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Abstract: Solid supports functionalized with molecular metal catalysts combine many of the ad-
vantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic
polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance
in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols.
This catalyst demonstrated excellent durability during successive recycling without leaching of Ru
which is ascribed to the strong binding of the pincer ligands to the metal ions.

Keywords: heterogeneous catalysis; porous organic polymer; Ru NNN pincer complex; β-alkylation
of secondary alcohols

1. Introduction

The construction of carbon–carbon bonds is fundamental to organic synthesis [1,2].
Alkyl halides were the workhorse of this transformation last century, but replacing these
relatively toxic and wasteful electrophiles has been an imperative in recent years [3–5].
Transition-metal-catalyzed α- or β-alkylation of carboxyl complexes, nitriles and secondary
alcohols using alcohols as alkylating agents generates only hydrogen and/or water as
waste [6–8]. Metal-catalyzed heterocoupling reactions of secondary and primary alco-
hols proceeds through controllable dehydrogenation–condensation–hydrogenation steps,
selectively affording α,β-unsaturated ketones, α-alkylated ketones or β-alkylated sec-
ondary alcohols [9–13]. Various molecular complexes based on Ru [14–17], Ir [18–21],
Co [22–25], Ni [26–30], and Mn [31–36] have been developed for these transformations.
However, these are homogeneous catalysts and separation and recycling is an impediment
to their large-scale industrial use. Some heterogeneous catalysts, including IrO2/Fe3O4 [37],
Ni/CaxMgyO [38], SBA-15-supported Ir/NHC complex [39], Pt–Sn/γ-Al2O3 [40], DMF-
stabilized Ir nanoclusters [41] have been developed for the cross-alkylation of alcohols
to give β-alkylated secondary alcohols. However, these systems suffer from the need for
relatively high temperatures, and/or long catalytic reaction time, intricate formulations.

Porous organic polymers (POPs) with high stability, low skeleton density, tunable
porous structures and easy synthesis are an intriguing platform for incorporating homoge-
neous metal/ligand molecular catalysts into heterogeneous supports [42–45]. One particu-
lar advantage of POPs is the range of possible chemical functionality within the porous
framework. Phosphines, pyridines, bipyridyl/phenanthroline derivatives, porphyrins,
carbenes, and salen have been introduced into the skeleton of POPs [46–49]. Function-
alized POPs with metal ions or nanoparticles have demonstrated excellent catalytic per-
formance for the Suzuki-Miyaura coupling reaction [50], Heck reaction [51], Ullmann
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coupling reaction [52], CO2 conversion into cyclic carbonates [53,54], alkyne carboxyla-
tion [55–57], photocatalytic hydrogen evolution [58], the reduction of nitroarenes [59–61]
and the hydroformylation of higher olefins [62]. In the present work, we have incor-
porated 2,6-bis(benzimidazo-1-yl)pyridine (bbp) into a POP through a simple one-pot
Scholl co-coupling polymerization with biphenyl to give NNN pincer based POP (POP-
bp/bbp). RuCl3-incorporated POP-bp/bbp (POP-bp/bbpRuCl3) displayed high catalytic
performance, selectivity and recyclability for the β-alkylation of secondary alcohols with
primary alcohols.

2. Materials and Methods
2.1. Materials

2,6-Bis(benzimidazo-1-yl)pyridine (bbp) was prepared according to a published proce-
dure [63]. All chemicals were commercially available and used as received without further
purification. Biphenyl, 2,6-pyridinedicarboxylic acid, o-phenylenediamine, phenylmethanol, (4-
chlorophenyl)methanol, (4-(trifluoromethyl)phenyl)methanol, p-tolylmethanol, (4-methoxyphenyl)
methanol, (4-(tert-butyl)phenyl)methanol, o-tolylmethanol, (2-methoxyphenyl)methanol,
(3-methoxyphenyl)methanol, m-tolylmethanol, (3-chlorophenyl) methanol, naphthalen-1-
ylmethanol, benzo[d][1,3]dioxol-5-ylmethanol, thiophen-2-ylmethanol, 1-phenylethan-1-
ol, 1-(4-chlorophenyl)ethan-1-ol, 1-(4-bromophenyl)ethan-1-ol, 1-(p-tolyl)ethan-1-ol, 1-(4-
methoxyphenyl)ethan-1-ol, 1-(2-chlorophenyl)ethan-1-ol, 1-(2-methoxyphenyl)ethan-1-ol,
1-(o-tolyl)ethan-1-ol, 1-(3-methoxyphenyl)ethan-1-ol, 1-(m-tolyl)ethan-1-ol, 1-(naphthalen-
2-yl)ethan-1-ol, RuCl3·xH2O, CDCl3 were purchased from J&K. Toluene, chloroform,
methanol, tetrahydrofuran, N,N-dimethylformamide, dimethyl sulfoxide, petroleum ether,
and ethyl acetate were from Shanghai Titan Technology Co., Ltd. (Shanghai, China).
Orthophosphoric acid, hydrochloric acid, aluminum chloride, potassium hydroxide, potas-
sium tert-butoxide, cesium carbonate, sodium hydroxide, cesium hydroxide got from
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

2.2. Synthesis of Porous Organic Polymer (POP)-bp/bbp

Under a N2 atmosphere, 2,6-bis(benzimidazo-1-yl)pyridine (bbp) (0.311 g, 1 mmol)
and biphenyl (0.154 g, 1 mmol) were dissolved in anhydrous chloroform (20 mL), followed
by the addition of anhydrous aluminum chloride (10 mmol, 1.33 g) with vigorous stirring
at 58 ◦C. After 24 h, the reaction mixture was cooled to ambient temperature, filtered and
the solid product was washed with methanol, HCl-H2O (v/v = 1:1), H2O, CH2Cl2 and
EtOH, followed by washing with methanol in a Soxhlet thimble for 72 h. The polymer was
then dried in a vacuum oven at 100 ◦C for 24 h to give a brown solid. Yield: 0.418 g (90%).
Elemental analysis: calculated: C, 82.66; H, 4.95; N, 15.05. Found: C, 73.86; H, 4.19; N, 13.42.

2.3. Synthesis of POP-bp/bbpRuCl3
Under a N2 atmosphere, a mixture of POP-bp/bbp (0.2 g), RuCl3·xH2O (0.017 g), and

anhydrous ethanol (25 mL) was introduced into a round-bottom flask (100 mL). The result-
ing mixture was refluxed for 12 h. After this period, the brown solid POP-bp/bbpRuCl3
was separated by centrifugation, washed sequentially with ethanol and ethyl ether, and
then dried under vacuum.

2.4. Typical Procedure for Syntheses of β-Alkylated Secondary Alcohols

Under an N2 atmosphere, a mixture of secondary alcohol (1 mmol), primary alcohol
(1.2 mmol), POP-bp/bbpRuCl3 (20 mg, 0.6 mol% Ru), KOH (0.5 mmol) and toluene (2 mL)
was added into a 15 mL sealed tube equipped with a stirring bar. The reaction mixture
was heated to 130 ◦C for 12 h. After cooling to ambient temperature, the catalyst was
separated by centrifugation and washed with ethanol and diethyl ether. The catalyst was
then dried in a vacuum at 60 ◦C for 2 h to give recycled catalyst for the next run. The
organic layers were combined and dried over anhydrous Na2SO4 and concentrated under
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reduced pressure. The crude product was purified by flash column chromatography using
petroleum ether and ethyl acetate as the eluent.

2.5. Characterizations

The analytical instruments employed in this work are as described in our previous
article [57,64,65], unless otherwise noted. 1H and 13C NMR spectra were recorded at ambi-
ent temperature on a Varian UNITY plus-400 spectrometer. Solid-state cross-polarization
magic angle spinning 13C NMR measurements were carried out on Bruker Avance III/WB
solid-state NMR spectrometer operating at 400 MHz equipped with a standard 4 mm magic
angle spinning double resonance probe head. Powder X-ray diffraction patterns were
collected on a PANalytical Aeris diffractometer (Cu-Ka). Infrared spectra were recorded
on a Varian Scamiter-1000 spectrometer. The thermal stability of materials was evaluated
using thermogravimetric analysis (Perkin-Elmer Pyrisl) under a nitrogen atmosphere. Scan-
ning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy spectra
were obtained using a HITACHI S-4700 cold field-emission SEM. Transmission electron
microscopy (TEM) was performed on a FEI Tecnai G20 electron microscope operating at
200 kV. Annular dark-field scanning TEM (ADF-STEM) was performed on a FEI Tecnai F20
electron microscope operating at 200 kV, equipped with Genesis EDS detector. X-ray photo-
electron spectra were recorded on an X-ray photoelectron spectrometer (AXIS Ultra DLD)
and binding energies were referenced to C 1s at 284.7 eV from hydrocarbon to compensate
for possible charging effects.

3. Results and Discussion
3.1. Subsection Synthesis and Characterization of POP-bp/bbpRuCl3

POP-bp/bbp was synthesized by the AlCl3-promoted Scholl reaction of bbp and
biphenyl (bp) in CHCl3 at 58 ◦C (Scheme 1). The resulting brown polymer was insoluble
in common organic solvents such as tetrahydrofuran (THF), methanol (MeOH), N,N-
dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Thermogravimetric analysis
(TGA) showed that POP-bp/bbp was stable at temperatures up to 300 ◦C (Figure S1).
The 13C NMR solid-state spectrum of POP-bp/bbp contained signals at δ = 148, 140 and
138 ppm ascribed to the carbons on pyridine and imidazole rings, and a broad signal
at δ = 125 ppm assigned to the other aromatic carbons (Figure S2). Scanning electron
microscopy (SEM) (Figure S3) and transmission electron microscopy (TEM) (Figure S4)
images showed that the as-prepared polymer POP-bp/bbp was amorphous with particles
of irregular shape and size. The energy-dispersive X-ray (EDX) elemental mapping images
(Figure S5) indicated the homogenous distribution of C and N, indicating homogeneous
distribution of bbp monomer. The FT-IR spectrum (Figure 1a) contained absorptions at
1600, 1573, and 1460 cm−1 attributed to the C−C, C=N and C−N stretching vibrations,
respectively. In addition, the band at 3185 cm−1 were assigned to the −NH, originating
from the imidazole moiety.
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POP-bp/bbp bearing NNN pincer groups was treated with RuCl3·xH2O in refluxing
EtOH under N2 for 12 h to give Ru-metalated POP-bp/bbp (POP-bp/bbpRuCl3). The poros-
ity of POP-bp/bbp and POP-bp/bbpRuCl3 was assessed by N2 adsorption and desorption
analyses at 77.3 K. Absorption isotherms (Figure 1b) exhibited a type I adsorption isotherm
with steep N2 uptake at low relative pressure (P/P0 < 0.1), indicating abundant micropores
in the polymer structure. A slight hysteresis loop with a small rise in N2 uptake at higher
pressures was attributed to the presence of mesopores. The Brunauer−Emmett−Teller
(BET) surface areas of POP-bp/bbp and POP-bp/bbpRuCl3 were calculated to be 632 and
602 m2 g−1, respectively. The pore-size distribution of POP-bp/bbp and POP-bp/bbpRuCl3
were estimated with the aid of non-local density functional theory modeling to be centered
around 6−10 Å (Figure S7). Inductively coupled plasma optical emission spectrometry
(ICP-OES) of POP-bp/bbpRuCl3 indicated 3.11 wt % Ru loading. The powder X-ray
diffraction (PXRD) patterns confirmed that both the polymer and POP-bp/bbpRuCl3 were
amorphous (Figure S8).

Ruthenium ion interaction with the NNN pincer moieties were observed by XPS
(Figures S9 and S10). Coordination of Ru(III) ions with POP-bp/bbp significantly changes
the electron density at the pyridinic N sites and thus the binding energies of their N
1s electrons. The N 1s XPS profile of POP-bp/bbp was deconvoluted into two peaks
centered at 398.84 and 400.47 eV, which are assigned to pyridinic N and imidazolic N,
respectively (Figure 1c). After the loading of RuCl3, a new N 1s XPS peak was observed at
399.71 eV, corresponding to Ru-bound N species [66]. The binding energy of Ru 3p3/2 was
463.35 eV, indicating that the Ru species maintained its original oxidation state of Ru3+ in
POP-bp/bbpRuCl3 [67]. Compared with the reported binding energy of Ru 3p3/2 of RuCl3
(464.1 eV), the down-shift (0.75 eV) of coordinated Ru3+ can be attributed to additional elec-
tron density from the strongly electron-donating ligands [68]. High-resolution transmission
electron microscopy (HR-TEM) (Figure 1e) did not reveal the presence of Ru nanoparticles.
EDX elemental mapping confirmed that the Ru was distributed evenly throughout the
POP-bp/bbpRuCl3 (Figure 1f). The C, N and Ru contents of the as-synthesized POP-
bp/bbpRuCl3 were 80.5 wt %, 14.6 wt %, and 4.8 wt %, respectively (Figure S11). The Ru
content obtained by EDX element mapping analysis is higher than that calculated by the
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ICP-OES analysis, which is attributed to the fact that Ru is mainly loaded on the surface of
bp/bbp material.

3.2. Catalytic β-Alkylation of Secondary Alcohols

We next determined the performance of as-prepared POP-bp/bbpRuCl3 as a catalyst
for the catalytic acceptorless dehydrogenation coupling of alcohols. The reaction of 1-
phenylethanol (mol %) with benzyl alcohol (2a) was conducted in toluene with KOH under
a nitrogen atmosphere (Table 1). A standard workup produced 1-([1,1′-biphenyl]-4-yl)ethan-
1-one (3aa) in 68% yield with a trace of 1,3-diphenylpropan-1-one (4aa) as determined by
high-performance liquid chromatography (HPLC). The screening of different bases (entries
1–5) revealed that CsOH was more selective than KOBut, Cs2CO3 or NaOH, but that
KOH facilitated the highest yield. Lowering the reaction temperature to 100 ◦C or 120 ◦C
reduced the yield of 3aa significantly, while raising it slightly (140 ◦C) had a modest impact
(entries 6–9). The optimal amount of KOH was 0.5 equivalents (entries 10–13). The yield
of 3aa could be increased up to 93% by extending the reaction time to 12 h (entries 15).
Interestingly, neither of the individual components of the catalyst (i.e., POP-bp/bbp or
RuCl3) facilitated more than a very modest amount of product under these conditions
(entries 16 and 17).

Table 1. Optimization of the reaction conditions.
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Entry a Catalyst Base (equiv.) 
Temperature 

(°C) Time(h) Yield (%) 3aa 4aa 

1 POP-bp/bbpRuCl3 KOH/1.0 130 4 68 <5 
2 POP-bp/bbpRuCl3 KOtBu/1.0 130 4 33 trace 
3 POP-bp/bbpRuCl3 Cs2CO3/1.0 130 4 32 <5 
4 POP-bp/bbpRuCl3 NaOH/1.0 130 4 11 trace 
5 POP-bp/bbpRuCl3 CsOH/1.0 130 4 45 <5 
6 POP-bp/bbpRuCl3 KOH/1.0 100 4 7 25 
7 POP-bp/bbpRuCl3 KOH/1.0 110 4 20 14 
8 POP-bp/bbpRuCl3 KOH/1.0 120 4 49 20 
9 POP-bp/bbpRuCl3 KOH/1.0 140 4 70 trace 

10 POP-bp/bbpRuCl3 KOH/0.3 130 4 60 12 
11 POP-bp/bbpRuCl3 KOH/0.5 130 4 76 8 
12 POP-bp/bbpRuCl3 KOH/0.7 130 4 75 6 
13 POP-bp/bbpRuCl3 KOH/1.5 130 4 69 <5 
14 POP-bp/bbpRuCl3 KOH/1.0 130 8 82 <5 
15 POP-bp/bbpRuCl3 KOH/0.5 130 12 93 trace 

Entry a Catalyst Base (equiv.) Temperature (◦C) Time(h) Yield (%) 3aa 4aa

1 POP-bp/bbpRuCl3 KOH/1.0 130 4 68 <5
2 POP-bp/bbpRuCl3 KOtBu/1.0 130 4 33 trace
3 POP-bp/bbpRuCl3 Cs2CO3/1.0 130 4 32 <5
4 POP-bp/bbpRuCl3 NaOH/1.0 130 4 11 trace
5 POP-bp/bbpRuCl3 CsOH/1.0 130 4 45 <5
6 POP-bp/bbpRuCl3 KOH/1.0 100 4 7 25
7 POP-bp/bbpRuCl3 KOH/1.0 110 4 20 14
8 POP-bp/bbpRuCl3 KOH/1.0 120 4 49 20
9 POP-bp/bbpRuCl3 KOH/1.0 140 4 70 trace

10 POP-bp/bbpRuCl3 KOH/0.3 130 4 60 12
11 POP-bp/bbpRuCl3 KOH/0.5 130 4 76 8
12 POP-bp/bbpRuCl3 KOH/0.7 130 4 75 6
13 POP-bp/bbpRuCl3 KOH/1.5 130 4 69 <5
14 POP-bp/bbpRuCl3 KOH/1.0 130 8 82 <5
15 POP-bp/bbpRuCl3 KOH/0.5 130 12 93 trace
16 POP-bp/bbp KOH/0.5 130 12 0 trace
17 RuCl3 KOH/0.5 130 12 18 trace

a 130 Reaction conditions: 1a (1 mmol), 2a (1.2 mmol), cat. (20 mg, 0.6 mol% Ru), base (eq.), toluene (2 mL) in a
15 mL sealed tube, at 130 ◦C for 4 h, high-performance liquid chromatography (HPLC) yield using biphenyl as
the internal standard.

Substrate scope was investigated with a variety of secondary and primary alcohols
under the optimized conditions (Table 2). Good to high yields of β-alkylation were ob-
tained with a variety of primary alcohols as the cross-coupling partner. The reaction
of 1-phenylethanol with benzyl alcohols bearing both electron-donating and electron-
withdrawing groups at the para-position resulted in products 3ab-3af in good yields
(73–87%). Substrates bearing ortho- and meta-methoxy, methyl or chloro also delivered the
expected products 3ag-3ak in good yields (79–89%). Likewise, 1-naphthylmethanol and
3,4-methylenedioxybenzyl alcohol reacted with 1a to form 3al and 3am in yields of 88%
and 80%, respectively. Heterocyclic 2-thiophenemethanol 2n reacted with 1-phenylethanol
less efficiently, giving 3an in 59% yield.
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Table 2. β-Alkylation of 1-phenylethanol with various primary alcohols.
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Next, the generality of this catalytic alkylation was investigated with various secondary
alcohols (Table 3). The reaction of benzyl alcohol with para-substituted 1-phenylethanols
bearing either electron withdrawing (-Cl, -Br) or electron-donating (-Me, -OMe) groups
afforded the desired β-alkylated secondary alcohols 3ba-3ea in excellent yields (80–89%).
No obvious substituent effect was observed. Chloro, methyl and methoxy groups at the
ortho position of 1-phenylethanol gave the desired secondary alcohols 3fa-3ga in lower
yields (53–79%) probably due to steric hindrance. Substrates with methoxy and methyl
groups at the meta-position gave 3ia and 3ja in good yields (85 and 88%). 1-(Naphthalen-2-
yl)ethanol was successfully converted to the coupled product 3ka (90%).

Table 3. β-Alkylation of various secondary alcohols with benzyl alcohol.
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The recycling of POP-bp/bbpRuCl3 was examined under optimized reaction condi-
tions. No significant loss of catalytic activity was observed after four cycles (Figure 2a) 
and ICP analysis indicated that 96% of Ru remained. Ru nanoparticles were not observed 
in the subsequent TEM images (Figure 2b). EDX analysis revealed the homogeneous dis-
tribution of Ru components throughout the polymer POP-bp/bbp (Figure S12). The FT-IR 
spectrum of the recovered catalyst did not change noticeably (Figure 2c), except for a new 
peak at 1960 cm−1 which we assign to a Ru-H species [69] generated during the catalytic 
cycle. XPS measurements indicated that the Cl 2p peak had disappeared in the recovered 
catalyst indicating ligand substitution (Figure S13). The binding energies of Ru 3p3/2 and 
Ru 3d5/2 for the catalyst were 463.15 eV and 281.4 eV, respectively (Figures 2d and S14). 
The slight decrease in binding energies compared to that of fresh catalyst may be due to 
the substitution of hydride, which has a greater electron donating ability than chloride 
[69]. To verify whether the observed catalysis was due to the heterogeneous catalyst POP-
bp/bbpRuCl3 or due to leached ruthenium species, a reaction was performed between 1a 
and 2a under standard conditions. The yield of 3aa was 42% accompanied by 7% 4aa after 
2h. The reaction was then filtered. No catalytic function was observed in the filtered solu-
tion over 24 h and negligible Ru content was detected by ICP. These results indicate that 
the POP-bp/bbpRuCl3 catalyst is stable, which we ascribe to the strong binding of pincer 
ligand to metal centers. 
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catalyst indicating ligand substitution (Figure S13). The binding energies of Ru 3p3/2 and 
Ru 3d5/2 for the catalyst were 463.15 eV and 281.4 eV, respectively (Figures 2d and S14). 
The slight decrease in binding energies compared to that of fresh catalyst may be due to 
the substitution of hydride, which has a greater electron donating ability than chloride 
[69]. To verify whether the observed catalysis was due to the heterogeneous catalyst POP-
bp/bbpRuCl3 or due to leached ruthenium species, a reaction was performed between 1a 
and 2a under standard conditions. The yield of 3aa was 42% accompanied by 7% 4aa after 
2h. The reaction was then filtered. No catalytic function was observed in the filtered solu-
tion over 24 h and negligible Ru content was detected by ICP. These results indicate that 
the POP-bp/bbpRuCl3 catalyst is stable, which we ascribe to the strong binding of pincer 
ligand to metal centers. 
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The recycling of POP-bp/bbpRuCl3 was examined under optimized reaction condi-
tions. No significant loss of catalytic activity was observed after four cycles (Figure 2a)
and ICP analysis indicated that 96% of Ru remained. Ru nanoparticles were not observed
in the subsequent TEM images (Figure 2b). EDX analysis revealed the homogeneous
distribution of Ru components throughout the polymer POP-bp/bbp (Figure S12). The
FT-IR spectrum of the recovered catalyst did not change noticeably (Figure 2c), except
for a new peak at 1960 cm−1 which we assign to a Ru-H species [69] generated during
the catalytic cycle. XPS measurements indicated that the Cl 2p peak had disappeared
in the recovered catalyst indicating ligand substitution (Figure S13). The binding ener-
gies of Ru 3p3/2 and Ru 3d5/2 for the catalyst were 463.15 eV and 281.4 eV, respectively
(Figure 2d and Figure S14). The slight decrease in binding energies compared to that
of fresh catalyst may be due to the substitution of hydride, which has a greater electron
donating ability than chloride [69]. To verify whether the observed catalysis was due to the
heterogeneous catalyst POP-bp/bbpRuCl3 or due to leached ruthenium species, a reaction
was performed between 1a and 2a under standard conditions. The yield of 3aa was 42%
accompanied by 7% 4aa after 2h. The reaction was then filtered. No catalytic function was
observed in the filtered solution over 24 h and negligible Ru content was detected by ICP.
These results indicate that the POP-bp/bbpRuCl3 catalyst is stable, which we ascribe to the
strong binding of pincer ligand to metal centers.
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Figure 2. (a) Stability of the POP-bp/bbpRuCl3 catalyst. (b) Transmission electron microscopy (TEM)
image of the reused POP-bp/bbpRuCl3. (c) FT-IR spectra of fresh and reused POP-bp/bbpRuCl3.
(d) Deconvoluted Ru 3p XPS spectrum POP-bp/bbpRuCl3.

A probable mechanism of this reaction was determined by investigating each step
individually. The POP-bp/bbpRuCl3-catalysed dehydrogenation of phenylmethanol and
1-phenylethanol for 4 h afforded benzaldehyde in 90% yield and acetophenone in 73% yield,
respectively (Scheme 2(a,b)). The condensation of benzaldehyde with acetophenone, facili-
tated by KOH afforded chalcone in good yield (Scheme 2(c)). reduction of chalcone with
1a under the standard reaction conditions achieved 31% of the corresponding secondary
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alcohol. as shown in Scheme 2, hydrogenation of chalcone with 2a under the same reaction
conditions also gave the same reduced product in a similar 27% yield (Scheme 2(d)).

Scheme 2. Mechanism elucidation experiments.

In light of these results, and of previous literature reports [14–17], a catalytic mech-
anism is proposed (Scheme 3). Primary and secondary alcohols are dehydrogenated by
the Ru catalyst to form the corresponding aldehyde, ketone and a ruthenium hydride
complex. Base-catalysed aldol condensation of the resulting ketone and aldehyde give
the α,β-unsaturated ketone intermediate which is reduced by the ruthenium hydride to
generate β-alkylated secondary alcohol.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 12 
 

 

Figure 2. (a) Stability of the POP-bp/bbpRuCl3 catalyst. (b) Transmission electron microscopy (TEM) 
image of the reused POP-bp/bbpRuCl3. (c) FT-IR spectra of fresh and reused POP-bp/bbpRuCl3. (d) 
Deconvoluted Ru 3p XPS spectrum POP-bp/bbpRuCl3. 

A probable mechanism of this reaction was determined by investigating each step 
individually. The POP-bp/bbpRuCl3-catalysed dehydrogenation of phenylmethanol and 
1-phenylethanol for 4 h afforded benzaldehyde in 90% yield and acetophenone in 73% 
yield, respectively (Equations (1) and (2), Scheme 2). The condensation of benzaldehyde 
with acetophenone, facilitated by KOH afforded chalcone in good yield (Equation (3)). 
reduction of chalcone with 1a under the standard reaction conditions achieved 31% of the 
corresponding secondary alcohol. as shown in scheme 2, hydrogenation of chalcone with 
2a under the same reaction conditions also gave the same reduced product in a similar 
27% yield (Equation (4)). 

 
Scheme 2. Mechanism elucidation experiments. 

In light of these results, and of previous literature reports [14–17], a catalytic mecha-
nism is proposed (Scheme 3). Primary and secondary alcohols are dehydrogenated by the 
Ru catalyst to form the corresponding aldehyde, ketone and a ruthenium hydride com-
plex. Base-catalysed aldol condensation of the resulting ketone and aldehyde give the α,β-
unsaturated ketone intermediate which is reduced by the ruthenium hydride to generate 
β-alkylated secondary alcohol. 

 
Scheme 3. Proposed mechanism. 

4. Conclusions 
A novel porous organic polymer incorporating a NNN pincer ligand possessed ex-

cellent thermal durability and high surface area. This acceptorless dehydrogenation, 

Scheme 3. Proposed mechanism.



Polymers 2022, 14, 231 10 of 13

4. Conclusions

A novel porous organic polymer incorporating a NNN pincer ligand possessed excel-
lent thermal durability and high surface area. This acceptorless dehydrogenation, cross-
coupling catalyst exhibited good activity, broad substrate scope and good recycling ability.
We believe this work provides a green, convenient and scalable method for constructing C–
C bonds, combining many of the advantages of homogeneous and heterogeneous catalysis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14020231/s1, Figure S1: TGA curve. Figure S2:
13C CP-MAS NMR spectrum. Figure S3: SEM image. Figure S4: TEM image. Figure S5: EDS
elemental mapping. Figure S6: FT-IR spectrum. Figure S7: Pore-size distribution. Figure S8: PXRD
patterns. Figure S9: XPS survey scan spectrum. Figure S10: XPS spectra. Figures S11 and S12: EDX
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