blue, and if no change is
predicted for stability, the color is yellow.
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effects of genetic variations are not ignorable.66,67 The
consequence of some mutations in ACE2 in its interaction
with SARS-CoV or SARS-CoV-2 spikes was studied by genetic
approaches.67,68 The effects of some ACE2 mutations that
reside in interface region of SARS-CoV-2 spike/ACE2 complex
were studied by bioinformatics tools.69,70 Studies suggested
that ACE2 mutants possibly related to COVID-19 incidence.71

Here, we studied the effect of ACE2 gene polymorphisms on
its stability, dynamics, and binding affinity for the S1 protein of
SARS-CoV-2 using multiple computational approaches. In the
current study, we predict the effect of 240 widespread missense
mutations in the ACE2 gene reported for different human
populations and especially eight ones specific for Iranian ethnic
populations on the binding affinity between ACE2 and S1
RBD of SARS-CoV-2 with different computational approaches
from bioinformatic methods to a thermodynamic integration
procedure.
There are many reported SNPs for the ACE2 gene in

different human populations in the ENSEMBL database. We
selected the missense SNPs in the human ACE2 extracellular
domain. Recently, the 3D structure of RBD of the SARS-CoV-
2 S1 protein in association with ACE2 was reported.19 Using
the crystallized 3D structure, we introduced the ENSEMBL-
reported missense mutations in the ACE2 subunit of the
assembly utilizing the FoldX suite.41 The constructed mutated
ACE2 subunits in association with S1 created the building
blocks for the next steps in the current study.

3.1. Predicting the Affinity of ACE2 Mutants to
SARS-CoV-2 S1 Protein Using Fast Methods

In this section, we predicted the effect of the detected
mutations in ACE2 on the affinity of ACE2 variants to S1 by
using different computational methods. There are many
bioinformatic methods to predict the stability of the protein
complex and the affinity between subunits by using various
approaches. We utilized PISA,42 FoldX,43 Prodigy,44 SEPAS,45

and SAAMBE-3D46 for predicting the intersubunit affinity of
the ACE2/S1 complexes using their 3D structures.
In one category of structure-based affinity predictors, the

utilized algorithm considers all parts of the interested 3D
structure to predict the stability of protein complexes using the
thermodynamic formulation of protein folding. PISA and
FoldX are verified examples of the mentioned class of affinity
predictors. In brief, PISA is an acceptable method to predict
the biounit assembly of PDB-submitted structures by using an
empirical energy function that considers the interaction energy
and implicit representation of complex dissociation entropy to
compute dissociation free energy of the complex. FoldX is a
successful method in predicting the effect of mutations on
protein complex stability. It performs the computations using
semiempirical energy function that considers the stability of
the monomers and the complex to predict complex stability.
Besides the introduced thermodynamic-based methods,

some other structure-based methods use different structural
aspects of the complex or interface region to predict
intersubunit affinity. Prodigy, SEPAS, and SAMMB3D are
examples of evaluated methods for this class of affinity/stability
predictors. Prodigy is a successful method for predicting the
experimentally measured binding affinities of protein subunits
by counting the intersubunit contacts. SEPAS is a monomer-
based predictor of binding affinity of protein binding patches
to tentative partners that computes the mechanical stiffness of
the proposed interface region. SAMMBE3D is a feature-based

new generation of a trained version of adjusted GB/MM that is
a predictor of the effect of mutations on dimer stability.
We report the predicted affinities of 240 mutated versions of

ACE2 to S1 of SARS-CoV-2 using the mentioned fast
structure-based computational methods in Figure 1. About
4.5% of the considered mutations reside in the ACE2−S1
interface region. Mutations in ACE2 that cause the ACE2/S1
complexes become more stable than wild type ACE2/S1
complex are red, whereas mutations that destabilize the ACE2/
S1 complex are blue in Figure 1. If a method does not predict a
considerable difference between the affinities of mutated and
WT ACE2 for S1, the method is colored yellow for the
considered mutation in Figure 1. The criteria for assigning
different mutations outcomes are presented in methods
sections 2.3.1−2.3.5. For three cases, three methods out of
five predictors predict that the related mutations stabilize
ACE2/S1 complex, and for two cases, 3/5 of the predictors
expect the mutations destabilize the complex between ACE2
and S1. These methods are fast and utilize different approaches
to perform the prediction.
As the recruited fast methods in this section consider

different structural aspects of protein complexes, the observed
inconsistency in prediction seems natural. The utilized
thermodynamic approaches are sensitive to the quality of the
interested 3D structure. However, some of the other structure-
based methods perform predictions by just utilizing general
structural features that show less sensitivity to the global
quality of the structure. The utilized methods in the presented
part consider the static structure of the ACE2/S1 complex for
predicting changes in affinity. Here, to alleviate this issue, we
feed the SEPAS algorithm with ANM-generated ensembles of
structures for predicting the affinity of each ACE2 mutant to
the SARS-COV-2 S1 protein. The ANM-defined ensemble of
structures lets us consider the effect of mutations on all regions
of ACE2 better than using a single snapshot of the mutant
structure.
Another possible source of the variation between the

prediction results of thermodynamic-based and other descrip-
tor-based affinity predictors is the interface issue. The correct
3D structure of the interface region is more important for the
methods that are trained for the interface structural properties.
Because the interface region between ACE2 variants and the
RBD of S1 is derived by superimposing ACE2 of the WT
complex and mutant ACE2, this approach possibly misses
structural changes in the interface region resulting from
mutations especially for mutations that do not occur at the
interface region. Besides, we set restrict criteria to accept the
influence of mutations on changes in the affinity between
subunits. As the mentioned methods have different intrinsic
errors, we assume if the difference between the predicted
affinity of WT subunits and mutant ones is larger than 0.1
kcal/mol then it is a meaningful change in the affinity. If we
accept a large difference in the predicted affinities between
mutants and WT complexes, the amount of inconsistency will
be decreased.
Despite the contrary results of the mentioned methods in

predicting the effect of ACE2 mutations on their affinity for S1,
the results indicate that those mutations may change the
affinity of ACE2 to S1. It is a considerable result because if
such predictions would be verified by other methods, it may
mean the populations have different intrinsic susceptibility to
COVID-19.
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3.2. Adaptive Tempering Generated Ensembles, MM/GBSA
Approach, and Dynamic Properties of ACE2/S1 Complexes

The utilized bioinformatic methods in previous section are fast
with acceptable accuracy for prediction of the affinity between
subunits but we need more accurate methods to predict the
effect of ACE2 mutations on its affinity for S1 protein of
SARS-CoV-2 that consider the dynamic features of protein
structures. Because molecular dynamics (MD)-based ap-
proaches to compute the binding affinities are time-consuming,
we decide to limit the target population for studying the
consequence of ACE2 mutations on its affinity for S1 protein

and computing the effects of mutations on complex dynamics
by MD-based approaches.
We utilized MD-based approaches to predict the affinity

between ACE2 and the S1 protein of SARS-CoV-2 for the
mutations in the ACE2 gene that are reported in the Iranome
database for ethnic groups of the Iranian population as SNPs.40

We selected eight missense mutations of ACE2 from the
Iranome project whose positions are available in the crystal-
lized structure of WT ACE2. Four out of the eight SNPs are
also reported in ENSEMBL for other populations (Table 1).
We used MM/GBSA and adaptive biasing force (ABF), a

thermodynamic integration method, to compute the free

Table 1. Properties of ACE2 Mutations in Iranian Ethnic Groups Are Presenteda

dbSNP accession code Iranian ethnic group Polyphen2 Mutation Assessor Pred MM/GBSA-based affinity (kcal/mol)

WT −62 (9)
D225G just in Iranome Azeri probably damaging functional −69 (8)
D494V rs765152220 Persian Gulf Islander probably damaging functional −61 (7)
F452V just in Iranome Turkmen probably damaging functional −61 (8)
Q60R rs759162332 Azeri benign nonfunctional −63 (7)
Y199C rs750145841 Turkmen probably damaging functional −63 (7)
S331F just in Iranome Turkmen probably damaging functional −62 (8)
T334M just in Iranome Azeri + Turkmen benign functional −57 (8)
V485L just in Iranome Persian Gulf Islander possibly damaging functional −63 (9)

aEthnic group, the predicted severity of the mutation, predicted functionality, and predicted affinity of the ACE2 variant to the S1 protein are
presented in columns 2−5, respectively. The standard deviations of the predicted affinities are reported as parenthesized numbers in the last
column. If the predicted affinity for a mutant in comparison to the WT shows a significant difference (p < 0.05), its value is in bold in the last
column.

Figure 2. Different states of the ACE2/S1 complex observed in AT-MD and the structural stabilities of ACE2 subunits of the stable complexes are
described. The ACE2/S1 complexes show two populations in AT-MD simulations. The stable population, pretransition, transits to an unstable
population after passing some barriers. The lower panel represents the ΔE for complexes with mutant ACE2 between the two faint states of
complexes by fitting the computed data to the two-state model of protein transition (eq 7). In the scheme that represents two-state transition, the
x-axis represents 1/(kT) and the amount of melted structure is decreasing, while the metric presented in the vertical axis is close to 1. The shared
highly populated states in Figures S1 and S3 show distinct amounts of ΔdRMS. We sort ACE2 subunits on the basis of the amount of ΔdRMS of
their corresponding stable complexes (upper panel). The bold values of predicted affinities are meaningful at the p < 0.05 level for the t test
compared to the affinity of WT assembly.
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energy of S1 binding to ACE2 for ACE2 mutants that are
reported in Iranian ethnic groups.
The FoldX-generated 3D structures of ACE2 mutants in

association with S1 were minimized and heated up gradually.
To increase the sampling efficiency, we used an accelerated
method, adaptive tempering (AT-MD), instead of common
MD. AT-MD is a single copy version of the replica exchange
method that finds structures with minimum energy faster than
simple MD does.55 After 2 × 106 steps of AT-MD simulation,
we utilized a single-trajectory-based version of MM/GBSA54,56

to make the first MD-based estimation of binding energy
between varieties of ACE2 and the S1 protein of SARS-CoV-2
(Table 1). As it is indicated in Table 1, for example, some
members of the Azeri ethnic group that carry the DA225G
mutation in their ACE2 have higher MM/GBSA-predicted
affinity for the S1 protein of SARS-CoV-2 than members with
WT ACE2 do. It may suggest that the carriers of the noted
mutation may be predisposed to infection with the virus
because their ACE2 protein shows high affinity for binding to
the S1 protein.
The AT-MD-generated ensembles of the complexes provide

us with rich pools of structures to study the structural
properties of the ACE2/S1 complexes in the bonded state. AT-
MD lets the ACE2/S1 complex sample the energy landscape
with high efficiency. We report the AT-MD potential of the
system, a measure of the ACE2 subunit structural stability in
the presence of the S1 protein, as a function of the MM/
GBSA-predicted affinity of ACE2 for S1 in 2D density plots
(Figure S1).
We are interested to compute the structural stability of

ACE2 mutants when they are in association with the RBD of
the S1 protein. We propose the changes in structural stability
of ACE2 will affect its binding site for S1. The structural
stability of ACE2 mutants is much more informative when
mutations reside in regions far from the binding site of the S1
protein.
In the utilized AT-MD, the ground state energy of the

system is tuned in a history-dependent manner to pass some
energy barriers ahead of the system in its energy landscape by
thermostat-directed boosts. Because we do not want to unfold

the subunits completely, we set the acceptable range of
temperature between 300 and 320 K. In this range of
temperature, all atoms RMSD of the considered structures
are smaller than 5 Å. We detect faint two-state transitions in
AT-MD simulations of the complexes (see Methods). The
microtransition occurs in the WT complex or complexes of
considered mutants within the temperature range of 308−309
K. The observed transitions are detected by considering the
potential energies of complexes as a function of the simulation
temperature. The transition energy between the folded state of
the ACE2/S1 complexes and the locally melted state of the
complexes are reported in Figure 2. We decomposed the
amount of complex partial melting by computing the dRMS
metric for ACE2 and RBD subunits during AT-MD simulation
for pretransition population, i.e., populated stable species
(Figure S2). To find which subunit of the considered dimer is
affected more by temperature, we calculated the difference of
dRMS between ACE2 and S1 in each simulation frame as
ΔdRMS. Defining the ΔdRMS metric let us determine which
subunit is affected more during AT-MD simulations. The 2D
density plots of AT-MD potential energy as a function of
ΔdRMS for WT ACE2 and mutant ACE2s in association with
S1 are presented in Figure S3. We map 2D density plots
presented in Figure S1 on their corresponding plots in Figure
S3. It helps us to determine the ΔdRMS value that
corresponds to the highly populated stable complex that has
been used for determining the MM/GBSA-based affinity for
the desired subunit pair. The obtained ΔdRMS values define
the relative order of the ACE2 subunit structural stability when
it is bonded to the S1 subunit. The summary of the procedure
and the obtained relative order of ACE2 subunit structural
stability are presented in Figure 2. These results indicate that
some mutations stabilize ACE2 monomer and some decrease
the structural stability of ACE2. In one subpopulation of
Y199C mutant of ACE2, the structural stability of ACE2 is
decreased, whereas the affinity of ACE2 for the S1 subunit is
increased in that population. The ACE2 structural stability is
decreased in Q60R mutation but its MM/GBSA-based affinity
for S1 does not change significantly. As the studied mutations
of ACE2 are far from the interface region, they modulate the

Figure 3. Dynamics of the ACE2 groove region is measured for AT-MD-generated ensembles of ACE2/S1 complexes. Left panel depicts the
schematic position of the Gate and Zip regions in the ACE2 structure. The length of the zip region and the distance between halves of the gate
region are presented in middle and right panels, respectively, for different ACE2 variants in association with the S1 protein. The horizontal axes
represent length in angstroms, and the vertical axes present population density.
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affinity between ACE2 and S1 using long-range allosteric
mechanisms. Although some of the mutations make ACE2
unstable in comparison to WT, they prepare the binding site
region for making a stable complex with the SARS-CoV-2 S1
protein. These observations mean it is not necessary for an
affinity modulator mutation to appear in the interface region of
the complex for exerting its effect. In next steps, we follow how
the considered mutations in ACE2 change its affinity to S1
over a distance.
Considering variations of ACE2 and S1 protein electrostatic

potential (EP) as averaged isopotential surfaces, we find that
the large negative electrostatic potential of ACE2 makes the
protein an interesting target for proteins with a positive
accessible electrostatic potential like S1. The mutations in
ACE2 affect the size and integrity of the negative EP in mutant
versus WT ACE2 (Figure S4). The changes in EP for
mutations at positions 225 and 452 are considerable. These
mutations increase the affinity of ACE2 to S1 on the basis of
MM/GBSA-based-predicted affinities (Table 1).

The 3D structure of ACE2 indicates that there is a long
groove in its structure. The noted groove is possibly developed
for substrate binding. The active site of the enzyme also resides
in one side of the groove. The accessibility of the groove to
solvent is restricted by two regions assumed as “Gate”. The
halves of the gate are interconnected in one side via a
disordered region labeled as the “Zip” region (Figure 3). We
study the dynamics of ACE2 mutants and WT structures
during AT-MD simulations by measuring the Euclidian
distance between the halves of the gate region and the length
of the zip structure. As indicated in Figure 3, the dynamics of
the Gate and Zip regions are different between wild type ACE2
and the mutants of ACE2 in their S1-bonded states. A
mutation at the position 452 causes an increment of ACE2
affinity to S1 and simultaneously closes the Gate region. Also,
the Zip segment becomes shorter there. The gate is more
opened in the T334M mutant of ACE2 in comparison to the
WT subunit, whereas the affinity of this mutant of ACE2 for
the S1 protein is decreased. It seems that the closed/open state
of the ACE2 changes its affinity for the S1 protein of SARS-

Figure 4. Average sensitivity of residues or the sensitivity of a specific residue to the perturbation of other residues is presented. In the “All” panel,
the average sensitivity of all protein residues to the physical perturbation is presented. In other panels, the sensitivity of a specific residue (panel
name) to the perturbation of other residues of the complex is presented. The positions of interfacial residues are presented as black bars parallel to
the x-axis of the “All” panel. Here, chain A represents the ACE2 subunit, and chain E denotes the S1 subunit. The surface representation of ACE2/
S1 assembly in panel “225” is colored in the following manner: the ACE2 chain is blue; the S1 subunit is red; distal residues of S1 are depicted by a
gray surface; and S1 residues that reside in the interface region of S1 and ACE2 are shown as a yellow surface.
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CoV-2. This observation and the mentioned hint may be an
opportunity for drug discovery and finding a possible therapy
against COVID-19.
The perturbation-response scanning (PRS) approach

provides the possibility to mechanically perturb specific
residues and then predict its effects on the dynamics of
other regions of the protein.72,73 Because we believe that the
considered mutations of ACE2 for Iranian ethnic groups exert
their effects on the binding affinity between ACE2 and S1 over
a distance, we recruit the PRS approach for ACE2/S1
complexes that contain the WT or a mutated version of ACE2.
Anisotropic network model (ANM) is a coarse-grained

description of a protein in which the nonbonding interactions
between residues are represented by linear-elastic springs. This
model lets us evaluate the effects of an external-force-driven
mechanical perturbation of one node, residue, on other nodes
of the network and vice versa. Here, we perturb all residues
and measure the sensitivity of the mutation positions to the
perturbation using the PRS method. It means how much the
mutated ACE2 residues sense the overall mechanical
perturbation in an ACE2/S1 complex.
The presented amounts of the residue sensitivity in vertical

axis of graphs in Figure 4 indicate that the sensitivity of S1 in
S1/ACE2 complex is high in response to ACE2 perturbations.
It means that S1 is affected by ACE2 dynamics more than the
amount ACE2 is influenced by the S1 perturbation.
The average sensitivity profile of each residue of the complex

in response to perturbation of other residues of the complex is
presented in panel “All” in Figure 4. Peaks in Figure 4 indicate
which residues are strongly coupled with the sensor, mutated,
residues. As it is presented in panel “All” of Figure 4, some of
the S1 distal residues (resid: 334, 360−369, 388, 427−430,
518) are highly coupled with the other residues in the complex.
This region of S1 is close to recently discovered allosteric
modulator region of the S1 protein.74 Residues at positions
225, 452, and 485 of ACE2 protein are highly coupled with the
distal residues of the S1 protein dynamically. Therefore, the
mentioned positions of ACE2 play a critical role in information
transfer between ACE2 and S1 subunits of the complex.
Position 60 of ACE2 shows an odd pattern; this node has no
significant coupling with other residues of the complex. Among
the ACE2 residue positions that we studied, corresponding to
the mutated residues in Iranian ethnic groups, just positions
199 and 225, are strongly coupled with residues of the S1
subunit that are in contact with the ACE2 subunit; so, their
perturbations may affect the assembly more than other
positions. This analysis indicates that position 199 in ACE2
is also coupled with some residues of ACE2; therefore, a
mutation in that position possibly affects the ACE2 structure
and the ACE2/S1 interface simultaneously. Position 225 is just
sensitive to the signal arrived from the S1 contact site with the
ACE2 subunit. This observation may rationalize the higher
affinity of ACE2 to S1 resulting from the D225G mutation in
ACE2. In brief, perturbations in positions 225, 452, and 485 of
ACE2 in complex with S1 provoke a high amount of
perturbation in S1; this perturbation response is especially
observed for position 225 that is coupled with the interface
region of S1. Perturbations in some positions such as 199
induce dynamic changes in both partners of the complex. The
PRS-predicted dynamics changes in the interface region of S1
and ACE2 may be another justification for different affinities of
ACE2 mutants to S1 of SARS-CoV-2.

3.3. Dissociation Process of ACE2/S1 Complexes

The structural aspects of the complex derived from AT-MD
simulations and MM/GBSA-based predicted affinity of WT
and mutant ACE2s for S1 provide us with some information
about the possible mechanisms behind the changes in the
affinity of ACE2 to S1. We utilize another MD-based method
to improve the accuracy of the predicted affinity of ACE2 for
S1 protein and to simultaneously study the dynamics of the
partners during the dissociation/association process. Using the
adaptive biasing force (ABF) method,57 we derive the potential
of mean force (PMF) for dissociation of S1 from ACE2 in
complexes that contain the WT or a mutant version of ACE2.
Before performing ABF simulations, the WT and mutant
ACE2 monomers in association with S1 protein pass 2 × 106

steps in AT-MD. Next, the S1 subunit is dissociated from
ACE2 slowly along the z-axis of the complex (Supplementary
Movie). Considering the standard errors of the ABF-computed
dissociation free energies (Figure S5), we find that the ABF-
computed affinities between S1 and ACE2 are increased in
many of ACE2 mutations in Iranian ethnic groups in
comparison to WT ACE2 (Figure 5). It means that for those

mutations we need higher forces to dissociate the S1 subunit
from the mutant ACE2 structures than for WT ACE2. Among
the considered mutations, the V485L mutant shows a lower
affinity for binding to the SARS-CoV-2 S1 protein than WT
shows. It may provide an intrinsic resistance against COVID-
19 to its carriers.
The presented results in section 3.2 suggest that the

dynamics of the gate/zip regions of ACE2 possibly affects
the affinity of ACE2 for S1. To study the effect of the ACE2
closed state on its affinity for S1, we perform ABF simulations
also for ACE2 bonded to the ORE-1001 ligand as an
investigational drug that converts the open state of ACE2 to
its closed state. Studies suggested that during binding of
substrate/inhibitor to the ACE2 groove it transits to the closed
state.16 Our computations indicate that the affinity between S1

Figure 5. ABF-computed dissociation free energies are presented. The
relative free energy of dissociation of S1 from ACE2, which is
computed by the ABF approach, is presented for different variants of
ACE2 in Iranian ethnic groups. The computed free energy is reported
as a relative value compared with the computed affinity for WT
complex, 48 kcal/mol. The horizontal axis represents the relative
distance between S1 and ACE2. A higher value in the x-axis denotes a
higher distance between two subunits of ACE2/S1 complex along the
axis interconnecting two subunits. Zero in the x-axis represents the
bound state, and 1 represents the state in which S1 is dissociated from
ACE2 completely.
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protein of SARS-CoV-2 and ACE2 in the ORE-1001-induced
closed state is higher than that in the open conformation
(Figure 5). We should note that the drug also changes the
dynamics of dissociation process; therefore, we would not
extrapolate the same conclusion for all closed states of ACE2.
Nowadays, there are many reports about the effects of high

blood pressure (HBP) suppressor drugs, ACEi/ARBs, on the
incidence of COVID-19. There are some contradictory results
in such reports about the effect of such drugs on predisposition
to COVID-19.75,76 Many of the HPB suppressors affect ACE2
gene expression in a tissue-specific manner.77−79 To the best of
our knowledge, no experimental result has been published
about the effect of ACE2-specific drugs on the affinity of ACE2
for S1 of SARS-CoV-2. Some studies reported the effect of
binding of some molecules to ACE2 in the closed
conformation on the affinity of ACE2 for the SARS
spike.80,81 They proposed such drug−ACE2 interactions may
decrease ACE2 affinity for the SARS spike. They also
postulated the critical role of the closed, substrate-bonded
state of ACE2 in its binding to SARS or the COVID-19 virus
spike protein. Recently, researchers reported that the activity of
ACE2 increased up to 10 fold by binding to RBD of the SARS-
CoV-2 S1 protein.82 The authors of the mentioned paper
suggested that the RBD of the SARS-CoV-2 S1 protein binds
to the closed state of ACE2. We report the dynamics of Gate
and Zip regions of ACE2 for some ACE2 mutations (Figure
3). Our computations suggest that the closed and open states
of ACE2 show a different affinity for the RBD of the SARS-
CoV-2 S1 protein (Figure 5). When ACE2 binds to ORE-
1001, an ACE2-selective inhibitor, it transits to the closed
state. In that state, ACE2 shows a higher affinity for the SARS-
CoV-2 S1 protein than in the open state. These observations
suggest that ACE2 possibly fluctuates between closed and
open states and the RBD of the SARS-COV-2 S1 protein has a
higher affinity toward the closed population of the ACE2
protein. Therefore, it may mean that if some compounds
induce the closed state in ACE2, S1 may bind to ACE2 with
higher affinity.

The dissociation of S1 from ACE2 in ABF simulation sets
indicates that the diverse ACE2 mutants dissociate from S1
differently. In some cases, aromatic−aromatic contacts
between the partners are disrupted quickly (mutations at
331, 199, 452, and 485; Figure S6). Considering the salt
bridges between the subunits of ACE2/S1 complexes, we find
that the bridge between residues 31 and 484 of ACE2 and S1,
respectively (bridge 31−484) and the bridge between residue
329 of ACE2 and residue 439 of S1 (bridge 329−439) are two
common bridges in ACE2/S1 assembly (Figure 6), which were
described in the crystal structure and simulations.19,83 The
second salt bridge was introduced unnaturally to stabilize the
complex during crystallization steps. The structural changes
resulted from the F452V and S331V mutations in the ACE2
force ACE2 to create a new short-life salt bridge between
residue 23 of ACE2 and 458 of S1 (bridge 23−458). The
intersubunit salt bridges and aromatic−aromatic contacts
indicate that the disruption of the 329−439 bridge is
concomitant with tearing aromatic contacts between S1 and
ACE2. It suggests that the bridge acts as a lock for disruption
of intersubunit hydrophobic contacts.
In ABF-derived results, we considered the effect of eight

mutations of ACE2 observed in Iranian ethnic groups on the
ACE2 affinity for the S1 protein of SARS-CoV-2. We measured
the distances between positions of the eight mutated residues
in ACE2 structures and the interface region of ACE2 along
dissociation simulations (Figure S7). These eight mutations
are distributed in different regions of ACE2, and their distances
from the interface region vary in different mutations. It means
that not only the structure of the interface region is affected
during dissociation process but also other regions of ACE2 that
are far from the interface are also affected. These observations
suggest that the integrity of the ACE2 structure in different
mutants control the amount of forces required for dissociating
S1 from ACE2. Changes in the integrity of mutants and WT
ACE2 structures during the dissociation process of S1 are
dynamic. To depict them, we follow all salt bridges that appear
in ACE2 subunits of the complexes during the dissociation of

Figure 6. Intersubunit salt bridges along ABF simulations are presented. Three types of salt bridges detected between the S1 protein and different
variants of ACE2. The X-axis represents the normalized simulation time along ABF simulations. Zero in the x-axis represents the bound state, and 1
represents the state in which S1 is dissociated from ACE2 completely. The vertical axis represents the total number of inter-residue contacts if the
involved residues are closer than 4 Å.
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S1 from ACE2. Then, we detect similar salt bridges, with the
same donor and acceptor of the bridge, in different varieties of
ACE2 along ABF simulations. We compute the similarity
between ACE2 varieties on the basis of the appearance of the
same salt bridges along ABF experiments (Figure 7). For
example, the salt bridges that appear in the Q60R ACE2
mutant are unique ones and show a low similarity to salt
bridges of other ACE2 mutants in the S1/ACE2 dissociation
experiment.
Studying the changes in VDW and electrostatic terms of

interaction energy between S1 and ACE2 along the
dissociation process indicates that the electrostatic portion of
the interaction energy between subunits is lower for the V485L
mutant than for WT (Figure S8). This is a mutation with the
lowest ABF-computed affinity for S1 in the current study. On
the other hand, for the most stable ACE2/S1 complex in the
current study, the F452V ACE2 mutant, the VDW interaction
energy diminishes quickly.
On the basis of our studies on the process of S1 dissociation

from ACE2, we might divide the receptor binding motif

(RBM) of the S1 protein into two distinct sections “Fist” and
“Forearm”. These parts have different affinities to the ACE2.
The ratio of hydrophobic (or polar) contacts between fist and
ACE2 and hydrophobic (or polar) contacts between forehand
and ACE2 is computed along dissociation of S1 from ACE2
(Figure 8). We find that the ratios change differentially among
ACE2 mutants along dissociation steps. The ratios indicate
that the first segment of S1 that dissociates from ACE2 is
forehand, and in final steps, when S1 protein struggles to
dissociate completely from ACE2, the fist segment (residues
470−490 in the S1 protein) will be detached from ACE2. If we
suppose in ideal state that the dissociation process is similar to
the association process but in reverse direction, we may
conclude that in the first stages of its binding, the S1 protein
docks its fist section into ACE2. This step lets the RBD of S1
find the appropriate region on ACE2 for its complete binding
via the forehand segment.
The dynamics of the denoted segments of S1 is affected by

dynamic changes of intra-ACE2 interactions which may be
translated as changes in ACE2 stability along the dissociation

Figure 7. Diversity of salt bridges appearing in the ACE2 subunit during ABF simulations is compared among variants of ACE2. The unique intra-
ACE2 salt bridges are detected during ABF simulations. The color represents how many of salt bridges in the ACE2 subunit are similar between
different types of ACE2 along simulation time. 0−10%: light-gray, 10−20%: gray, 20−30%: dark blue, 30−40%: light blue, 40−50%: orange, 50−
60%: red.

Figure 8. Superiority of different parts of the S1 subunit in interaction with ACE2 is traced along the dissociation simulations. The proposed
segments of the RBD of the S1 protein in the current work are depicted in the right panel. The normalized number of contacts between
hydrophobic residues of ACE2 and the fist region of S1 divided by the sum of hydrophobic contacts between ACE2 and fist and forearm regions of
S1 is represented as blue lines. Red lines represent polar contacts between ACE2 and S1 segments. The vertical axis represents the normalized
number of contacts. The X-axes represent the normalized time along dissociation experiments in ABF simulations. The contact criterion is set at
<10 Å for the interatom distance.
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process. Considering the changes in folding stability of ACE2
subunit during the dissociation of S1 from ACE2, we find that
the structure of ACE2 becomes more stable in some mutants
(Figure 9). The increased stability of ACE2 in the F452V
mutant even causes a resistance against dissociation of S1 from
ACE2. The FoldX-defined folding stability analysis also
indicates that the electrostatic portion of ACE2 stability is
decreased in most ACE2 mutants. It possibly indicates that the
electrostatic interactions in the considered mutants are not in
the optimal state.

4. CONCLUSION
In the current study, we report the effect of ACE2
polymorphism on its binding affinity for the S1 protein of
SARS-CoV-2, especially for the reported mutations in ACE2 of
Iranian ethnic groups as mutations that reside far from the S1
binding site. The dynamics and stability of the ACE2 mutants
are studied in our work. We demonstrate that the considered
mutations affect the affinity between ACE2 and S1 via long-
range mechanisms. Many of the considered mutations in the
current study enhance the affinity of ACE2 to S1 of SARS-
CoV-2, and it may suggest possible intrinsic susceptibility of
carriers of such mutations to COVID-19. On the other hand,
we find one of ACE2 mutants has a lower affinity for the S1
protein of SARS-CoV-2 than WT does, which possibly
suggests a type of immunity for its carriers. Our computations
suggest that the affinity of ACE2 for S1 in its closed state may
be greater than that in the open state of ACE2. We report the
relation between dynamics of ACE2 structure and its affinity to
the S1 protein of SARS-CoV-2. This information may be
informative to design compounds that modulate ACE2
dynamics and consequently decrease its affinity for the
SARS-CoV-2 S1 protein.
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