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Abstract

Background: Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in
inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be
an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive
studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models.

Methods: We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging
of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory
actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple
group comparisons were performed by one-way analysis of variance with Dunnet’s post hoc tests.

Results: We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of
aseptic encephalitis (intracerebral TNFa injection) and prevented enhanced BBB permeability during systemic
inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial
cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain
endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo
observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFa, or IL-13 in
BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion
and migration) and prevented the cytoskeleton changes in primary human monocytes activated by
relevant inflammatory stimuli.

Conclusion: This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and
reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism
by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing
oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory
diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.
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Background

Secoisolariciresinol diglucoside (SDG), is the main lignan
in wholegrain flaxseed, known for its beneficial effects
including  anti-inflammatory, = antioxidant,  anti-
mutagenic, anti-microbial, anti-obesity, hypolipidemic,
and neuroprotective effects. SDG ameliorates different
types of diseases (cardiovascular, diabetes, lupus neph-
ritis, menopause, reproduction, mental stress, immunity,
atherosclerosis, hematopoietic, liver necrosis, and urin-
ary disorders) as described in a recent review [1].

SDG has been shown to be effective in several pre-
clinical models of diseases in which oxidative stress and
inflammation play a prominent role in pathogenesis, in-
cluding heart disease [2-4] and diabetes [5, 6]. In
addition, SDG showed positive effects in cancer [4, 7, 8],
liver [9, 10], and kidney inflammation as well as in obes-
ity and the metabolic syndrome [10, 11]. Importantly, di-
verse SDG formulations have also been safely used in
human clinical trials [4, 10, 12, 13].

The exact mechanisms of action of SDG are not fully
elucidated. Known protective mechanisms include direct
free radical scavenging activity [14—17], with significantly
more efficiency than ascorbic acid (AA) and o tocoph-
erol at reducing free radicals. Additional antioxidant ac-
tivity in a cellular context could be attributed to
activation of the endogenous antioxidant response
(EAR), which mediates SDG mitigation of radiation-
induced tissue damage [18]. Transcriptomics of SDG-
treated alveolar macrophages indicate SDG as a potent
EAR inducer and a repressor of inflammatory mediators
such as cytokines and chemokines (i.e., TNFa, IL-5, IL-
6, and IL-12) [18]. Further, SDG can attenuate respira-
tory bursts in activated lung macrophages [19] suggest-
ing anti-inflammatory roles for SDG in this cell
population.

In the current study, we investigated whether SDG
oral administration will diminish neuroinflammation
and BBB injury in relevant animal models including
aseptic encephalitis induced by intracranial (i.c.) injec-
tion of TNFa. Indeed, oral administration of SDG atten-
uated leukocyte adhesion and migration across the BBB.
Further, using in vitro BBB models, we replicated dimin-
ished inflammatory responses in brain endothelial cells
and primary human monocytes and found potential
mechanisms behind such effects.

Methods

Reagents

Reagents used in this study and their sources are as fol-
lows: Secoisolariciresinol diglucose (SDG) was chemically
synthesized as a mixture of (S,S)- and (R,R)-isomers by
Chemveda Life Sciences (San Diego, CA) and was recon-
stituted in sterile RNase, DNase-free water (Life Tech-
nologies, Carlsbad, CA) for in vitro experiments or in
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sterile saline (Life Technologies) for in vivo experiments.
Recombinant human tumor necrosis factor alpha (TNFa)
and human monocyte chemotactic protein type 1 (hMCP-
1/CCL2) were from R&D Systems (Minneapolis, MN). Re-
combinant human interleukin beta (IL1Pp) was from
PeproTech (Rocky Hill, NJ). Lipopolysaccharide (LPS)
from Escherichia coli 0111:B4 was from Sigma-Aldrich
(St. Louis, MO). The VLA-4-specific ligand, LDV (L-leu-
cyl-L-aspartyl-L-valyl-L-prolyl-L-alanyl-L-alanyl-L-lysine)
was from Bio-Techne (Minneapolis, MN). Rhodamine 6G
was from Sigma-Aldrich (Saint Louis, MO).

Cells

Isolation of primary human brain microvascular endo-
thelial cells (BMVEC) was accomplished as previously
described from normal brain resection tissue following
surgery for treatment of intractable epilepsy [20] and
provided by Michael J. Bernas and Dr. Marlys H. Witte
(University of Arizona, Tucson, AZ). BMVEC were char-
acterized and maintained as previously described from
our laboratory [21]. Primary human monocytes were iso-
lated and purified from the University of Nebraska Med-
ical Center (Department of Pharmacology and
Experimental Neuroscience, Omaha, NE) by counter
current centrifugal elutriation as described [22] from
HIV-1 and hepatitis B seronegative donors. BMVEC or
monocytes were treated with different concentrations of
SDG (0, 1, 2, 5, 10, or 50 pM) in accordance with previ-
ous studies [7, 17, 23].

Adhesion assays

Monocytes were used within 24 h of isolation in adhe-
sion assays following 16-h treatment with TNFa (20 ng/
ml) in the absence or presence of SDG. All treatments
were removed prior to labeling of the monocytes with
calcein-AM (Life Technologies) as described [24].
Calcein-labeled monocytes were added to BMVEC
monolayers stimulated by 16-h treatment with TNFa
(20 ng/ml). Adhesion of monocytes to BMVEC was
measured by fluorescence using a Synergy 2 plate reader
(Biotek Instruments, Winooski, VT) from triplicate de-
terminations and is expressed as fold difference in
monocyte attachment (mean + SEM) compared to base-
line (untreated control).

Migration assays

An in vitro model of BBB transendothelial migration
was used to measure monocyte migration through
BMVEC monolayers as previously described [24]. Mono-
cytes and BMVEC were treated with TNFa and/or SDG
as described above. Human recombinant MCP-1 (CCL2,
30 ng/ml) was added to the lower chamber of the BBB
construct to promote migration of monocytes through
the BMVEC monolayer. Migration was quantitated with
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Image] software (NIH, Bethesda, MD) from triplicate de-
terminations and is expressed as fold difference in
monocyte migration (mean + SEM) compared to base-
line (untreated control in the absence of MCP-1).

Flow cytometry

Surface expression of vascular cell adhesion molecule 1
(VCAM-1) was measured by flow cytometry (FACS) as
described [21]. BMVEC were pretreated in the absence
or presence of SDG for 1 h followed by treatment with
TNFa or IL1f (100 ng/ml) for 4 h. FITC-conjugated
antibody to VCAM-1 (CD106) was from BD Biosciences
(San Jose, CA). Actin cytoskeleton rearrangements were
measured in monocytes treated in the absence or pres-
ence of the very late antigen 4 (VLA-4)-specific ligand,
LDV peptide (12 nM), and SDG (10 or 50 uM, 4 h) as
described [25]. HUTS-21 antibody, specific for the acti-
vated conformation of VLA-4, was detected by HUTS21
(R&D Systems), was measured by FACS as described
[25, 26]. LFA-1 conformation, detected by MEM-148
Ab, was measured as described [27]. Quantitation of in-
tegrin conformational activation was performed where
the mean fluorescence intensity (MFI) of activated non-
treated cells was assigned a value of 100 and a value of 0
was assigned to the MFI of cell autofluorescence [25, 28,
29]. All other calculations were done utilizing the regres-
sion curve calculation tool of Prism v5 software (Graph-
Pad Software Inc., La Jolla, CA). Fibrillar (F) and
globular (G) forms of actin were quantitated with Acti-
Stain Alexa-488 (Cytoskeleton Inc., Denver, CO) and
DNase-1-Alexa 594 (Life Sciences), respectively. The F/
G actin ratio was calculated by dividing mean fluores-
cence intensity (MFI) of F-actin by MFI of G-actin and
the levels of F/G actin in non-stimulated, non-treated
cells were assigned a value of 1. A FACS Canto II flow
cytometer and FlowJo software version 8.7 (Tree Star,
Ashland, OR) were used to acquire and analyze data as
described [25, 29]. Data from at least 10,000 recorded
events per treatment condition are presented as MFI
(mean + SEM from at least three experiments).

Experimental animals

All in vivo experiments were approved by the Temple
University Institutional Animal Care and Use Committee
in accordance with guidelines based on the National Insti-
tutes of Health (NIH) guide for care and use of laboratory
animals and ARRIVE (Animal Research: Reporting In
Vivo Experiments) guidelines (www.nc3rs.org.uk/arrive-
guidelines). SDG was administered to mice by oral admin-
istration using a non-forceful feeding technique, which
consisted of hand feeding mice (10 weeks old, male) that
had been previously trained to accept up to 30 pl volume
of treatment solution. SDG doses were tailored to
individual mouse weights and were freshly prepared
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10 min before being offered to the mice. Mice were pre-
treated with SDG (4 mg/mouse) 2 h before i.c. administra-
tion of TNFa (0.5 pg/mouse) as an inflammatory insult.
Administration of SDG formulations delivering a daily
dose of 4 mg SDG/mouse (200 mg/kg) has been found to
be protective in murine models of asbestos-induced in-
flammation [7] as well as radiation-induced inflammation

[18, 30].

Leukocyte adhesion to the BBB

Intravital video microscopy (IVM) (via cranial window)
was used to quantify in vivo leukocyte adhesion in the
presence or absence of SDG treatment and inflammatory
insult [31]. 5 days after implantation of the cranial window
with adjacent cannula [31], mice were injected with
rhodamine 6G (0.1%). Serial images were obtained
through the cranial window 2 h after inflammatory insult
using a Stereo Discovery V20 epifluorescence microscope
(Carl Zeiss Microimaging, Thornwood, NY) as described
[31]. The number of adherent leukocytes was quantitated
as previously described [31-33].

FIn vivo permeability assay

Animals were injected i.p. injection of 200 ul of 2%
sodium-fluorescein (Na-F) in saline. The amount of Na-
F evaluated as described [21] was measured using a Syn-
ergy 2 plate reader (BioTek). Fluorescent dye content
was calculated using external standards, and the data are
expressed as amount of tracer per mg of tissue.

Statistical analysis

Results are expressed as the mean + SEM of experiments
conducted numerous times. Multiple group comparisons
were performed by one-way analysis of variance with
Dunnet’s post hoc tests. Statistical analyses were per-
formed utilizing Prism v6.0c software (GraphPad Software
Inc., La Jolla, CA). Differences were considered significant
at p values < 0.05.

Results

SDG administration diminishes leukocyte adhesion and
migration across BBB in neuroinflammation

It was documented before that SDG administration in vivo
diminished end-organ injury in models of systemic inflam-
mation and lung radiation injury. However, to date, there
have not been studies assessing SDG effects on BBB in the
setting of systemic inflammation or neuroinflammation.
To address this question, we used a novel in vivo imaging
technique, intravital microscopy through a cranial window,
in our model of aseptic encephalitis following i.c. injection
of TNFa, a cytokine overexpressed in many neuro-
inflammatory conditions including multiple sclerosis, en-
cephalitis, stroke, and HIV encephalitis [34—36]). Our prior
work indicated that this stimulus enhances both leukocyte
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adhesion to and migration across the BBB [19]. Indeed, i.c.
administration of TNFa led to a 20-fold increase in
leukocyte adhesion and enhanced migration of leukocytes
across the barrier 2 h later (Fig. 1), consistent with previous
reports. Oral administration of SDG attenuated adhesion
of leukocytes to the endothelium by 50% and attenuated
migration of leukocytes across the BBB by 64% (Fig. 1).
Leukocyte adhesion resolved 24 h later and SDG feeding
therefore did not show a difference compared with the
vehicle-treated control group after 24 h. Of note, adminis-
tration of SDG alone did not affect leukocyte adhesion or
migration.

The systemic inflammatory response accompanied by
leukocyte adhesion to brain endothelium results in BBB
leakage [21]. Thus, we assessed BBB permeability in vivo
using the low molecular weight tracer, sodium fluores-
cein (Na-F), after 4 h of LPS administration (Fig. 2). LPS
administration led to increased BBB permeability (20%)
that was prevented by SDG, pointing to barrier protect-
ive effects of SDG in vivo.

SDG treatment attenuates human monocyte adhesion to
and migration across human brain endothelial
monolayers

In order to test whether SDG can diminish neuroinflam-
mation in human tissues, we modeled inflammatory
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responses using monolayers of primary human brain endo-
thelial cells (BMVEC). We tested whether SDG could de-
crease adhesion of primary human monocytes to TNFa-
stimulated brain endothelium. BMVEC monolayers were
activated by TNFa in the presence of SDG. Primary human
monocytes were placed on the BMVEC only after all treat-
ments were removed and the medium changed. TNFa up-
regulated monocyte adhesion 2.3-fold and SDG treatment
of BMVEC (10 or 50 uM) diminished immune cell adhe-
sion by 87% (Fig. 3a). Alternatively, we treated primary hu-
man monocytes with SDG and showed a decrease in
adhesion of 54 or 79% after treatment with 10 or 50 uM
SDG, respectively. Using migration assays in an in vitro
BBB model, we tested whether SDG treatment of endothe-
lial cells could prevent monocyte passage across BMVEC
monolayers using CCL2 as a relevant cytokine. Application
of CCL2 to the lower chamber of BBB constructs increased
monocyte migration 2.6-fold. Pre-treatment of BMVEC
with SDG attenuated monocyte migration across endothe-
lial monolayers by 30-46% (Fig. 3b). Next, we studied
whether pretreatment of monocytes with SDG would de-
crease their migration across BBB models. Indeed, applica-
tion of SDG to monocytes before migration assays resulted
in complete reversal of migration to control levels (condi-
tions without CCL2/TNFa) (Fig. 3c). There was no dose-
dependent effect of SDG in migration assays.
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Fig. 1 Orally administered SDG decreased leukocyte adhesion to and migration across the BBB. Representative images from videos of leukocytes
labeled with 0.01% Rhodamine 6G are shown. 5 days after implanting cranial window with adjacent cannula, each mouse was pretreated with
SDG at 4 mg/mouse, 2 h prior to TNFa injection i.c. (0.5 pg/mouse). Adherent and migrated leukocytes in animals with or without SDG treatment
are shown in panels a and ¢, respectively. Quantitative analysis of leukocyte adhesion (b) to and migration (d) across the endothelium. Arrows
point to migrated leukocytes. Experiments were performed on 5-8 mice in each group. ****p < 0.0001. Scale bar 100 um is included in the upper

o

Fkkk

N

[N

-

=

Number of adherent
leukocytes (x1000)/um?

Baseline TNFa SDG-TNFa SDG

o

*kkk

n
(=

-

Number of migrated
leukocytes (x 5,000)/um?
>

Baseline TNFa SDG-TNFa SDG




Rom et al. Journal of Neuroinflammation (2018) 15:25 Page 5 of 10

0.8-
0.7
)
§ 2
34
g £
N -
33 0.6
S%6
w *%
© % — *k
Z 2 05+ [ T
s
e
s
o=
04 T 1 L]
NT LPS SDG LPS SDG

Fig. 2 SDG diminishes BBB permeability in vivo. Quantification of Na-F accumulation in the brain in LPS-associated encephalitis. Experiments performed
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To investigate the mechanism of diminished adhesion,
we tested whether SDG treatment of activated BMVEC
diminishes expression of the adhesion molecule VCAM-
1. BMVEC stimulation with TNFa resulted in a 4-fold
increase of VCAM-1 expression, and SDG reduced it by
35% (Fig. 4a). Similarly, IL1p increased VCAM-1 expres-
sion in BMVEC 2.3-fold, and SDG treatment diminished
it by 33% (Fig. 4b).

Changes in monocyte cytoskeleton are essential for
cell migration. To simulate changes in actin seen in in-
flammation, we stimulated primary human monocytes
with LDV (mimicking interactions with adhesion mole-
cules), which led to a 1.95-fold increase in the ratio of
fibrilar/globular actin. These cytoskeletal changes in
monocytes were completely blocked by SDG (Fig. 5a, b).
Monocyte adhesion to activated endothelium is medi-
ated by integrins, such as very late antigen 4 (VLA-4),
whose active conformation is stimulated by inside-out or
outside-in activation [28]. Expression of the active form
of VLA-4 is associated with enhanced monocyte adhe-
sion and migration. To test whether SDG treatment
could change expression of the active form of VLA-4,
we treated monocytes with the relevant stimulus, LDV
peptide, mimicking VLA-4 interactions with VCAM-1,
and fibronectin. LDV caused a 26-fold increase in ex-
pression of the activated form of VLA-4 and SDG re-
duced it by 35-42% (Fig. 6). Overall, our results indicate
that SDG can attenuate inflammatory changes in
BMVEC and monocytes and reduce adhesion/migration
of monocytes across BBB models in vitro.

Discussion
BBB injury is documented in multiple neuroinflammatory
disorders (multiple sclerosis, viral encephalitis) and neuro-
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diseases) [35, 37, 38]. It plays a role in neuronal dysfunc-
tion due to changes in the unique environment of the
CNS. Identification of effective anti-inflammatory, non-
toxic barrier-protective compounds is therefore of para-
mount importance. With this goal in mind, we have tested
the ability of orally administered SDG to attenuate neuro-
inflammation at the level of the BBB. Using a model of
aseptic meningitis/encephalitis (i.c. TNFa injection) and
in vivo microvessel imaging, we have demonstrated a 4-
fold increase in leukocyte adhesion and migration across
the BBB. SDG administration (100 mg/kg twice daily)
diminished adhesion and migration by 50 and 64%, re-
spectively. Prior studies showed attenuation of end-organ
injury by SDG in radiation-induced lung [30] and
asbestos-provoked acute peritoneal inflammation [7]. Such
processes usually are accompanied by leukocyte infiltra-
tion, release of pro-inflammatory factors, ROS, and MMPs.
Indeed, Pietrofesa and colleagues showed decreases in
leukocyte accumulation, cytokine secretion (IL-1f3, IL-6,
TNFa, HMGBI1, and TGFf1), and cytokine receptors
(TNFaR1 and TGF{3R1) after SDG administration.

Systemic inflammation accompanied by cytokine re-
lease results in leukocyte adhesion to endothelium (in-
cluding CNS) and enhanced permeability [21, 33]. LPS
caused an increase in permeability that was reduced to
control levels by SDG feeding, indicating barrier-
protective effects of the compound (Fig 2).

In vitro experiments supported our in vivo observa-
tions; pretreatment of BMVEC with different concentra-
tions of SDG (0, 1, 2, 5, 10, or 50 uM) diminished
primary monocyte adhesion to and migration across
BMVEC monolayers (model of BBB) in a dose-response
manner. Significant effects on leukocyte adhesion were
achieved only at 10 or 50 uM, whether BMVEC or

degenerative processes (Alzheimer’s and Parkinson’s monocytes were SDG-treated (Fig. 3a). Interestingly, the
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SDG (50 uM) for 1 h and stimulated with TNFa (100 ng/ml) (@) and IL1B (100 ng/ml) (b) for 4 h. Ten thousand events were collected.
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ability of monocytes to migrate through BMVEC mono-
layers was significantly affected only at 10 puM when
BMVEC were SDG-treated, and at 2, 5, and 10 uM when
monocytes were SDG-treated (Fig. 3b). Since 10 pM
showed a more consistent outcome (p value of less than
0.001), the rest of the experiments were performed at
this concentration. To explore the mechanisms of the
anti-inflammatory SDG effects, we analyzed expression
of VCAM-1 after stimulation with TNFa or IL-1B. En-
hanced expression of VCAM-1 (2.3- and 4-fold, respect-
ively) was decreased by 33-35% by SDG suggesting that
VCAM reduction could be one of the factors in attenu-
ated adhesion and migration after SDG treatment
(Fig. 4). Protective effects of SDG on the microvascula-
ture have been shown in a cardiac infarct model, includ-
ing diminished infarct volume, enhanced expression of
eNOS, vascular endothelial growth factor, and
hemeoxygenase-1 [39]. Our findings extend the protect-
ive effects of SDG to the BBB, which has unique perme-
ability properties and distinct contributions to an array
of neuroinflammatory diseases including viral encepha-
litides and neurodegerative diseases.

Protective properties of SDG could also be attributed
to anti-inflammatory effects on leukocytes in addition to
brain endothelium. We have previously demonstrated
that anti-inflammatory compounds (like PARP or GSK3p
inhibitors [28, 29]) can lead to conformational changes

of active integrin and/or total integrin expression.
Stimulation with the LDV peptide, a VCAM/ICAM con-
sensus sequence mimicking monocyte integrin interac-
tions with these adhesion molecules, increased
expression of active VLA-4 26-fold while treatment with
SDG attenuated active integrin p1 expression by 35-42%
(Fig. 6). Conformational changes in integrins following
leukocyte interactions reveal the VCAM-1 binding site
[40], enabling both tethering and rolling of leukocytes
[41]. Memory T cells that permanently display activa-
tion/ligand-induced epitopes on P1 integrins, usually
have significantly higher rates of attachment to VCAM-1
expressing cells as compared to other T cell subsets
without active epitope expression [28, 42]. Previously,
we [25, 28] and others [43] demonstrated an association
between conformational VLA-4 activation and Racl
pathways (employing inhibitors of GSK3p, PARP, or Rac-
1), resulting in attenuated expression of the active VLA-
4 form and decreased monocyte adhesion/migration
across monolayers of BMVEC [25, 28].

Previous studies suggested an association between ac-
tive VLA-4 form with specific cytoskeletal changes [29]
and diminished lamellipodia formation [44]. We ex-
plored the possibility that SDG would prevent cytoskel-
etal changes present in leukocytes with a ‘migration’
phenotype. Importantly, human monocyte stimulation
with LDV led to a 1.95-fold increase in fibrillary/globular
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Fig. 6 SDG decreases VLA-4 activation in monocytes. FACS
analysis of monocytes stimulated by 12 nM LDV peptide
(VCAM/ICAM consensus sequence) [28] or with 100 mM PMA
for VLA-4 and LFA-1 activation, respectively, and treated with
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VLA-4 activation (with conformational Abs HUTS-21) (a). Ten
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Percent of conformational activation of integrin 1 (LFA-1)
and integrin 32 (VLA-4) was calculated as described in
“Methods” section. **p < 0.01

actin ratio, a typical change seen in actin during inflam-
mation [45]; these skeletal changes were completely
blocked by SDG (Fig. 5).

SDG has been shown to mitigate pathology in several
disease models where oxidative stress and inflammation
play a prominent role, including atherosclerosis, dia-
betes, lung disease from radiation exposure, liver and
kidney diseases [2-6, 9, 10, 18]. The effects of SDG on
lung macrophages have been explored and suggest that
SDG@G exerts its protective effects via induction of the en-
dogenous antioxidant response, dampening inflamma-
tory signaling, and free radical scavenging; however, its
role in endothelial cells has not been examined. This
study suggests that SDG directly inhibits BBB interac-
tions with inflammatory cells while also reducing the in-
flammatory state of leukocytes. Although more work is
needed to determine the mechanism by which SDG me-
diates these effects, the potential ability of SDG to exert
a multi-functional response to reduce oxidative stress,
inflammation, and BBB permeability make it an exciting
potential therapeutic for neuroinflammatory diseases. To
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this end, numerous studies have shown that SDG formu-
lations are safe and well tolerated in animals and import-
antly in humans with diverse pathologies [4, 10, 12, 13].
Together, our findings indicate that SDG may be consid-
ered as a therapeutic agent for neuroinflammatory
diseases.

Conclusion

This study indicates that SDG directly inhibits BBB in-
teractions with inflammatory cells while also reducing
the inflammatory state of leukocytes. Although further
effort is desired to define the machinery by which SDG
facilitates these effects, the ability of SDG to elicit a
multi-functional response to diminish inflammation, oxi-
dative stress, and BBB permeability make it an exciting
potential therapeutic for neuroinflammatory diseases.
SDG may serve as an anti-inflammatory and barrier-
protective agent in neuroinflammation.
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