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Background. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, many individuals were infected with and
have cleared the virus, developing virus-specific antibodies and effector/memory T cells. An important unanswered question is what
levels of T-cell and antibody responses are sufficient to protect from the infection.

Methods. In 5340 Moscow residents, we evaluated anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
immunoglobulin M (IgM)/immunoglobulin G (IgG) titers and frequencies of the T cells specific to the membrane,
nucleocapsid, and spike proteins of SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked immunosorbent spot
(ELISpot) assay. Additionally, we evaluated the fractions of virus-specific CD4+ and CD8+ T cells using intracellular staining of
IFN-γ and interleukin 2 followed by flow cytometry. We analyzed the COVID-19 rates as a function of the assessed antibody
and T-cell responses, using the Kaplan–Meier estimator method, for up to 300 days postinclusion.

Results. We showed that T-cell and antibody responses are closely interconnected and are commonly induced concurrently.
Magnitudes of both responses inversely correlated with infection probability. Individuals positive for both responses
demonstrated the highest levels of protectivity against the SARS-CoV-2 infection. A comparable level of protection was found
in individuals with antibody response only, whereas the T-cell response by itself granted only intermediate protection.

Conclusions. We found that the contribution of the virus-specific antibodies to protection against SARS-CoV-2 infection is
more pronounced than that of the T cells. The data on the virus-specific IgG titers may be instructive for making decisions in
personalized healthcare and public anti–COVID-19 policies.

Clinical Trials Registration. NCT04898140.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
was identified as a causative agent of a new coronavirus disease

2019 (COVID-19). Individuals who have cleared the virus or
who have been vaccinated develop an adaptive immune response
including virus-specific T cells and antibodies [1–3], which have
been shown to protect from reinfection [4–8]. However, the
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antibody and T-cell response levels vary considerably from per-
son to person and substantially decrease over time [9, 10]. These
facts raise an important question: What levels of T-cell response
and immunoglobulin G (IgG) titers are sufficient to protect from
the infection? The definitive answer requires a population-level
study of the immune response to SARS-CoV-2 followed by the
tracing of infection rates.

Here, we report on a prospective study based on evaluation
of the virus-specific immunoglobulin levels and virus-specific
T cells in a cohort of 5340 Moscow residents. Specifically, we
evaluated the anti-SARS-CoV-2 immunoglobulin M (IgM)/
IgG titers and the frequencies of the T cells specific to mem-
brane (M), nucleocapsid (N), and spike (S) proteins of
SARS-CoV-2, using interferon gamma (IFN-γ) enzyme-linked
immunosorbent spot (ELISpot) assay. Furthermore, we as-
sessed the fractions of the virus-specific IFN-γ– and interleukin
2 (IL-2)–producing CD4+ and CD8+ T cells using flow cytom-
etry. Finally, we monitored the participants for up to 300 days
and analyzed the postinclusion COVID-19 rates as a function
of the antibody and T-cell response levels.

METHODS

This study was approved by the Moscow City Ethics Committee
and performed according to the Helsinki Declaration. All
participants provided written informed consent. The study was
registered at ClinicalTrials.gov (identifier: NCT04898140).
Individuals enrolled in the study were Moscow residents .18
years old who voluntarily visited Moscow city clinics for routine
testing for COVID-19 antibodies and agreed to participate. No
specific inclusion or exclusion criteria were applied. The
Moscow State COVID-19 registry was used to extract information
about participants’ vaccination status and previous polymerase
chain reaction (PCR)–confirmed COVID-19.

Peripheral blood was collected into two 8-mL Vacutainer
Cell Preparation Tube tubes with sodium citrate (BD).
Peripheral blood mononuclear cells (PBMCs) were isolated ac-
cording to the manufacturer’s protocol within 2 hours after ve-
nipuncture (for details, see Supplementary Material 1). For
serum isolation, peripheral blood was collected into
S-Monovette 7.5-mL Z tubes (Sarstedt, Germany).

SARS-CoV-2–specific antibodies were evaluated using an
automated CL-series chemiluminescent immunoassay analyzer
with compatible reagent kits (Mindray, China). The assay de-
tects an integrated pool of antibodies specific to full-length N
protein, as well as receptor-binding-domain fragment of the S
protein (see Supplementary Material). According to the manu-
facturer, the assay units can be converted into the World
Health Organization standard binding antibody units/mL by di-
viding by 1.32 (for details, see Supplementary Material 1).
Virus-neutralizing activity of plasma was analyzed with a micro-
neutralization assay using a SARS-CoV-2 strain (hCoV-19/

Russia/Moscow_PMVL-1/2020) in a 96-well plate and a 50% tis-
sue culture infective dose of 100 as described in [6], with plasma
dilutions of 10, 20, 40, 80, 160, 320, 640, and 1280 times.
Flow cytometry was performed on freshly isolated PBMCs

stimulated with a mixture of SARS-CoV-2 PepTivator S, S1,
S+, N, and M peptide pools (1 μg/mL each, Miltenyi Biotec,
Germany). After 14–16 hours of stimulation, cells were stained
with a panel of antibodies against surface markers and cytokines
and then analyzed with flow cytometry (Supplementary
Figure 1). Data were analyzed using FlowJo software (BD
Biosciences) (for details, see Supplementary Material 1). IFN-γ
ELISpot assay was performed on freshly isolated PBMCs using
the IFN-γ Single-Color ELISPOT kit (CTL). For each donor, 5
wells were tested without replicates: a negative control well with-
out stimulation, a positive control well nonspecifically stimulated
with 10 µg/mL phytohemagglutinin, and 3 experimental wells
stimulated with PepTivator peptide pools covering the M, N, or
S protein of SARS-CoV-2. Spots were visualized and counted us-
ing an automated spot counter CTL ImmunoSpot Analyzer and
ImmunoSpot software (CTL) (for details, see Supplementary
Material 1). It should be noted that there were no replicates in
our ELISpot protocol; undoubtedly, it represents a limitation of
the study. However, we believe that the large number of samples
analyzed allowed us to mitigate the variability of the method.
Statistical analysis was performed with the Python3 pro-

gramming language with numpy, scipy, pandas, and lifelines
packages (for details, see Supplementary Material 1). Serology
positivity thresholds were set according to the assay manufac-
turer’s instructions at 10 AU/mL for IgG and 1 cutoff index
for IgM, respectively. For IFN-γ ELISpot and flow cytometry
assays, positivity criteria were developed individually (see
Supplementary Material 2).

RESULTS

Cohort Characteristics

In total, 5340 individuals from the Moscow general population
were included in the study. All of them were tested for
SARS-CoV-2–specific IgG/IgM titers, while virus-specific T
cells in peripheral blood were estimated for 156 participants us-
ing ELISpot, for 1640 participants using flow cytometry, and
for 1629 participants using both assays (Figure 1A). The differ-
ence in these numbers resulted from cases in which the periph-
eral blood amount was not enough to perform both T-cell
assays, or from which samples were excluded from the analysis
because of failed controls. Cohort recruitment lasted from
October to December 2020; the age and sex distribution of
the participants is presented in Figure 1B. Accordingly, 854
participants (17%) with previously PCR-confirmed
COVID-19 infection were included, 81 (2%) COVID-19 cases
were diagnosed at the time of inclusion, and 496 (10%)
COVID-19 cases were registered postinclusion (Figure 1C).
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The postinclusion observation continued until the end of
August 2021; the distribution of all COVID-19 cases in time
is presented in Figure 1D. The cohort recruitment took place
before the onset of the public vaccination program in
Moscow. However, among enrolled participants, there were
175 individuals who had participated in the Sputnik V vaccine
clinical trial and thus had received either vaccine or placebo.

Correlation Between Antibody and T-Cell Responses

At the time of inclusion, 1382 (26%) individuals were positive
for SARS-CoV-2–specific IgM and 2455 (46%) for IgG
(Figure 2A and 2B and Supplementary Figure 2). By analyzing

a subgroup of 854 participants with confirmed previous
COVID-19, we found that IgM titers considerably decreased
60 days post–disease onset (Figure 2C), whereas IgG titers
stayed relatively high and unaltered up to 270 days post–disease
onset (Figure 2D). Among 180 randomly selected individuals,
we detected a strong correlation between the virus-neutralizing
activity (VNA) of plasma and integrated IgG titers, as well as S
and N protein–specific antibodies (Supplementary Material 3
and Supplementary Figure 3).
We analyzed the frequencies of the T cells specific to theM,N,

and S proteins of SARS-CoV-2 in peripheral blood, using the
IFN-γ ELISpot assay; we also analyzed the frequencies of IL-2–

Figure 1. Study overview and experimental cohort description. (A), Schematic study design. We tested volunteers for severe acute respiratory syndrome coronavirus 2–specific
antibodies (blue circle) and virus-specific T cells using interferon-γ enzyme-linked immunosorbent spot (ELISpot) assay (pink circle) and flow cytometry with intracellular staining
(green circle) (Figure was created using Biorender.com). (B), Age and sex distribution of volunteers included in the study. (C), Coronavirus disease 2019 (COVID-19) status of
volunteers included in the study according to the Moscow State COVID-19 registry provided by the Moscow Department of Healthcare. (D), COVID-19 cases among study par-
ticipants per week from April 2020 to August 2021.
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and IFN-γ–producing virus-specific CD4+ and CD8+ T cells,
with flow cytometry. For this purpose, we used a stimulation
protocol described elsewhere [2, 11, 12]. Both ELISpot and
flow cytometry assays showed that approximately half of the in-
dividuals analyzed had a T-cell response against SARS-CoV-2
antigens, which was consistent with the level of the specific an-
tibodies in the cohort (Figure 3A and 3B). Overall, 1145
(64.1%) individuals had SARS-CoV-2–specific T-cell responses
to at least 1 of the SARS-CoV-2 proteins (M, N, or S), including
692 (38.8%) with T-cell responses to all 3 proteins (Figure 3C).
Flow cytometry revealed that 2217 (67.8%) participants had
SARS-CoV-2–specific CD4+ T cells expressing IL-2, IFN-γ, or
both cytokines, with 1095 (33.5%) participants having all 3 cell
populations (Figure 3D). All of the metrics of T-cell immunity
appeared to be relatively stable up to 270 days after disease onset
(Figure 3E and 3F and Supplementary Figure 4).

We observed a strong correlation between the frequencies of
SARS-CoV-2–specific T cells detected with ELISpot and those
detected with flow cytometry; also, a strong correlation

between IgG titers and T-cell frequencies was determined
(Supplementary Figure 5). This correlation was found in the
cases of M, N, and S protein–specific T cells, as well as for dif-
ferent populations of CD4+ T cells.

Protectivity of Different Immune Responses Against SARS-CoV-2 Infection

To evaluate the effects of antibody and T-cell responses on
susceptibility to SARS-CoV-2 infection, we analyzed the post-
inclusion COVID-19 rates as functions of the assessed param-
eters. To avoid possible bias, we excluded from the analysis 175
individuals who had participated in the Sputnik V clinical trial
and 81 individuals who were already infected at the moment of
blood collection. Vaccinated participants were withdrawn from
the study on the day of vaccination. Since we have subjects who
were excluded from the dataset during observation and have
.2 groups in all comparisons, we employed the nonparametric
Kaplan–Meier estimator method for initial exploration and the
Cox proportional hazards (CPH) model for further quantita-
tive assessment of observed effects. Accordingly, among the

Figure 2. Evaluation of coronavirus disease 2019 (COVID-19)–specific antibody immunity. (A), Percentages of patients positive for virus-specific immunoglobulin M (IgM)
and immunoglobulin G (IgG). (B), Venn diagram showing the number of participants positive for severe acute respiratory syndrome coronavirus 2–specific IgG (green), IgM
(red), and both antibody types (orange). (C) and (D), Time dependence of the IgM and IgG levels among a subgroup of 854 nonvaccinated participants who had previous
polymerase chain reaction–confirmed coronavirus disease 2019 (COVID-19). Each dot represents a single patient. Time is counted from the date of disease onset according
to the Moscow State COVID-19 registry to the day of inclusion in the study. Time interval presented in each boxplot is 30 days. Abbreviation: COI, cutoff index.
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3989 participants who were eligible for the postinclusion obser-
vation, 420 postinclusion COVID-19 cases were registered. For
each of the immune parameters, participants were divided by
the quantiles depending on the levels of their responses, and

corresponding Kaplan-Meier curves for each quantile were an-
alyzed and CPHmodels were built (Supplementary Material 4).
For all the immune response metrics, we found an inverse

correlation with the SARS-CoV-2 infection rates. Thus, at the

Figure 3. Evaluation of coronavirus disease 2019 (COVID-19)–specific T-cell immunity. Freshly isolated peripheral blood mononuclear cells (PBMCs) were stimulated with pep-
tide pools covering severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins, and cytokine responses were assessed with enzyme-linked immunosorbent spot (-
ELISpot) assay or flow cytometry. The percentages of patients exceeding the positivity threshold for M, N, and S proteins in the ELISpot assay (A) or exceeding the percentage of
cells expressing both interleukin 2 (IL-2) and interferon gamma (IFN-γ), or either of these cytokines, in the flow cytometry assay (B) are shown. Venn diagrams showing relation in
positivity between different SARS-CoV-2 proteins in the ELISpot assay (C ) or between expression of different cytokines in response to activation with SARS-CoV-2 proteins in the
flow cytometry assay (D). The time dependence of the spot-forming units (SFU) per 106 PBMC for S protein in the ELISpot assay is shown in (E) and that of the fraction of CD4+ T
cells expressing IL-2 out of total CD4+ cells in the flow cytometry assay is shown in (F ). Each dot represents a single participant. Time is counted from the date of disease onset
according to theMoscow State COVID-19 registry to the day of inclusion in the study, and thus serology testing. Time interval presented in each boxplot is 30 days. The dashed line
represents a positivity threshold for ELISpot. For flow cytometry, the positivity threshold was variable (see Supplementary Material 2).
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end of the observation individuals with IgG titers ,0.29 AU/mL
(quantile [Q] 1) were characterized by a 22% chance of
becoming infected (Figure 4A). For individuals in Q2 and Q3
(IgG titers 0.29–0.97 and 0.97–8.23 AU/mL, respectively),
age-adjusted log-hazard ratios (HRs) compared with Q1 were
significantly below zero: −0.3 (95% confidence interval [CI],
−.5 to −.03) and −0.33 (95% CI, −.6 to −.1), respectively.
Individuals representing Q4 and Q5 (IgG titers: 8.23–
66.5 AU/mL and .66.5 AU/mL, respectively) had the lowest
infection chances: log(HRs), −1.5 (95% CI, −1.9 to −1.2)
and −2.4 (95% CI, −3 to −2), respectively. We found that
Q4 and Q5, which demonstrated the highest protection, were
at the same time characterized by the highest VNA

(Supplementary Figure 3B). Surprisingly, Q3, with infection
chances in the intermediate range, also had VNA significantly
higher than Q1, demonstrating an absence of protectivity.
There was no difference in VNA between Q1 and Q2.
An almost binary relationship was observed between infec-

tion chances and the frequencies of virus-specific T cells iden-
tified by ELISpot (Figure 4B and Supplementary Figure 6A–C).
For all of the SARS-CoV-2 proteins analyzed, individuals in Q4
and Q5 were characterized by the highest levels of protection
against the infection, whereas Q1–Q3 were similar and demon-
strated no considerable protection. For example, the maximal
protection was achieved when the number of S protein–specific
spot-forming units per 106 PBMCs exceeded 67. In contrast to

Figure 4. Evaluation of the effects of antibody and T-cell immune responses on coronavirus disease 2019 (COVID-19) infection rates. The patients were split into 5 nearly
equal groups by quantiles of immunoglobulin G (IgG) levels (A, top) or by S protein–specific spot-forming units estimated from enzyme-linked immunosorbent spot (ELISpot)
assay (B, top) from quartile (Q) 1 to Q5. Additionally, participants were split into 4 groups (C, top): positive only by antibodies (A+T−), positive only by S protein–specific T cells
estimated from ELISpot (A−T+), double-positive (A+T+), and double-negative (A−T−). Corresponding Kaplan–Meier curves were generated for each group, and COVID-19
rates were analyzed. A–C (bottom), Age-adjusted Cox proportional hazard models were fitted (with age measured in decades for ease of representation) and hazard ratios in
comparison with either Q1 or the A−T− group were calculated together with the model concordance index (c-index).⍰, decades were used as units for age measurements.
*p, 0.05; **p, 0.01; ***p, 0.001; ****p, 0.0001. Abbreviations: CI, confidence interval; HR, hazard ratio; IgG, immunoglobulin G; PBMC, peripheral blood mononuclear
cells; Q, quartile; SFU, spot-forming units.
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ELISpot, the results of the T-cell response analysis using flow
cytometry revealed a gradual relationship between the frequen-
cies of T cells producing IFN-γ, IL-2, or both cytokines, and in-
fection chances (Supplementary Figure 6D–H). However, when
CD4+ T cells expressing different cytokines were combined,
the relationship with infection chances transformed into a bi-
nary one.

A similar strategy was employed to separate the effects of cel-
lular and antibody responses on protection against
SARS-CoV-2 infection. The participants were split into 4
groups: positive only by antibody response (A+T−), positive
only by any metric of the T-cell response (A−T+), double-
positive (A+T+), and double-negative (A–T–), according to
the previously estimated positivity criteria (Supplementary
Material 2). Such analysis was performed for all metrics of
the T-cell response, except for CD8+ T cells since it was impos-
sible to develop a reliable positivity criterion. The group size
depended on the T-cell immune response metric used; for ex-
ample, for S protein–specific T cells (Figure 4C), the numbers
of participants at the start of observation were 446, 113, 147,
and 609 for A+T+, A+T−, A−T+, and A−T−, respectively.
For all of the T-cell response metrics, the A−T− group had
the highest infection chances, while the strongest protection
was observed for A+T+ and A+T− groups, the latter two
groups being statistically indistinguishable (Figure 4C and
Supplementary Figure 7). For example, for S protein–specific
T cells, age-adjusted log-HRs for all other groups compared
with the A−T− group were significantly above zero: for
A−T+: log(HR), −0.7 (95% CI, −1.3 to −.1); for A+T−:
log(HR), −1.8 (95% CI, −2.8 to −.8); and for A+T+:
log(HR), −2.6 (95% CI, −3.3 to −1.9). For all studied metrics,
the A−T+ group demonstrated an intermediate protection that
was significantly higher than in the A−T− group, but was lower
than in the A+T+ and A+T− groups. In particular, the protec-
tion provided by the T cells in the absence of antibodies was ob-
served when the response was estimated from the numbers of N
and S protein–specific T cells with ELISpot (Figure 4C and
Supplementary Figure 7A–C). The trend for increased protec-
tion was observed for the CD4+ T cells producing IFN-γ,
IL-2, both cytokines, and, especially, these populations com-
bined (Supplementary Figure 7D–G). It is noteworthy that in-
dividuals single-positive for N- and S protein–specific T cells, as
well as for virus-specific CD4+ T cells, were characterized by
higher IgG levels than individuals of the A–T– group, although
the antibody levels were below the positivity cutoff value of
10 AU/mL (Supplementary Figure 8).

DISCUSSION

With the progression of the COVID-19 epidemic, a growing
number of individuals develop immune responses against
SARS-CoV-2. Prospective studies in humans [13–15] and

studies using primate models with SARS-CoV-2 rechallenge
[16–18] have demonstrated that an acquired post–COVID-19
immune response provides protection from reinfection. The
goal of our study was to evaluate what metrics of the antibody
and T-cell immune responses against SARS-CoV-2 correlate
with protection against infection in humans in the context of
the COVID-19 epidemic in Moscow between October 2020
and August 2021.
As expected, we found a strong correlation between fre-

quencies of SARS-CoV-2–specific T cells evaluated with
ELISpot and with flow cytometry, since these methods detect
cytokine expression in activated T cells [19]. IgG titers
strongly correlated with the frequencies of SARS-CoV-2–spe-
cific T cells, confirming that antibody and cellular responses
are closely interconnected and induced concurrently. This
correlation existed even at IgG values below the seropositivity
cutoff.
From April 2021 in Russia, the B.1.1 lineage of SARS-CoV-2

predominated [20, 21], while fromApril to August the vast ma-
jority of SARS-CoV-2 variants detected belonged to the B.1.617
(Delta and derivatives) lineage [22]. However, we found that
IgG titers and parameters of the T-cell response negatively cor-
related with infection probabilities regardless of the predomi-
nant virus variant. T-cell response was characterized by a
binary relationship between response level and infection
probabilities, as measured with ELISpot. This means that for
all individuals with a frequency of SARS-CoV-2–specific T
cells surpassing a particular threshold, protection against
SARS-CoV-2 infection was the same. A different pattern was
observed for IgG titers. We identified 3 groups of individuals
characterized by different infection chances. Individuals with
very low IgG titers were characterized by the highest infection
chances, while high titers were associated with the lowest infec-
tion chances. Meanwhile, infection chances for individuals with
intermediate IgG titers were also intermediate, notwithstand-
ing the fact that these titers were below the seropositivity cutoff.
Moreover, we found significant VNA among these individuals.
Given the strong correlation between antibody and T-cell
responses found in the study, the protection observed in these
individuals might be T-cell dependent. We surmise that
this group may consist of individuals who developed a
COVID-19–specific response after previous asymptomatic in-
fection [23, 24], or after infection with either cross-reactive
“common cold” coronaviruses [11] or other pathogens [25,
26]. The low-level humoral response could nevertheless be in-
dicative of successful formation of memory B cells, as it is
known that SARS-CoV-2 induces the formation of durable
B-cell memory [27–29].
Depending on estimated T-cell and antibody responses, we

split the participants into 4 groups and analyzed the protection
against the SARS-CoV-2 infection. Two groups were character-
ized by the highest protection: individuals positive for both
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types of responses and those with antibody response only.
Apparently, these groups contain individuals with previous
COVID-19 that had not been confirmed by PCR for some rea-
sons. It is noteworthy that even though the reinfection rates in
these groups were very small, few cases were still detected.
Individuals with T-cell response alone demonstrated interme-
diate protection levels that nevertheless were higher than levels
in individuals without either type of immunity. Statistically sig-
nificant protection was observed for N and S protein–specific
T-cell responses. Individuals single-positive for these cellular
response metrics had higher IgG titers than individuals without
either type of immunity, although the titers were below the pos-
itivity cutoff. Taken together, our results demonstrated that an-
tibodies better correlated with protection against the
SARS-CoV-2 infection, indicating that IgG evaluation is a
more precise method for prediction of infection chances than
virus-specific T cells. However, the most important role of T
cells might be not in protection from the infection but rather
in viral clearance and managing disease severity [30–35].
Moreover, rhesus macaque models [17, 36] and recent human
studies [37, 38] have supported that T-cell protection becomes
important as neutralizing antibodies decline.

Our study has several limitations. The cohort analyzed is
likely to be nonrepresentative and includes only individuals
who have visited outpatient clinics for COVID-19 antibody
tests and who agreed to participate in the study. Some cases
of COVID-19 infections, especially asymptomatic, were inevi-
tably missed as they were not reported to the Moscow State
COVID-19 registry, though we do not expect any nonrandom
distribution of unreported cases between different groups.
Additionally, our study was focused on the systemic immune
responses detected in peripheral blood, while local concentra-
tions of antibodies and tissue-resident T cells in the mucosa
and respiratory system may differ from blood levels; this issue
deserves thorough investigation.

In summary, our data suggest that serological testing is ad-
vantageous for the prediction of protection against
SARS-CoV-2 infection. Our data on the specific IgG titers
may be instructive for making decisions in personalized health-
care and for development of public anti–COVID-19 policies.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online.
Consisting of data provided by the authors to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the authors,
so questions or comments should be addressed to the corresponding
author.
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