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Abstract: This paper presents a comprehensive review of the detection of aflatoxin compounds using
carbon allotrope-based sensors. Although aflatoxin M1 and its derivative aflatoxin B1 compounds
have been primarily found in milk and other food products, their presence above a threshold con-
centration causes disastrous health-related anomalies in human beings, such as growth impairment,
underweight and even carcinogenic and immunosuppressive effects. Among the many sensors
developed to detect the presence of these compounds, the employment of certain carbon allotropes,
such as carbon nanotubes (CNTs) and graphene, has been highly preferred due to their enhanced
electromechanical properties. These conductive nanomaterials have shown excellent quantitative
performance in terms of sensitivity and selectivity for the chosen aflatoxin compounds. This paper
elucidates some of the significant examples of the CNTs and graphene-based sensors measuring
Aflatoxin M1 (ATM1) and Aflatoxin B1 (AFB1) compounds at low concentrations. The fabrication
technique and performance of each of the sensors are shown here, as well as some of the challenges
existing with the current sensors.

Keywords: carbon nanotubes; graphene; immunoassay; aflatoxin M1; aflatoxin B1

1. Introduction

The utilization of carbon allotropes in the sensing world has brought about revolu-
tionary changes in recent times. After the popularization of sensors at the end of the 20th
century, various MEMS [1,2] and printed [3,4] sensors have been fabricated and utilized in
different applications. The semiconducting sensors hold the highest priority due to their
high accuracy, high linearity, high signal-to-noise ratio and easy interfacing with the control
systems [5,6]. The materials used to form these semiconducting sensors have evolved. Ear-
lier, during the 1990s, silicon became the most popular material for forming the substrates
of the sensors. This was due to its high stability and repeatability in the responses, the
small size of the prototypes and ability to work in extreme conditions [7]. While silicon
became a standard material to form the substrates until printed sensors came into the
picture, the conductive elements used to form the electrodes were constantly changing.
This is due to the direct relationship between the properties of the electrodes with that of
the quality of the sensors. With the constant growth in nanotechnology [8–10], nanoma-
terials of various forms, including nanoparticles, nanobeads, nanosheets, nanopowders
and quantum dots have been exploited to fabricate the electrodes. Although all of these
materials are significant in enhancing the efficiency of the resultant devices, the electrical,
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mechanical and thermal attributes associated with each of them can differ based on their
size, shape and dimensions.

Nanomaterials can be broadly classified into two categories, namely metallic nanopar-
ticles [11,12] and carbon-based allotropes. Among the former group, certain elements such
as gold [13,14], silver [15,16], copper [17,18] and aluminum [19,20] have been extensively
used in forming the electrodes. The deployment of these metallic elements has been mostly
done using the conventional microelectrochemical systems (MEMS) technique [21]. Al-
though all these nanomaterials have been utilized to develop sensors for a wide range of
applications, biocompatibility is one critical parameter that needs approval before the use
of the sensors for the healthcare sector. The biocompatibility of the sensor may decide the
standard of the sensor and affect the condition of the patient. For example, suppose soluble
silver compounds are used to form flexible sensors that are used as catheters. In that case,
it can lead to certain toxic effects such as liver and kidney damage, irritation of the eyes
and respiratory problems [22]. This biocompatibility can be addressed by using specific
elements such as carbon-based allotropes. This category includes elements such as car-
bon nanotubes (CNTs) [23–25], graphene [26–28], graphite [29–31] and fullerenes [32–34].
Among these elements, CNTs and graphene have been extensively used for a wide range
of applications. The biocompatibility of these elements depends strongly on certain factors
such as mass, purity, ratio and surface functional groups [35]. In cases of electrochemical
applications as the one shown in the paper, the functionalization of CNTs, graphene and
their derivatives has increased the attention towards other nanomaterials to increase the
biocompatibility towards biosensing applications. The surface modification also increases
the dispersibility of these carbon-based structures as a result of the alteration of cellular
interaction pathways. This decreases the cytotoxic effects of CNTs and graphene are tested
in vitro conditions before the deployment in real-time scenarios [36].

Each of the above-mentioned conductive elements has been deposited and embedded
either on silicon or a range of polymers such as polydimethylsiloxane (PDMS) [37,38],
polyethylene terephthalate (PET) [39,40], poly(3,4-ethylene dioxythiophene) polystyrene
sulfonate (PEDOT: PSS) [41,42] and polyimide (PI) [43,44]. The sensors formed with these
elements have been used in a wide range of environmental [45–47] and industrial [48–50]
sectors. Initially, CNTs were popularized in the late 90s for developing sensors for academic
and industrial applications [36,51,52]. CNTs were synthesized in various forms based on
the number of walls present in their structures. Two of the common forms, including
single-walled carbon nanotubes (SWCNTs) [53,54] and multi-walled carbon nanotubes
(MWCNTs) [55,56], have been considered for application purposes. Apart from these
two, there are double-walled carbon nanotubes (DWCNTs) [57,58] and few-walled carbon
nanotubes (FWCNTs) [59,60], but these are mostly used for characterization purposes.
Some of the synthesis processes used to develop CNTs are chemical vapor deposition
(CVD) [61,62], arc-discharge [63,64], laser ablation [65,66] and liquid electrolysis [67,68].
The selection of each of these processes depends on the type of CNTs required for the
chosen application. Graphene has been proclaimed to be a magic material since its synthesis
on a research scale [69]. Scientists have tried fabricating graphene in various ways to
increase its availability at a reduced cost. Some of the common techniques of synthesizing
graphene are CVD [70,71], Hummers’ method [72,73] and laser ablation of commercial
films [74,75]. Graphene has been utilized for a wider sector of applications in comparison
to CNTs due to its enhanced electromechanical properties. It has been used in pure and
composite [76,77] forms to build robust and highly sensitive sensors. Table 1 [78] shows a
comparison between CNTs and graphene in terms of their physicochemical properties. It is
seen that both these elements have been highly efficient in the sensing world. This paper
showcases the use of sensors based on these elements to detect a particular chemical found
in food products.
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Table 1. Comparison between CNTs and graphene based on certain physicochemical properties [78].

Physiochemical
Properties Graphene Carbon Nanotubes

Shape Planar: monolayer or multi-layer Cylindrical (SWCNTs, DWCNTs, MWCNTs)

Dimensions
• Thickness: 0.34–100 nm
• Lateral size: 0.3–10 microns

• SWCNT length: 10 nm to 1 cm, diameter:
0.4 to 3 nm

• MWCNT length: 10 nm to few microns,
diameter: 2 to 200 nm

Surface

• Up to 275 m2/g, decreases with an increase in
the number of layers.

• Varies with functionalization or coating.
• Varies in chemical nature, type, density and

conformation.

• SWCNTs (>1000 m2/g), MWCNTs
(100–500 m2/g)

• Varies with functionalization or coating.
• Varies with chemical nature, type, density

and confirmation.

Elasticity/stiffness

• Young’s modulus: 1100 GPa
• Capable of bending and rippling
• Stiffness increases with the number of layers

• SWCNTs: 1 to 5 TPa, capable of bending
• MWCNTs: 0.2 to 0.95 TPa

Colloidal stability
• Dispersion: Graphene oxide in water
• Aggregation: Stacking

• Dispersion: Oxidized CNTs in water
• Aggregation: Bundling and tangling

Durability Enzymatic degradation by defects in the plan Enzymatic degradation by unzipping and decrease
in length and diameter

Impurities Varies after the manufacturing process, mainly
graphite and chemical residues after processing.

• Varies after the manufacturing process, metal
catalysts (Fe, Co, Ni, Cr, Cu, Zn), carbon
nanoparticles, amorphous carbon

The use of sensors for electrochemical sensing has been a cornerstone in recent times.
Different kinds of MEMS and printed prototypes have been used to detect chemical
compounds present in solutions at varied concentrations. The use of CNTs and graphene
in sensors for electrochemical sensing has been very efficient due to their high electrical
conductivity and charge carrier densities. Out of the applications related to electrochemical
sensing, the detection of ions present in food is critical, as a slight aberration in the
concentration of the chemical from its optimized value can increase the toxicity of the food
product. Among them, aflatoxin M1 (ATM1) is one of the chemical compounds from a
group and species of mycotoxins and aspergillus, respectively, that is found in milk and
other food products [79–81]. While this chemical is primarily present in animal milk, the
increase in its concentration can lead to adverse effects on the central nervous system, liver,
kidney. It may even cause death [82]. Thus, despite the pasteurization and sterilization of
the milk before its consumption, it is important to determine the precise concentration of
ATM1. Scientists have trying to fabricate sensors for detecting ATM1 with a combination
of different kinds of conductive elements and semiconducting/insulating substrates.

Table 2 shows a comparison between the performances of the sensors based on
different detection techniques. Each of these sensors detecting ATM1 compounds is capable
of generating excellent analytical performances. This paper explains the use of sensors
formed using CNTs and graphene for the detection of ATM1. Followed by the introduction
stating the need for CNTs and graphene-based sensors and their deployment to detect
ATM1, Section 2. explains some of the significant kinds of prototypes that are fabricated
and utilized for the target application. This section is sub-categorized into two parts based
on the type of conductive element used to fabricate the sensors. The third section highlights
some of the challenges related to the current sensors and their possible remedies. The
conclusion is drawn in the final section of the paper.
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Table 2. Comparison between the performances of the sensing prototypes based on different detection techniques.

Sensor Materials Detection Technique Detection Analyte Analytical Performance Ref.

Graphene
nanoribbons Dynamic light scattering AFB1

• Linear range: 0.5–20 ng/mL
• LOD: 0.16 ng/mL [83]

Graphene oxide,
Au NPs, PEDOT Impedance spectroscopy AFB1

• Linear range: 0.5–20 ng/mL,
20–60 ng/mL

• LOD: 0.109 ng/mL
[84]

Fe3O4, GO, CdTe
quantum dots,

CNTs
Electrochemiluminescence ATM1

• Linear range:
1.0–1.0 × 105 pg/mL

• LOD: 0.3 pg/mL
[85]

rGO, polyaniline,
MoS2, glassy

carbon electrode,
Au NPs

Differential pulse
voltammetry AFB1

• Linear range: 0.01–1.0 fg/mL
• LOD: 1.0 fg/mL [86]

Au NPs,
carboxymethyl-

dextran
Cyclic voltammetry AFB1

• Linear range: R2 >0.99
• LOD: 3.3 [87]

Au NPs Thin layer chromatography ATM1 • Linear range: 0–80 ng/L
• LOD: 350 ng/L

[88]

2. Carbonaceous Sensors for the Detection of Aflatoxin MI Molecules

The consideration of carbon nanostructures for detecting electrochemical sensing
applications is significant due to their high sensing area, high aspect ratio and high electrical
conductivity. These nanostructures have been able to detect chemical ions in the solutions
for a wide range of concentrations. Different detection mechanisms are carried out to
determine the changes in the ionic and faradic currents flowing between the electrodes and
the tested samples. The changing current values occur due to the corresponding changes
in the impedance values due to the specific electrode structures. CNTs and graphene
have been utilized to form electrodes that display high selectivity and high sensitivity
towards the ionic samples. The deployment of these sensors for food materials has been
particularly essential due to their biocompatible nature. While graphene has been a magic
material for sensorial operations, other CNT products have also been very efficient as a
replacement of the metallic nanowires due to their resistant nature towards a wide range of
temperature and humidity and ability to withstand extreme ambiance conditions in terms
of heat and cold [89,90]. Both two-electrode and three-electrode systems were equally
effective for detecting the ATM1 compound due to the high selectivity induced by these
sensors. Electrochemical impedance spectroscopy [91,92] and cyclic voltammetry [93,94]
were used to determine the changes in the impedance and current, respectively, due to the
corresponding change in the concentrations of the samples.

The doping of these carbon allotrope-based electrodes has positively affected the
selectivity and sensitivity towards the aflatoxin molecules. The change in the structural,
morphological and electrochemical properties of these electrodes has increased the charge-
transfer rate, thus increasing the electrochemical activity on the surface of the electrodes.
This treatment is done using a range of active materials such as metallic nanoparticles and
polymers that participate in the electrochemical redox reactions. The doping or alteration
of the physiochemical nature of the electrodes is done through different techniques such as
nanocomposite formation [95], pyrolysis [96], calcination [97] and reduction [98] processes.
These treatment methods improve the electron transfer kinetics and charge carrier density
at the electrode surface by instigating surface states and facilitating electron transfer [99].
The doped element would also sometimes have multifunctional roles, where a specific
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area of the electrodes would be activated multiple times as compared to the inactivated
ones. This would create mesoporous structures that pave the way for new ionic and faradic
reactions, contributing to the change in the output of the devices. The morphological
changes can be ascribed to creating new defects on the graphene sheets and sidewalls of
CNTs. The decreased amount of amorphous carbon compared to their pristine condition
creates small clusters, thus modifying the surface of the particles and increasing their active
surface sites. The inhomogeneity caused in the carbon allotropes, although increasing
in the charge distribution across the carbon network, results in poor cyclability due to
permanent structural changes [100].

The detection phenomenon of ATM1 is based on the ionic bonds formed on the sensing
area of the electrodes. The presence of a large aromatic ring of ATM1 helps the sensors to
adsorb the compound and separate it for analysis purposes. This helps the researchers to
build prototypes that are highly selective towards this particular compound. Although
other molecules also consist of aromatic rings, the selectivity generated on the electrodes
assists in sensing the aflatoxin molecules. This selective nature can be achieved in multiple
ways. It can be done by using aptamers, which act as recognition elements [101]. Initially,
aptamers are immobilized on the electrodes via covalent bonding. Then, electrochemical
probes are formed with the presence of appropriate signal enhancement elements to
induce a charge shift. This causes a change in response during the aptameter-specific
recognition and binding of aflatoxin molecules at various levels. Other ways include the
presence of nanoparticles such as gold or platinum on the carbon-based electrodes. The
presence of these additional nanoparticles modifies the resultant electrocatalytic behavior
of the electrodes, thus responding to the aflatoxin molecules when monitored through
voltammetry and impedimetric techniques [84]. The selectivity is also achieved through a
label-free biosensing mechanism. Here, the carbon-based allotropes form conjugates with
other selective nanomaterials and consequently mixes with free antibodies to increase the
resultant absorption intensity. Sometimes, solutions such as bovine serum albumin (BSA)
are used to increase the sensitivity by blocking the unspecified sites to prevent non-specific
adsorption. Finally, the changes in responses of the sensors when treated with aflatoxin
antigens are monitored using optical and electrochemiluminescent techniques [83].

When the prototypes are exposed to ATM1 in different concentrations, an adsorption
process occurs, the rate of which initially increases and then gradually saturates over time.
This equilibrium is attended due to the adsorption of ATM1 on the exterior surface of the
adsorbent during the earlier phase of the contact time [85]. After a saturation occurs, the
ATM1 ions diffuse from the exterior to the interior surfaces of the adsorbents. Different
kinds of sensitive analytical methods are being employed to monitor the ultra-trace levels
of ATM1 in milk and other food products. As a result of its strong toxic effects on public
health, affordable, portable and efficient methods are devised for screening and detecting
the ATM1 levels in the food products. The fabrication and implementation of these sensors
have created a podium for further scientists to work on the quality control of the food
molecules. Apart from this chosen molecule, other constituents can also be detected with
multifunctional sensing systems formulated with carbon-based allotropes.

2.1. Carbon Nanotube-Based Sensing Prototypes

Before using graphene as a common carbon-based allotrope for a wide range of
sensing applications, CNTs were highly favored due to their attributes. These sensors are
particularly beneficial for these kinds of electrochemical sensing due to their sensing area
due to their high aspect ratio. Due to the rolling up of graphene sheets into tubes to form
CNTs, their electrochemical properties can be compared to the basal planes of the pyrolytic
graphite. The cap regions of the CNTs have a higher reactivity due to the higher curve strain
in comparison to the sidewall. In retrospect to the defect-free structures of these tubes, their
physical and chemical treatments can induce a variety of oxygen-containing groups. This
increases the number of binding sites for a particular chemical analyte [99,102]. The high
electrical conductivity of CNTs also helps in electrochemical reactions by increasing the
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electron transfer reactions in both aqueous and non-aqueous solutions. These CNTs have
also been used as pastes using different modifiers to form electrodes with high renewability
and compatibility.

2.1.1. Multi-Walled Carbon Nanotube (MWCNT)-Based Detection

Interesting research related to the use of CNTs for detecting ATM1 can be seen in the
work done by Zhao et al. [103]. The magnetic solid-phase extraction technique was used to
develop composites containing PEGylated MWCNTs and metallic magnetic nanoparticles
(PEG–MWCNTs–MNP). These prototypes were used to isolate and enrich different aflatoxin
compounds such as B1, B2, G1, G2, M1, M2 and others. The responses of the sensors were
studied using liquid chromatography and Q-Executive high-resolution mass spectroscopy
techniques. The prototypes showed very high sensitivity and selectivity towards the tested
molecules. High linearity of coefficient of determination (R2) ≥ 0.995 was obtained for
a detection range of 0.005–0.050 µg/kg of all the chosen compounds. The quantification
range was fixed for a range of 0.015–0.15. The recovery rate was around 81.8–106.4%, along
with good repeatability with a range of 2.1–8.5%. The intra-day and inter-day precisions
ranged from 2.1 to 8.5% and from 3.9 to 11.7%, respectively. The tested samples were
pre-treated with acetonitrile, followed by transferring them for the adsorption process
on PEG–MWCNTs–MNP via employing vortex process. The prototypes were capable of
detecting thirteen different types of mycotoxins while analyzing twenty milk samples. The
ATM1 was detected within a range from 0.026 µg/kg to 0.039 µg/kg.

As a variant to ATM1, aflatoxin B1 (AFB1) is also detected, a pre-metabolized version
of ATM1. For example, Singh et al. [104] showed the use of functionalized MWCNTs to de-
tect aflatoxins. The functionalization of the MWCNTs was done using the carboxyl (–CHO)
group. The sensing surfaces of the prototypes were successful in functionalizing with mon-
oclonal AFB1 antibodies to detect these molecules. The functionalization of the MWCNTs
was done using a mixture formed with hydrocarbon as a source and ferrocene and toluene
as catalysts. The prototypes were formed by electrophoretic deposition of MWCNTs on
indium tin oxide (ITO) glass substrates. The DC voltage during the electrophoretic de-
position was kept to a constant value. Figure 1 [104] illustrates the experimental process
carried out with the MWCNT/ITO-based electrodes. The anode and cathode used for this
system were ITO glass and platinum foil, respectively. The electrochemical impedance
spectroscopy (EIS) technique was used to detect the changes in the responses of these
immunosensors. The immobilization process was done using an anti-AFB1 solution, where
its amide (–NH2) group formed a covalent bond with the –COOH terminal of MWCNTs.
The immobilized electrodes were stored at a temperature of 4 ◦C prior to and after use.
The sensors had a high sensitivity of 95.2 µA. mL/ng−1.cm−2, limit of detection (LOD)
of 0.08 ng/mL and linear range of 0.25–1.375 ng/mL. The association constant value of
0.0915 ng mL−1 indicated their high affinity towards the detected molecule.

Another use of MWCNTs for forming nanocomposite-based sensors to detect afla-
toxin molecules can be seen in [105]. Here, electrochemical immunosensors for detect-
ing AFB1 molecules were fabricated using palladium (Pd)–gold (Au) nanoparticle-based
electrodes that were being supported by poly (diallyl dimethylammonium chloride)
(PDDA)/MWCNT-based nanocomposites. Figure 2 [105] shows the schematic illustration
of the preparation of an MWCNTs/PDDA/Pd–Au nanocomposite-based electrochemical
immunosensor. The Pd–Au nanoparticles were initially synthesized using a dropping
and stirring process. This was followed by forming the CNTs–PDDA nanocomposites by
treating CNTs with acid and then PDDA aqueous solutions. The resultant suspensions
were subjected to centrifugation and sonication processes. The gold electrodes were pol-
ished and washed with alumina slurry, followed by distilled water and ethanol. This
was followed by dropping samples of CNTs/PDDA/Pd–Au on the surface of the gold
electrodes, followed by the evaporation process of the solvent. The experimental samples
were prepared using an extraction process, where the samples were shaken, centrifuged,
filtered and diluted to obtain the final product. The prototypes showed a high sensitivity
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for a range from 0.05 ng/mL to 25 ng/mL, along with an LOD of 0.03 ng/mL. The standard
deviation was 3σ, where σ is the standard deviation of the blank solution with n = 10.
A R2 value of 0.9933 was obtained with the peak current in µA decreased with respect to
the increase in concentrations of AFB1 samples.
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Another interesting work related to using MWCNT-based immunosensors for the
detection of aflatoxin molecules can be seen in [106]. Simultaneous detection of AFB1
and zearalenone (ZON) molecules was done using magnetic nanoparticles formulated
using amino-modified MWCNTs. The advantages of this proposed work included a
convenient and time-saving approach and the fast, efficient and enhanced response of the
sensors. The magnetic properties were induced on the –NH2-functionalized MWCNTs by
filling the nanotubes with Fe3O4 nanoparticles. This was done by treating the nanotubes
with ammonium iron sulfate hexahydrate solutions. The mixture was then optimized
in terms of pH values, followed by executing filtration, washing and drying processes.
Certain processes such as magnetic solid-phase extraction and high-performance liquid
chromatography were used to detect the changes happening in the presence of the two
molecules. The influence of other solid-phase extraction parameters such as solution pH,
salt addition, temperature, desorption conditions and extraction time was also tested. The
sensors showed an excellent response in green analysis, having a score of 89 in analytic
eco-scale evaluation. The recovery and relative standard deviation (RSD) ranges of these
sensors were 88.8–96% and 2.1–2.8%, respectively. The LOD for AFB1 and ZON molecules
were 0.15 ng/g and 0.24 ng/g, respectively, with a R2 value of >0.999 for both the molecules.
The limit of quantification (LOQ) values for AFB1 and ZON molecules were 0.52 ng/g and
0.83 ng/g, respectively.

Costa et al. [107] showed a similar work regarding the detection of AFB1 molecules
using cysteine-modified gold electrode-immobilized MWCNTs. Label-free electrochemical
sensors were fabricated for the detection of carcinogenic AFB1 molecules in pictogram lev-
els. The presence of the MWCNTs assisted in the enhancement of the electrical properties
in terms of sensitivity and working range. The gold electrodes of the sensors were initially
modified using a self-assembled cysteine layer, followed by covalent bonding of carboxyl-
functionalized MWCNTs to the self-assembled layer. With an initial polish using α-Al2O3
and an ultrasonication bath, the modification was done to create the self-assembled layer.
Drop-casting of the carbonyl-MWCNT-diluted solutions was done on the electrodes, fol-
lowed by an incubation bath for 50 min at a temperature of 25 ◦C. Finally, tethering of
antibodies was done against AFB1 molecules. This was carried out by drop-casting the
EDC:NHS diluted solution at a ratio of 1:1 over the activated platform. The tested AFB1
concentrations included 0.1, 1.0, 3.0, 6.0, 9.0, 11.0, 15.0 and 20.0 pg/g. The charge-transfer
resistance changed for a range between 6.97 kΩ and 84.33 kΩ for the lowest and highest
concentrations, respectively. The LOD of these sensors was 0.79 pg/g, while the linear
response was from 0.1 pg/g to 20 pg/g. Reproducibility in the results of around 5% was
obtained for these portable, label-free sensors.

One of the recent works elucidating the use of MWCNTs for the detection of aflatoxins
in milk can be seen in [108]. Polyethyleneimine (PEI) was used as a solid-phase extraction
adsorbent to functionalize the magnetic CNTs. Magnetic substrates and epoxy-containing
silane agents as linkers were employed for the modification of polyethyleneimine. MWC-
NTs were used as the conductive material, which was functionalized with iron oxide (Fe3O4)
molecules to induce magnetic properties in the CNTs. This was followed by two more
modifications with PEI and glymo to obtain a final product of glymo@Fe3O4MWCNTs.
The analysis was carried out using magnetic adsorbents integrated with reverse phase and
anion exchange interaction sites. The capability of these sensors was validated through
different analytic methods in terms of linear range, absolute recovery, matrix effect and
precision. The experimental process consisted of testing ten different mycotoxins in milk,
having the range of adsorption capacities between 4.9 mg/g and 10.2 mg/g. The adsorp-
tion and desorption processes were completed within 3 min and 2 min, respectively. The
recovery rates increased with the increase in the amount of MWCNTs but were consistent
with the variation in the adsorption capacities. The correlation coefficients obtained ranged
between 0.9108 and 0.9981. The standard deviation and LOD ranges were 2.4% to 6.5% and
0.003 µg/kg to 0.334 µg/kg, respectively. The sensors also had a high recovery range from
88.3% to 103.5%.
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2.1.2. Single-Walled Carbon Nanotube (SWCNT)-Based Detection

Like MWCNTs, SWCNTs have also been used to detect ATM1 compounds in milk [109].
Flexible prototypes having dispense-printed electrodes were formed where functionalized
SWCNTs were coated with antibodies to increase their selectivity and sensitivity. The
advantages of these sensors were low fabrication cost, easy handling and a high level of
customization. Figure 3 [109] shows the schematic diagram of the fabrication process of
these functionalized SWCNT-based biosensors. These prototypes were formed on PET
substrates having a thickness of 125 microns. The printing process was followed by curing
them at 120 ◦C for 15 min to harden the ink.
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Figure 3. Schematic diagram of the fabrication process of SWCNT/PET-based biosensors [109]. (A) printing working
electrode (WE) and counter electrode (CE), (B) printing WE with AgCl by alignment, (C) spray depositing single-walled
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Falco, A., Ibba, P., Cantarella, G., Petti, L. and Lugli, P., 2019. Development of flexible dispense-printed electrochemical
immunosensor for aflatoxin M1 detection in milk. Sensors, 19(18), p. 3912.

The final step included the spray-coating of the SWCNTs on top of the electrodes via a
spray deposition unit and a shadow mask. The cyclic voltammetry (CV) technique was
associated with the prototypes to detect the output with respect to the corresponding ATM1
compounds. The working principle is based on a three-electrode system, with silver paste
printed with working and counter electrodes and Ag/AgCl being the reference electrodes.
The immobilization process was done using the drop-casting technique, where secondary
antibody solutions were used to treat the working electrode. Prior to the sample testing,
the milk was defatted by centrifugation process at a speed, duration and temperature of
6000 rpm, 15 min and 4 ◦C, respectively. The LOD of the sensors was 0.025 µg/L. Both
the functionalized and un-functionalized electrodes had the same working range between
0.01 µg/L and 1 µg/L.

One of the interesting works highlighting the conjugation of SWCNTs with nanopar-
ticles can be shown in [110], where the electrodes were formed using SWCNTs and gold
nanoparticles (Au NPs) in chitosan. The immobilization of the sensing area was done using
tyrosinase enzymes that showed a reversible behavior. The SWCNTs were treated with
different solutions such as nitric acid, sulphuric acid and chitosan to form homogeneous
solutions. The biosensitive part of the prototypes was prepared by treating them with BSA
phosphate buffer solutions, distilled water and glutaraldehyde solution. Finally, the sensing
surface of the screen-printed electrodes was modified using Au NPs that were obtained as
pink wine-red solutions. The kinetic studies of these sensors were done at a concentration
of 1 × 10−3 M. The working range and LOD of the sensors were 1 × 11−11 M–1 × 10−6 M
and 5 × 10−12 M, respectively. The sensors showed a two-parameter mismatch inhibition
for the composites developed with CNTs and Au NPs. The maximum level of inhabitation
by ATM1 on these sensors was 78 ± 1.0%. When the performance of these sensors was com-
pared to the ones developed using tyrosinase-functionalized screen-printed graphene oxide
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sensors, it was seen that the ones formed using CNTs/Au NPs had a higher sensitivity and
correlation coefficient.

The work done by Gan et al. [85] can be exemplified to show the use of SWCNT-
based composites for developing electrochemiluminescent immunoassays (ECLIA) for
the detection of ATM1 in milk. The working principle of these ELCIA-based sensors
was based on two parts, namely the extraction and detection processes. The extraction
process was carried out using magnetic graphene, while the detection part was done by
nanocomposites formed by mixing antibody-labeled cadmium telluride (CdTe) quantum
dots and SWCNTs. The CdTe quantum dots were used as signal tags, which were attached
to the primary ATM1 antibodies in the form of nanocomposites. The immobilization of GO
was done with Fe3O4 nanoparticles to develop the magnetic nanocomposites for absorbing
the ATM1 compounds. In order to form the conjugates, stirring and ultrasonication
processes were deployed after the reaction of SWCNTs with dimethylformamide (DMF) and
polydiallyldimethylammonium chloride (PDDA) solutions, respectively. CdTe quantum
dots having free surface –COOH groups were used to form dispersions, followed by
reacting them with SWCNTs–PDDA solutions to obtain the final solution having a 1:1
concentration ratio. The labeling of the antibodies was done using a centrifugation process
with a speed and duration of 5000 rpm and 10 min, respectively. The adsorption process
was done for pH values ranging between 3.0 and 8.0, where 95% of the equilibrium
process was achieved within 10 min. The sandwich ECLA process was employed for the
detection of ATM1 in milk samples. The linear range of the sensors was from 1 pg/mL
to 1 × 105 pg/mL, along with a LOD of 0.3 pg/mL. The testing was done for ten milk
samples, the results of which proved to be more effective than the standard ELISA method.
Table 3 shows a comparison between the performances of the CNT-based sensors to detect
ATM1 and AFB1 molecules. It is seen that the performances of the prototypes are largely
dependent on the type of processed materials being associated with these CNTs.

Table 3. Comparison of the performances of the CNT-based sensors for the detection of ATM1 and AFB1 compounds.

Processed Materials Fabrication Technique Detection Analyte Linear Range Limit of Detection Ref.

Fe3O4, GO, CdTe
quantum dots, CNTs

In situ chemical
co-precipitation,
ultrasonication

ATM1 1.0
1.0 × 105 pg/mL 0.3 pg/mL [85]

PEG, MWCNTs,
magnetic nanoparticles Centrifugation, stirring ATM1 R2 ≥ 0.995 0.005–0.050 µg/kg [103]

Carboxyl-functionalized
MWCNTs, ITO,
glass substrate

CVD, electrophoretic
deposition ATM1 0.25–1.375 ng mL−1 0.08 ng mL−1 [104]

PDDA–MWCNTs, Pd
Au NPs, Pd NPs Centrifugation, stirring AFB1 0.05–25 ng/L 0.03 ng mL−1 [105]

Fe3O4, NH2-MWCNTs Centrifugation, stirring AFB1 1–100 ng/g 0.15 ng/g [106]
Carboxyl-functionalized

CNTs, anti-AFB1,
cysteine

Self-assembly,
centrifugation AFB1 0.1–20 pg/g 0.78 pg/g [107]

Fe3O4, MWCNTs, PEI Centrifugation, stirring AFB1 R2 = 0.9982–0.9997 0.003 µg/kg−1–
0.442 µg kg−1 [108]

SWCNTs, mAb, PET Screen printing ATM1 - 0.02 µg/L [109]
CNTs, graphene oxide,

Au NPs, tyrosinase Centrifugation, stirring ATM1 - 5 × 10–12 M [110]

2.2. Graphene-Based Sensing Prototypes

Graphene has been one of the most widely-used carbon allotropes for developing
flexible sensors for a wide range of applications. Due to the enhanced electrical, mechanical
and thermal characteristics, graphene in its pure, oxide and composite forms has achieved
the required performances. Biomedical sensing applications have also been used to detect
biomolecules [111–113] to their high surface-to-volume ratio, excellent electrical conductiv-
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ity and tunable optical properties. This helps the sensors to achieve high sensitivity, low
LOD and detection without any chemical mediators [111]. Apart from this, the advantage
of the biocompatibility of graphene has led many research groups and industries to develop
wearable graphene-based sensors for ubiquitous applications.

2.2.1. Graphene Oxide-Based Detection

Jia et al. [112] showed the fabrication and implementation of label-free fluorescent
aptasensors to detect AFB1 molecules. The constituents of these sensors included the
quaternization of tetra-phenylethene salt (TPE-Z), GO and AFB1 aptamer. The primary
advantage of this work includes the single-step operation process compared to the other
aptamer used for detecting AFB1 molecules with GO-based sensors. Figure 4 [112] rep-
resents the working mechanism of these label-free aptasensors that were used for the
detection of AFB1 molecules. The operating principle of these sensors was based on the
conformational switch of the AFB1 aptamer from the single-stranded structure to the
aptamer complex. This process leads the GO to release the TPE-Z/AFB1 aptamer from its
surface. The fluorescence intensity was recorded at a wavelength of 480 nm, having an
excitation at 340 nm. The sensitivity values were measured three times for each concentra-
tion. The LOD of these devices was 0.25 ng/mL. These sensors showed the capability to
selectively detect aflatoxins in certain foods such as milk, corn and rice. Before using these
food samples, extraction was done using methanol–water, centrifugation and filtration
processes. Finally, the supernatants were taken for analysis purposes. The sensors could
detect AFB1 molecules from all three types of food, with the recovery rate ranging between
91% and 95%.
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Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta, 198, pp. 71–77.

Guo et al. [113] also showed the use of GO to develop an aptasensor to detect ATM1
in milk products. The GO particles also quenched on the fluorescence principle, where
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it was done on an aptamer labeled carboxyfluorescein while protecting it from nuclease
cleavage. The presence of ATM1 formed a complex, which resulted in its detachment from
the surface of the GO and causing aptamer cleavage by DNase I. The GO binding with the
ss-DNA via π-stacking interactions helped with the high distance-dependent fluorescence
quenching performance. This was followed by the detachment of target AFM1, leading to
a new cycle. The testing was done with infant milk powder samples. The samples were
spiked with AFM1 molecules at four concentrations of 0, 1.5, 2.5 and 5 µg/kg.

After the weight of the samples was measured carefully, the extraction process was
carried out, and the supernatant was concentrated under a nitrogen stream. Finally, the
residues were mixed with methanol solution and used for fluorescence signal amplifica-
tion experiments. The linear response and LOD of the sensors were 0.2–10 µg/kg and
0.05 µg/kg, respectively. The recovery rate for the chosen spiked concentrations was
between 98% and 126%, with RSD values of 0.06 and 0.42. The prototypes also showed
high sensitivity and selectivity towards the AFM1 molecule without the presence of any
interference. Another research by Zhang et al. [114] showed the use of fluorescence quench-
ing immunoassay and graphene-based composites. The assays were formed using a
monoclonal antibody (mAb)-functionalized Fe3O4-decorated GO that acted as a capture
probe and energy acceptor. These assays were combined with tetramethylrhodamine
cadaverine-labeled AFB1 molecules. The advantages of these sensors included their single-
step preparation and detection process, low quantitative detection limit, low cost of the
sensors, precise quantitative analysis and the entire process being completed within 10 min.
The magnetic rGO was formed by processing different solutions such as iron chloride and
ferric chloride, forming dispersions with GO solutions. These dispersions were processed
using techniques of ultrasonication and centrifugation to obtain the final product. The sen-
sors were tested with ATM1 concentrations ranging from 0.01 ng/L and 2 ng/L to obtain
recovery rates ranging between 94.4% and 104.5%. High linearity of R2= 0.999 was also
obtained with these sensors’ performance compared to a commercialized enzyme-linked
immunosorbent assay (ELISA) kit. With a high reproducibility of the results, the values of
coefficients of variation were under 6.2%. The visual and quantitative LOD were 50 ng/L
and 3.8 ng/L, respectively.

An example showing the use of both graphene and crystalline quantum dots for
forming fluorescence assays for the detection of aflatoxin molecules can be seen in the
work done by Lu et al. [115]. GO was linked with CdTe quantum dots via ligand exchange
as a quenching process to determine the performance of the fluorescence-based devices.
The GO was synthesized using Hummers’ method, followed by mixing it with hydrogen
peroxide to form GO suspensions. The CdTe quantum dots were formed by processing
trisodium citrate dehydrate and cadmium chloride solutions using stirring, followed by
heating them inside a Teflon-lined stainless autoclave. The temperature and duration were
maintained at 180 ◦C and 35 min, respectively. Finally, the samples were washed and
centrifuged to obtain the pigmented layers and remove the residual chemicals. Finally, the
individual conductive materials were conjugated with the aptamer and centrifuged again,
both the composites being required to detect AFB1 molecules. The prototypes showed
good sensitivity and selectivity and had a wide dynamic range of 3.2–320 nM. While the
LOD of the sensors was 1 mM, they achieved high linearity with R2 = 0.998. They showed
high selectivity towards the aflatoxin molecules in the presence of other molecules such
as fumonisin B1, ochratoxin A, zearalenone and deoxynivalenol. The response of these
sensors in terms of fluorescence intensity with the corresponding enhancement of the AFB1
concentration ranged from 1.6 nM to 160 µM.

Apart from these quantum dots and nanosheets, graphene oxide (GO) has been
largely preferred to form the prototypes to detect aflatoxin molecules. The primary reason
behind this is its ability to form homogeneous dispersions, necessary for forming these
electrochemical sensors. One such work can be highlighted in [116], where the prototypes
were formed by functionalization of luminol on Ag NP-decorated GO. Bipolar electrode
arrays were formed that operated on the visual ECLIA biosensing technique. The Au NPs
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were coated with magnetic Fe3O4 nanoparticles before their immobilization with thiolated
ATM1 aptamer. Figure 5 [116] shows the schematic diagram of the immobilization of the
antibody with these GO nanocomposite-based sensors. The operating mechanism of these
sensors depended on the π–π interactions of the nanocomposites with the unpaired bases
of the immobilized aptamer. The composites consisting of GO, luminol and Ag NPs were
synthesized using the one-pot method. Before the experimental process, the anodic poles
were modified with the nanocomposites on the gold bipolar electrode arrays. The Ag NPs
assisted in the catalysis of the ECL process on the sensing surface of the prototypes. The
optimal conditions were achieved using a face-centered central composite design, where
the aptasensors obtained a linear response for a dynamic range between 5 ng/mL and
150 ng/mL. This range increased to 10–200 ng/mL when smartphones were embedded
with the sensors for using them for point-to-point services. The LOD of the sensors without
and with the smartphones was 0.01 ng/mL and 0.05 ng/mL, respectively. A reliability
reproducibility was also obtained with an RSD of 2.3%.
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luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosensors and Bioelectronics,
100, pp. 382–388.

Another example showing the use of GO can be shown in [117], where impedimetric
sensors were formed using single-stranded Herring sperm DNA (ss-HSDNA) and reduced
graphene oxide (rGO) for the detection of AFB1 molecules. These aerogel-labeled proto-
types were quantified on rotating disk electrodes, where the ss-HSDNA and rGO were
conjugated to operate with the CV technique. The rGO aerogel was formed using the Hum-
mers and Offman method with a slight change in the modification of the use of Milli-Q
water for 30 min. The GO suspensions were then treated with hydrazine for reducing them,
followed by soaking and drying them to obtain the final product. The modification of
the electrodes was done by drop-casting on glassy carbon rotating disk electrodes having
a diameter of 3.0 ± 1.0 mm. These glassy substrates were then polished with alumina
and washed with purified water before their experimental uses. The consideration of the
presence of FcCH2OH as the redox mediator was done to detect the hydrodynamic diffu-
sion effect of the ss-HSDNA/rGO-based devices. Two techniques, namely electro-redox
mediators and the hydrodynamic effect, were considered to obtain three different charge
values of 825 mA, 615 mA and 550 mA. These anodic current values were obtained at a
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scan rate of 50 mV/s. The rotating speed of the disk electrodes ranged from 500 rpm to
4000 rpm. The linear range of the sensors was from 1 × 10−1 g/mL to 7 × 10−8 g/mL,
with an LOD of 0.04 ng/mL.

Jiang et al. [118] showed an interesting work where the graphene-based sensors were
used to detect nine mycotoxins in milk. The sensors were formed using rGO and gold
nanoparticles. Two different processes, namely solid-phase extraction coupling of ultra-
high-performance liquid chromatography–tandem mass spectrometry, were used as the
detection mechanisms. The rGO/gold nanoparticles composite was formed using stirring,
centrifugation and annealing processes. Before their use, the synthesized composites were
stored at a temperature of −20 ◦C and cryodesiccated. The experiments were conducted
with milk to determine these nine types of mycotoxins that included the AFB1 and ATM1
compounds. The milk products were spiked with each of these nine compounds for 1, 20
and 100 ng/mL concentrations. A total of sixty milk samples were tested during the entire
experimental process. The testing samples were prepared by using three different types
of solutions. The loading and washing solutions included 2% acetonitrile/formic acid
and 5% methanol in water, respectively. These graphene-based sensors showed excellent
analytical response with a high sensitivity of 0.02–0.18 ng/mL, recovery of 70.2–111.2%
and a precision of 2–14.9%. The linearity of the sensors was satisfactory with R2 ≥ 0.992.
The LOD and LOQ values of the sensors were 3 and 10, respectively.

Mo et al. [119] worked on the development and implementation of AFB1 biosensors
based on porous anodized alumina (PAA) membranes. These membranes were modified
using GO and AFB1 aptamers. Figure 6 [119] shows the schematic diagram of the working
mechanism of these biosensors. After being synthesized using Hummers’ method, the
GO was processed using various chemicals to form GO hydrosol. These hydrosols were
centrifuged, washed, dialyzed and finally stored. The modification of the PAA membranes
was done by treating them with 5% 3-aminopropoyltrimethoxysilane solution for 12 h.
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electrocatalytic cell. The GO was attached to the aptamer via π–π stacking, which led to
increased negative charge of the nanochannels. This change in charge density and steric
hindrance leads to the flux of ferricyanide ions through the nanochannels, thus increasing
overall current. These devices were selective towards three molecules, namely ochratoxin,
aflatoxin G1 and AFB1. They were tested for a concentration of 10 ng/mL for AFB1 by
immersing the sensors inside the samples for 90 min and analyzing the current change
with respect to time. The experimental results showed that the current increased properly
with respect to the concentration of AFB1 molecules. The sensors had a linear range of
1–20 ng/mL and a LOD of 0.13 ng/mL.

2.2.2. Other Types of Graphene Nanostructure-Based Detection

For the detection of ATM1, one of the interesting examples can be given by highlighting
the work done by Shadjou et al. [120]. Graphene quantum dots (GQDs) were employed
in conjugation with silver nanoparticles (Ag NPs) to form the electrochemical sensors.
These sensors also contained a member of cyclic oligosaccharides, α-cyclodextrin, which
increased the sensitivity of these multi-layered films. These nanocomposite-based sensors
were formed on glassy carbon electrodes due to their high surface area available for
detection purposes. The GQDs were formed by dispersing carbonized products into
alkaline solutions by pyrolyzing citric acid. The samples were then treated with sodium
hydroxide and were stirred to obtain the final result. These GQDs were electrodeposited
on the surface of the glassy carbon electrodes with a potential and scan rate of 0–1 V and
100 mV/s, respectively. The CV technique was conducted during the electrodeposition
process to analyze, optimize and obtain thin-film electrodes. These samples were then used
for the electro-polymerization of α-CD using the CV technique again with a voltage sweep
between −1 V and 1 V and a scan rate of 100 mV/s for ten cycles. The final step included
the electrodeposition of Ag NPs on the surface of the electrodes using similar parameters
as in the earlier step. The milk samples used for experimental purposes consisted of local
and pasteurized milk. The linear range of these sensors was from 0.015 mM to 25 mM,
with an LOQ of 2 µM. The capability of these sensors was validated by analyzing their
performances with respect to solution pH, potential scan rate, reproducibility and stability.

Another work related to the use of GQDs can be seen in [121], where electrolumi-
nescence (ECL) aptasensors were developed for the detection of AFB1 molecules. The
GQDs were used to form nanocomposites that consisted of gold nanorods, poly (indole-
6-carboxylic acid) and flower-gold. The ECL aptasensors were formed by using the po-
tentiostatic method on glassy carbon electrodes. The final nanocomposite solution was
incubated with different concentrations of AFB1 molecules at a temperature of 37 ◦C for
80 min. The characterization of the nanocomposites was done using the EIS technique,
while the experimental process included the study of ECL intensity. The nanocomposites
having a core–shell structure had certain advantages such as high electrical conductivity
and superior luminescent performance. The immobilization of gold nanorods was done
with an AFB1 aptamer chain to enhance the overall selectivity and sensitivity. AFB1 stan-
dard solutions were formed by adding 1 nM, 2 nM and 5 nM of AFB1 molecules to the
actual samples. The recovery values of these sensors were 97.1–111.8%, which was quite
close to the recovery values of the standardized high-performance liquid chromatography
fluorescence (HPLC-FL) (90.7–114.7%) process. The prototypes had a wide dynamic range
from 0.01 to 100 ng/mL with an LOD of 0.00375 ng/mL. Other attributes of the sensors
were high stability and reproducibility of the responses, high accuracy and high reliability
for real samples analysis.

Another research showing the use of graphene nanostructures for developing flexible
prototypes for the detection of aflatoxin molecules can be seen in [122]. The sensors
were formed with graphene nanosheets on ITO-coated substrates. The advantages of these
sensors are their rapid fabrication process, simple operating principle and low cost. The ITO
coating was done on glass substrates with dimensions of 20 mm × 10 mm × 1.1 m. Before
and after the coating process, they were cleaned via the sonication process and dried using
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nitrogen gas. This was followed by electrochemical deposition of rGO nanosheets, followed
by electrochemical deposition of gold nanodots using aqueous solutions. The potentials
used during the first and second electrochemical deposition processes were −1.6 V and
−0.9 V, respectively. The next step included the immobilization of these prototypes with
the AFB1 antibody with the self-assembly technique. The duration and temperature
were fixed at 6 h and 4 ◦C, respectively. The CV technique was used as the detection
technique to test the food samples spiked with AFB1 molecules. The spiking was done
with three different concentrations, namely 10 ng/mL, 50 ng/mL and 100 ng/mL. These
electrochemical sensors were used to detect AFB1 molecules with a LOD of 6.9 pg/mL. The
sensors retained around 96% of their original response while experimenting with 50 ng/mL
concentration for ten days.

Another variation in the graphene structure can be shown in Tezeji et al. [123].
β-cyclodextrin was developed using a facile one-pot green synthesis method and was
subsequently decorated using graphene nanohybrids. Some of the advantages of these sen-
sors were high specific surface area and high supramolecular recognition and enrichment
capability. The functionalization of the β-cyclodextrin was carried out using hydrothermal
reaction and reduction processes. After GO was synthesized from graphene nanosheets
using the modified Hummers method, they were self-assembled onto β-cyclodextrin. The
one-pot hydrothermal process included GO dispersions on β-CD solutions, followed by
ultrasonication for 15 min. Finally, the samples were heated, washed with deionized
water and frozen at −50 ◦C to form porous structures. The sensors could detect different
types of aflatoxin molecules such as B1, B2, G1 and G2. The LOD and linear range of
these sensors were 7.5–30 ng/kg and 25–100 ng/kg, respectively. The LOQ according to
the signal-to-noise ratio was 10. The effects of other parameters such as pH, adsorbent
amount, sample loading flow rate, ionic strength and reusability of the sensors were also
studied. The sensors also showed an excellent recovery rate with a range from 90.5 to
105%, with high accuracy for three concentration levels of 250 ng/kg, 1000 ng/kg and
10,000 ng/kg. The relative standard deviation was less than 6.1% when the testing was
done five times in a single day with an interval of one hour. Table 4 showcases a compara-
tive study for the performances of the graphene-based sensors for the detection of ATM1
and AFB1 compounds.

Table 4. Comparative study of the performances of the graphene-based sensors for the detection of ATM1 and AFB1 compounds.

Processed Materials Fabrication Technique Detection Analyte Linear Range Limit of Detection Ref.

GO, AFB1 aptamer, TPE-Z Stirring AFB1 0–3 ng/mL 0.25 ng/mL [112]
GO, ATM1 aptamer Centrifugation ATM1 0.2–10 µg/kg 0.05 µg/kg [113]

mAb, Fe3O4, rGO Ultrasonication,
centrifugation AFB1 - 50 ng/L and

3.8 ng/L [114]

CdTe quantum dots, GO Hummers’ method,
stirring, annealing AFB1 - 1 nM [115]

Luminol, Ag NPs, GO,
Fe3O4

Self-assembly, stirring ATM1 5–150 ng/mL 0.01 ng/mL [116]

rGO, ss-DNA Hummers and
Offman method AFB1 R2 = 0.996 1 × 10−10–

7 × 10−8 g/mL
[117]

α-cyclodextrin, GQDs,
Ag NPs Electrodeposition ATM1 0.015 mM–25mM 2 µM [120]

rGO nanosheets, Au
nanorods, ITO Self-assembly AFB1 100

ng/mL–1 pg/mL 6.9 pg/mL [122]

3. Results

Although a substantial amount of work has been done in detecting aflatoxin biomolecules
in milk and other food products, there are still some bottlenecks that need to be addressed.
The formation of homogenous dispersions using CNTs is one issue that remains unsolved.
Although surfactants have tackled this problem to a certain degree, these compounds
generally affect the mechanical integrity of the nanotubes, which eventually affects the



Sensors 2021, 21, 3602 17 of 23

results. The utilization of these prototypes as point-of-care (POC) devices should be further
encouraged to obtain a quick and efficient response regarding the concentration of ATM1
and AFB1 compounds in milk and other food products. In order to generate POC devices,
three factors need to be taken into consideration [124–127]. These factors include the use of
disposable sensors, amplification of the sensed response via embedded circuitry and the
use of open-source software and hardware as the associated electronics. Although the first
factor would increase overall cost, it would assist in maintaining a high sensitivity towards
the target analyte. The second factor would help in two ways, namely eliminating the
unwanted noise and presenting the sensed data in a most easily comprehensible way. The
essentiality in using the open-source will guarantee the deployment of standardized proce-
dures used by people who faced a similar situation. It will also help to obtain constructive
feedback to improve the quality of the POCs. In the era of 3D printers and laser cutters,
open-source hardware is easily available and customizable, assisting in commercializing
the sensing systems. Two of the major steps that need to be implemented to obtain a
POC device are the fabrication of a lab-on-a-chip sensing system and the replacement
of commercially available tools with self-made solutions via open-source resources. An
optimization process should be carried out to determine the ideal sample concentration to
achieve better responses in terms of the analytical performances of the sensors.

The signal processing part of the electronic circuitry should include microcontroller-
based platforms such as Arduino or Raspberry Pi to develop low-cost devices that are
easily available to the users. Similarly, the readout part should have simple digital scales
for users who have little or no prior experience in electrical engineering. Due to the
requirement of microelectronic and cleanroom standard processes, the circuit boards can
use nanomaterials and polymers as a replacement for silicon technology. This will not
only increase the electrical conductivity and thermal stability but will also increase the
biodegradability and biocompatibility of the sensors. The fabrication process to form
the POC circuitry can also be altered to form fully integrated fast, portable, low-cost and
easy-to-use systems with high sensitivity and specificity [128]. They will help to detect
in controlled environments but can be used by non-expert people to perform a long-term
study in the change in the concentrations over the due course of time. Ferromagnetic
materials other than Fe3O4 particles should be considered for magnetizing the prototypes.
These particles are prone to oxidation in the air due to their high surface chemical activity
on their surface [129]. The consideration of forming sensor arrays to detect different types
of aflatoxin compounds can also be done in order to reduce the sensor cost and detection
time. The POC devices can also be embedded with wireless communication protocols so
that the precise concentration of the aflatoxin compounds in milk and other food products
can be displayed in local grocery stores and supermarkets. This will assist consumers in
deciding if the milk should be bought or not. A dynamic thresholding value [130] can
be set so that the change in the concentrations of aflatoxin compounds with respect to
certain parameters such as days, type of milk, storage temperature, storage material and
others can be monitored. With respect to the detection techniques used in conjugation
with these sensors, optical sensing techniques work better in terms of faster response,
higher spatial resolution and lower detection limits. This technique should be further
employed to detect ATM1 in milk [131] to help these carbon allotropes-based sensors
achieve better performances.

4. Conclusions and Future Perspectives

The paper highlights the use of CNTs and graphene to develop sensors that have
successfully detected ATM1 and AFB1 compounds at varying concentrations. The advan-
tages of these types of sensors include high biocompatibility, easy operating principles and
quick fabrication and detection processes. These nanomaterials have been used in both
pure and composite forms, in which graphene has been considered in certain shapes such
as quantum dots, nanosheets and nanoparticles. The conjugation of these carbon-based
allotropes has been done with other nanomaterials such as crystalline compounds and
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conductive metallic nanoparticles to increase the sensitivity of the sensing area. The se-
lectivity of these prototypes has been increased by attaching primary antibodies so that
they show enhanced performances even in the presence of other interfering molecules.
The magnetic properties of these sensors have also been altered by treating them with
certain ferromagnetic materials. The availability of the prototypes mentioned above for
the detection of aflatoxin compounds has provided a strong podium in microelectronics,
which can help future researchers develop sensors for the detection of different kinds of
biomolecules present in food products.

Further work can be done on enhancing the fabrication and implementation sides
of these sensors. In order to develop these sensors, low-cost 3D printed sensors can
be developed via an additive manufacturing process. Customized printers should be
designed for quick roll-to-roll production of these sensors. Since the addition of a selective
layer creates an issue of reusability, the fabrication part should include the processing
nanomaterials that form the selective layer. The materials that are chosen to form the
selective layer should be more biodegradable and biocompatible material as a replacement
to metallic nanomaterials. In terms of detection mechanisms, certain processes such
as chromatography and optical techniques should be encouraged ahead of impedance
spectroscopic techniques. This will not only help in conducting the experiments with
low sample volumes and obtain a precise detection but will also aid in avoiding certain
circumstances such as reducing the ambient noise and the minimization of theoretical
simulations and complex data analysis for quantification [132]. The single-use sensors
can also be motivated in order to avoid sensitivity drift problems and storage issues. The
further focus should be given to food packaging industries to integrate these sensors with
milk bottles and other food products. The substrates of the prototypes can be replaced with
bioplastics in order to make the sensors biocompatible and increase their overall thermal
tolerance. The sensors would help to obtain real-time data with regards to the change in
the concentration of aflatoxin levels with the help of color-coded statuary warning charts.
Research projects should be proposed with a collaboration between the academic groups
and food packaging industries so that the sensors fabricated in a controlled laboratory
environment can be simultaneously tested in real-time situations. Thorough scrutiny
should be done on the expiry and consumable dates of the dairy products so that a
maximum number of consumers can avoid the effects caused by the excess amount of
aflatoxins in the body. The milk obtained from the dairy cows should be pasteurized
properly before packaging, storing and consumption. This is because the food habits of
some of the dairy cows contain mycotoxins, which are metalized into carcinogenic ATM1
and are subsequently eliminated through milk [133]. In a broader sense, a classification
should be done on the quality of milk available in local stores and supermarkets on the
basis of the chemical compounds present in them and the health hazards they can cause
when increased beyond a certain threshold. This should also be reflected on the expiry
dates so that consumers can have a safe range for their consumption plan. The electronics
embedded with the sensors can consist of radio-frequency identification (RFID) tags or
other flexible wireless protocols that can immediately send the data within specific ranges.
This will be helpful to keep a regular check on the concentration of the aflatoxin, especially
in cases of the changes happening in storage and the environment.

Author Contributions: Conception and design, J.G., S.H. and A.N.; collection and assembly of data,
J.G., S.H., A.N. and J.W.C.W.; Writing—Original Draft Preparation, A.N.; Writing—Review and
Editing, A.N. and J.W.C.W.; supervision, J.G., S.H. and J.W.C.W.; funding, J.G. and S.H. All authors
have read and agreed to the published version of the manuscript.

Funding: No funding is achieved.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sensors 2021, 21, 3602 19 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bryzek, J. Impact of MEMS technology on society. Sens. Actuators A Phys. 1996, 56, 1–9. [CrossRef]
2. Tilli, M.; Paulasto-Krockel, M.; Petzold, M.; Theuss, H.; Motooka, T.; Lindroos, V. Handbook of Silicon Based MEMS Materials and

Technologies; Elsevier: Amsterdam, The Netherlands, 2020.
3. Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible substrates: A review.

IEEE Sens. J. 2014, 15, 3164–3185. [CrossRef]
4. Nayak, L.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater.

Chem. C 2019, 7, 8771–8795. [CrossRef]
5. Sze, S.M. Semiconductor Sensors; John Wiley & Sons: Hoboken, NJ, USA, 1994.
6. Jaaniso, R.; Tan, O.K. Semiconductor Gas Sensors; Elsevier: Amsterdam, The Netherlands, 2013.
7. Advantages and Disadvantages of Silicon Detectors. Available online: https://www.nuclear-power.net/nuclear-engineering/

radiation-detection/semiconductor-detectors/silicon-based-semiconductor-detectors/advantages-and-disadvantages-of-
silicon-detectors/ (accessed on 18 May 2021).

8. Subramanian, V.; Lee, T. Nanotechnology-based flexible electronics. Nanotechnology 2012, 23, 340201. [CrossRef] [PubMed]
9. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials:

History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [CrossRef]
10. Krishna, V.D.; Wu, K.; Su, D.; Cheeran, M.C.; Wang, J.-P.; Perez, A. Nanotechnology: Review of concepts and potential application

of sensing platforms in food safety. Food Microbiol. 2018, 75, 47–54. [CrossRef]
11. Sanderson, P.; Delgado-Saborit, J.M.; Harrison, R.M. A review of chemical and physical characterisation of atmospheric metallic

nanoparticles. Atmos. Environ. 2014, 94, 353–365. [CrossRef]
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