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Single-cell RNA-seq’s (scRNA-seq) unprecedented cellular resolution at a genome-wide scale enables us to address questions

about cellular heterogeneity that are inaccessible using methods that average over bulk tissue extracts. However, scRNA-

seq data sets also present additional challenges such as high transcript dropout rates, stochastic transcription events, and

complex population substructures. Here, we present a single-cell RNA-seq analysis and klustering evaluation (SAKE), a ro-

bust method for scRNA-seq analysis that provides quantitative statistical metrics at each step of the analysis pipeline.

Comparing SAKE to multiple single-cell analysis methods shows that most methods perform similarly across a wide range

of cellular contexts, with SAKE outperforming these methods in the case of large complex populations. We next applied the

SAKE algorithms to identify drug-resistant cellular populations as human melanoma cells respond to targeted BRAF inhib-

itors (BRAFi). Single-cell RNA-seq data from both the Fluidigm C1 and 10x Genomics platforms were analyzed with SAKE to

dissect this problem atmultiple scales. Data from both platforms indicate that BRAF inhibitor-resistant cells can emerge from

rare populations already present before drug application, with SAKE identifying both novel and known markers of resis-

tance. These experimentally validated markers of BRAFi resistance share overlap with previous analyses in different mela-

noma cell lines, demonstrating the generality of these findings and highlighting the utility of single-cell analysis to elucidate

mechanisms of BRAFi resistance.

[Supplemental material is available for this article.]

Compared to bulk RNA-seq, inwhich expression profiles are the re-
sult of averaging overmillions of cells thatmay varywidely, single-
cell RNA-seq (scRNA-seq) can be used to investigate the subtle but
crucial differences in transcriptomic landscape that differentiate
cellular state. Populations of cells that possess very similar gross
cellular phenotypes might have remarkably different transcrip-
tome profiles at the single-cell level due to stochastic transcription
events, unsynchronized cell-cycle stages, or inherent biological
heterogeneity (Grün and van Oudenaarden 2015). Therefore, the
standardmethods for bulk expression profiling need to be adapted
for scRNA-seq analysis. One major concern is the increased levels
of noise in the measured transcript abundances. Excessive tran-
script dropout rates and stochastic bursting events in scRNA-seq
data create abundant nondetections, high variability, and com-
plex expression distributions in the data. Therefore, it is important
to distinguish low-quality, high-noise samples that are poorly am-
plified or degraded during library preparation.

Following normalization and quality control procedures, the
next step in scRNA-seq analysis involves clustering of the samples
to identify a set of gene markers that can segregate cells into dis-
tinct groups. Most published scRNA-seq studies have used gene fil-

tering methods developed for bulk RNA-seq, calculating the most
variable genes (Klein et al. 2015;Macosko et al. 2015), themost sig-
nificantly differentially expressed genes (Shalek et al. 2013), or
genes that have high contribution to the first few principal compo-
nents (Satija et al. 2015; Li et al. 2016). This candidate set of mark-
ers is then used to identify subpopulations of cells via standard
clustering methods. Visualization of these data sets using PCA or
t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten and Hinton 2008) can provide qualitative information
about the number of clusters present and relative levels of cluster
heterogeneity, but does not give a quantitative estimate of how
many clusters are present nor whether a given sample belongs
with one cluster or another (for additional details about t-SNE
and PCA, see Supplemental Material). Finally, proper choice of a
clustering algorithm might depend upon the biological context
of the samples. For example, most published single-cell clustering
tools are optimized either for mixed populations of distinct cells
(Kharchenko et al. 2014; Grün et al. 2015; Haghverdi et al. 2015;
Satija et al. 2015; Xu and Su 2015; Zeisel et al. 2015) or for time-
series data sets that assume a smooth distribution from one cell
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type to another (Bendall et al. 2014; Marco et al. 2014; Trapnell
et al. 2014; Setty et al. 2016). In practice, data sets often include
a mixture of cells from distinct cell types as well as related subclus-
ters with significant overlap.

Here, we present an integrated analysis tool that aims to fa-
cilitate the analysis of scRNA-seq data, addressing the challenges
outlined above. Our single-cell RNA-seq analysis and klustering
evaluation (SAKE) method provides several modules that include
data preprocessing for quality control, sample clustering, t-SNE
visualization of clusters, differential expression between clusters,
and functional enrichment analysis. We evaluate the perfor-
mance of SAKE using several published scRNA-seq data sets that
span a range of experimental designs, showing that SAKE success-
fully identifies known and validated novel cell types from these
studies.

Finally, we applied SAKE to characterize the response of indi-
vidual melanoma cells responding to targeted inhibitors of the
BRAF oncogene. Resistance to targeted BRAF inhibitors inmelano-
ma is widespread and presents a barrier to its efficacy as a therapeu-
tic, because a large fraction of melanoma tumors initially respond
to BRAF inhibition, but nearly all patients rapidly develop resis-
tance (Müller et al. 2014; Shi et al. 2014; Sun et al. 2014; Perna
et al. 2015). We used two single-cell RNA-seq platforms, Fluidigm
C1 and 10x Genomics, to follow thousands of individual melano-
ma cells that have developed resistance to targeted BRAF inhibi-
tors. We show that SAKE recapitulates several known markers of
BRAF inhibitor resistance as well as identifying novel markers of
resistance that appear in rare populations of cells prior to drug
application.

Results

Workflow for analyzing single-cell RNA-seq data with SAKE

The SAKE workflow is designed to robustly categorize gene
expression profiles while avoiding unwanted noise. Following
the generation of a table of estimated gene abundance counts
across samples, the next step in data analysis involves quality con-
trol steps to identify poorly amplified and problematic libraries.
The SAKE workflow begins with this step (Fig. 1A). Samples with
relatively low total transcript counts and gene coverage rates often
represent degraded or poorly amplified libraries. These canbe iden-
tified visually and removed from the sample set before proceeding
with downstream analyses. The next step involves trimming the
list of input genes to remove low abundance transcripts that suffer
most from stochastic dropout events and technical noise issues.
Median absolute deviation (MAD) is used as the preferred metric,
but custom-filtering criteria can be implemented. SAKE provides
a module to generate sample correlation heatmaps for use in eval-
uating the effects of filtering the gene list.

The core of the SAKE clustering algorithm is amodule to iden-
tify clusters via non-negativematrix factorization (NMF) (Gao and
Church 2005; Kim and Park 2007). NMFhas successfully been used
to identifymolecular subtypes in bulk RNA-seq expression profiles
in many contexts (Hoadley et al. 2014; The Cancer Genome Atlas
Research Network 2014; Moffitt et al. 2015; The Cancer Genome
Atlas Network 2015; Yang and Michailidis 2016). Attributes that
make NMF particularly appropriate for clustering of single-cell ex-
pression data sets include the ability to quantitatively estimate the
number of clusters present in each data set, de novo, and the ability
to quantitatively estimate the likelihood that each sample belongs
to a given cluster.

Briefly, NMF attempts to factor a given gene expression ma-
trix of N samples andM genes into two separatematrices: (1) a ma-
trix of N samples belonging to k clusters (N×k), and (2) a matrix
containing the relative importance of each of theM genes in deter-
mining whether a sample belongs to each of the k clusters (k×M).
This factorization can be attempted for a range of different values
of k, with each iteration providing a quantitative measure of the
robustness of cluster assignments upon randomization of the start-
ing network. To find the optimal value of clusters, k, we minimize
the residuals between the original full gene expression matrix
(N×M) and the two factorized matrices (N×k)(k×M) while simulta-
neously maximizing the cophenetic correlations between actual
pairwise sample expression distances and the clustered dendro-
gram expression distances. SAKE provides a visual representation
of matrix residuals and cophenetic correlation coefficients to
enable users to select the optimal setting for the number of
clusters, k.

Once an optimal number of clusters, k, has been determined,
SAKE next performs a larger number of iterations of the NMF algo-
rithmwith fixed k, in order to robustly estimate the likelihood that
each sample belongs to a given cluster and the relative importance
of each marker gene in determining cluster membership. A heat-
map of the cluster membership likelihood calculations for an ex-
ample gene expression matrix is shown in Figure 1B, applied to
the data set of Treutlein et al. (2016). The full gene expression ma-
trix is shown on the left of Figure 1B, and the two factorizedmatri-
ces are at the right. In general, NMF-identified clusters largely agree
with t-SNE similarity maps, as shown in Figure 1C, in which each
cell on the t-SNE map is colored by SAKE-identified clusters. Users
can also check for the enrichment of any gene of interest in each
NMF cluster (Fig. 1D). Differential expression analysis between
clusters can be evaluated in SAKE using the DESeq2 algorithm
(Love et al. 2014). Gene Ontology (GO) Term enrichments and
gene set enrichment analysis (GSEA) allow for the identification
of functional categories enriched in each NMF cluster (Fig. 1E).

Evaluation of SAKE on published data sets

We measured the success of the SAKE pipeline by its ability to
reproduce the major findings from recently published scRNA-
seq studies that varied in experimental design, number of cells se-
quenced, and validation methods used (Deng et al. 2014; Ting et
al. 2014; Zeisel et al. 2015; Goolam et al. 2016). The sample cluster-
ing results from the published scRNA-seq studies served as the ref-
erence, and normalized mutual information (NMI, shown in
Fig. 2C) or adjusted Rand Index (ARI, shown in Supplemental
Fig. S1) was used to evaluate the performance of SAKE compared
with a number of recently published algorithms with demonstrat-
ed performance for scRNA-seq analysis: SINCERA (Guo et al. 2015),
Seurat (Satija et al. 2015), SC3 (Kiselev et al. 2017), CIDR (Lin
et al. 2017), and RaceID (Grün et al. 2015). Figure 2A presents a ta-
ble summarizing the results for each of the three published algo-
rithms on each of the four published data sets, together with the
results from SAKE. Figure 2B presents a table that explains the ma-
jor differences between each of these three algorithms in terms of
the methods used for gene feature selection and clustering. For
comparison, we also include the results for a “simple” analysis
that includes identifying the number of clusters, k, via a t-SNE pro-
jection plot, and then running a k-means clustering algorithm to
assign samples to each of those k clusters (Fig. 2B,C).

To evaluate the robustness of these results, we randomly se-
lected 90% of the samples for each of the published studies and

Ho et al.

1354 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234062.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234062.117/-/DC1


performed 100 iterations of cluster identification for all of the
compared clustering methods. In each iteration, we calculated
the normalized mutual information (NMI) and adjusted rand in-
dex (ARI) using the cluster assignments in each of the published
studies as the reference for accuracy. Results from these 100 runs
are presented as bar charts in Figure 2C that display mean NMI
for each analysis method with error bars representing standard er-
ror. Supplemental Figure S1 shows the results for ARI, which shows
largely similar results but can inflate small differences between dif-
ferently sized clusters. Together these results demonstrate that
SAKE is both accurate and robust across a wide range of sample siz-
es and experimental designs. Overall, each of these algorithmically
independent clustering methods gives roughly similar results,
with SAKE performance coming out best for experimental designs
involving large complex substructures and large numbers of sam-
pled cells. Although the ultimate assignments of each sample to
a given cluster is largely similar for each of these algorithms, it is
worth noting that SAKE is unique in providing quantitative met-
rics for the estimated number of clusters present, for the assign-

ment of each sample to a given cluster, and for the relative
ability of each gene to act as a marker for cluster membership.

Application of SAKE to human melanoma cell lines

Having demonstrated the success of the SAKE algorithm on pub-
lished data sets, we next applied the SAKE method to a question
that can best be answered by single-cell analysis experiments:
How do cancer cells individually respond to targeted therapeutic
agents? We first started with cells from a human melanoma cell
line, 451Lu, that carries an activating mutation in the BRAF onco-
gene. These cells were previously demonstrated to be initially re-
sponsive to targeted BRAF inhibitor (BRAFi) treatments, but to
rapidly acquire resistance to these small molecule BRAF inhibitors
(Villanueva et al. 2010). We defined cells in the naïve state before
BRAFi treatment as the “parental” population, 451Lu-Par. By grad-
ually increasing the dosage of BRAFi from 0.05 to 1 µm on 451Lu-
Par and selecting for cells that survived after each round of treat-
ment, Villanueva et al. (2010) derived a distinct population of

A
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Figure 1. Flowchart of SAKE package and example analysis results. (A) Analysis workflow for analyzing single-cell RNA-seq data. (B) A schematic repre-
sentation of the non-negativematrix factorization (NMF) method shows heatmaps of sample assignment and feature extraction fromNMF runs, with dark
red indicating high confidence in cluster assignments. (C ) A t-SNE plot to compare NMF-assigned groups with t-SNE projections. (D) A table of NMF-iden-
tified features (genes defining each cluster) and a box plot of gene expression distributions across NMF-assigned groups. (E) Summary table for GO term
enrichment analysis for each NMF-assigned group.
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BRAFi-resistant cells, 451Lu-BR, that grew stably in a 1 µm concen-
tration of BRAFi (Fig. 3A). Differential response to BRAFi between
the 451Lu-Par and 451Lu-BR cells was demonstrated through an
MTT assay that measures metabolically active cells 72 h following
BRAFi treatment (Fig. 3B).

For comparison, BRAFi-resistant cells for a second melanoma
cell line also carrying the BRAF V600E mutation, A375, were de-
rived using the same strategy (Supplemental Fig. S2B). Bulk RNA
transcriptomes from the two cell lines (Supplemental Table S1)
were used to determine gene expression markers that correlated
with BRAFi resistance in both populations. However, the samples
clustered first by their cell line of origin instead of their BRAFi treat-
ment conditions (Fig. 3C,D). Differential gene expression analysis
also showed that there was minimal overlap between the two cell
lines in terms of shared genes that marked BRAFi-resistant cells
(Supplemental Fig. S2C), suggesting that these two cell lines that
shared the same BRAF driver mutation might be using different
pathways to enable growth in the presence of BRAF inhibitor
molecules.

One possible explanation for the differences between the
two melanoma cell lines is that these cell lines possess dis-
tinct expression profiles that contribute more to the overall tran-
scriptome landscape than do the genes that drive resistance to
BRAFi. Recent results from The Cancer Genome Atlas Consortium
described multiple transcriptome subtypes in melanoma patient
tumors (The Cancer Genome Atlas Network 2015), similar to the

“subtypes” that were previously de-
scribed for breast cancer and other can-
cers (Hoadley et al. 2014). We used the
SAKE algorithms, which work both for
bulk and single-cell RNA-seq data, to
determine whether we can reproduce
these transcriptome subtype results on
the TCGA data sets. These results are
shown in Supplemental Figure S3, which
displays the SAKE clustering results
in Supplemental Figure S3A and the cor-
relations with patient outcome in Sup-
plemental Figure S3B. Comparison to
the bulk transcriptomes from our 451Lu
and A375 cell lines, and to the full set
of melanoma transcriptomes in the
Cancer Cell Line Encyclopedia (CCLE)
showed that, indeed, these two lines fell
into distinct expression clusters, dubbed
by the TCGA group as “proliferative”
and “invasive” subtypes, respectively
(Supplemental Fig. S3C). Moreover,
BRAFi-resistant cells from each of the
451Lu and A375 subtypes also remained
within the same subtype as their respec-
tive parental cell lines, suggesting that
subtype switching was not a dominant
feature of BRAFi-resistant cells (Supple-
mental Fig. S2D).

Having confirmed that these mela-
noma transcriptome subtypes are present
in both TCGA patient samples as well as
the cultured cell lines described above,
we next sought to determine whether
these expression profiles would be faith-
fully represented by each individual cell

in the population. Conversely, “subtype”might represent an aver-
aging over many distinct cellular states that was not wholly pre-
sent in any one cell. To answer this question, we would need to
characterize the expression profiles of hundreds to thousands of
melanoma cells from each subtype.

SAKE identifies four major groups in Fluidigm/Smart-Seq

data sets

Single-cell RNA-seq data were prepared from both the A375 and
451Lu Parental and BRAFi-resistant cell lines using the Fluidigm
C1 system to isolate cells and generate single-cell transcriptomes
using Smart-Seq-based methods (for details, see Supplemental
Methods).We isolated about 100 cells from each of the four condi-
tions (A375-Par, A375-BR, 451Lu-Par, and 451Lu-BR). On average,
more than 10,000 genes were detected per library (Supplemental
Table S2). These C1 scRNA-seq data sets were first mixed with
the bulk data to evaluate the quality of the sequencing results
in terms of transcript coverage. Signature gene sets that mark pro-
liferative and invasive subtypes were used for clustering (Hoek
et al. 2008). Most single cells recapitulated a similar expression
pattern as that seen in the bulk RNA-seq data and did not display
a single-cell platform-specific profile (Supplemental Fig. S4A).
Moreover, the similarity of the single-cell and bulk expression pat-
terns suggest that themelanoma subtype profiles seen in bulk data
sets are also representative of the dominant expression patterns of

A

B

C

Figure 2. Data and performance summaries for scRNA-seq software. (A) The number of samples and
reported clusters from five published clusteringmethods (SC3, SINCERA, Seurat, CIDR, and RaceID) com-
pared with SAKE (blue). (B) Key features and techniques used by each method to perform gene filtering
and to define the number of clusters. (C) Normalizedmutual information (NMI) was used to compare the
performance of each method on four published data sets in terms of the ability to recapitulate cluster
assignments as given by the initial publication. Error bars weremeasured by subsampling 90%of the cells
from each data set and iterating 1000 times to ensure robust results.
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individual single cells. Additionally,
the BRAFi-resistant cells from both the
A375 and 451Lu populations appear to
remain within their molecular subtypes
regardless of sensitivity to BRAFi treat-
ment, as was seen for the bulk transcrip-
tome profiles. Thus, response to BRAFi
treatment may be constrained by molec-
ular subtype, but the subtype markers
cannot be used to explore BRAFi-driven
expression changes.

To explore the gene expression al-
terations associated with resistance to
BRAFi, we next applied the SAKE algo-
rithm to all ∼400 cells from each of
the A375 and 451Lu parental and resis-
tance populations. A t-SNE projection
of these results can be seen in Figure
3D. The first component of the t-SNE
projection separated the two cell lines
by their parental cell type (A375 versus
451Lu), whereas the second component
separated the cells by their sensitivity to
the BRAFi treatment. SAKE identified
four distinct clusters among the ∼400
cells in the scRNA-seq data Figure 3D,
which largely overlapped with the popu-
lations from which these cells derived
(Fig. 3E). We did not observe a direct
correlation between these four SAKE-
identified groups and cell-cycle stages
(Supplemental Fig. S4C). However, there
were some deviations from these general
trends. First, a small fraction of the cells
in the parental cell lines appeared to ex-
hibit markers of the resistant popula-
tions; conversely, a small fraction of
the cells isolated from the resistant pop-
ulations appeared to still express paren-
tal markers (Fig. 3D,E). In addition, the
t-SNE plot (Fig. 3D) shows some subclus-
tering within the A375-BR population,
but these differences were not robust
enough to represent statistically distinct
subclusters.

We next asked whether any of the
cell populations showedmore or less het-
erogeneity in expression markers either
before or after selection for resistance to
BRAF inhibitors. Qualitatively, the heat-
map of Figure 3E shows that the parental
and resistant A375 cells separate cleanly
by features identified using the SAKE al-
gorithm. However, the parental and re-
sistant 451Lu cells appear to show more
mixing in the cluster dendrogram and
more overlap in the expression of SAKE-
identified markers that distinguish pa-
rental and resistant cells. Sampling
a larger number of cells from these popu-
lations would enable the distinction be-
tween these possibilities.

F

B C
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D E

G H

Figure 3. Bulk and single-cell RNA-seq were used to study differential drug responses to BRAF inhibitor
treatment. (A) Naïve melanoma cells were treated with an increasing dose of the BRAF inhibitor, vemur-
afenib. Cells that survived after each drug treatment were selected to gradually derive stably BRAFi-re-
sistant cells. (B) Drug sensitivity was measured through the use of MTT assays to assess metabolically
active cells 72 h following BRAFi application. (C) Melanoma signature gene sets (Hoek et al. 2008)
were used to cluster bulk RNA-seq data from melanoma cell lines. (D) A t-SNE map was used to display
the expression profiles from approximately 400 parental and BRAFi-resistant melanoma cells isolated us-
ing the Fluidigm C1 platform. The first t-SNE component separates the two cell lines, and the second
component distinguishes between parental and BRAFi-resistant cells. (E) Highly expressed and variable
genes were used to classify Fluidigm C1 scRNA-seq data. Higher levels of heterogeneity can be observed
among 451Lu cells as compared to A375 cells. (F) To determine whether 451Lu cells have more intrinsic
heterogeneity, 6545 scRNA-seq transcriptomes were obtained using the 10x Chromium platform. A t-
SNE map of this 451Lu 10x data highlights two major groups of cells: parental (blue) and BRAFi resistant
(red). (G) In order to compare the 10x and C1 data on the same scale, a scoring system was implement-
ed to determine the Spearman’s rank correlation distance of each cell from the centroids of the parental
(PAR) and BRAFi-resistant (BR) populations. (H) Differential expression analysis identified genes signifi-
cantly altered in 451Lu-BR versus 451Lu-Par cells, with log2 fold change values plotted for the C1
data set (horizontal axis) and 10x data set (vertical axis). Genes that have adjusted P<1×10−50 were
highlighted in red, with all statistically significant genes (P<0.01) shown in black, showing highly similar
results.
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High-throughput sparse 10x libraries for rare cell identification

We selected the 451Lu parental and resistant populations for high-
er throughput profiling on the Chromium Single Cell 3′ Solution
from 10x Genomics, which provided information for many
more cells with shallower coverage (Supplemental Table S2). On
average, we obtained about 90,000 reads and more than 5000 ex-
pressed genes in approximately 6500 cells (Supplemental Table
S2). We first used t-SNE projection maps to get a general overview
of the sequencing results, as displayed in Figure 3F. In the 451Lu
parental cells, the majority of the cells fell into a single extended
cluster, and two outlier groups formed unique subpopulations
that were isolated and distinct from the rest of the parental popu-
lation. These small isolated groups represented cells with extreme-
ly low or high transcript coverage rates,
according to their UMIs, and were not
considered in further analysis. Cells
from the 451Lu-BR-resistant population
formed a single group and did not have
a clear separation into isolated subpopu-
lations or distinctmixingwith the paren-
tal population (Fig. 3F).

The sequencing depth and the
number of expressed transcripts detected
from the 10x data showed more variance
as well as lower overall transcript cover-
age than the Fluidigm/Smart-Seq data
(Supplemental Table S2), as expected
from the lower total read counts se-
quenced per cell. To assess whether we
could combine and compare these two
types of data, we used the Nearest
Shrunken Centroids method (Tibshirani
et al. 2002) to calculate centroids from
each population separately for parental
and resistant cells and score their similar-
ity to the overall centroid of the popula-
tion (Supplemental Methods) in terms
of how “parental-like” or “BR-like” the
cells appeared. Results from both the C1
and 10x data could then be displayed
together (Fig. 3G) and indicated that
most cells from each platform fell cleanly
into one category or another. In addi-
tion, we compared the differentially
expressed genes between the BRAFi-resis-
tant and parental cells for both C1 and
10x data and identified a largely similar
set of commonly altered genes (Fig. 3H;
Supplemental Fig. S5A–E), with little
platform-dependent effects beyond se-
quencing depth and the ability to identi-
fy rare cells in larger populations.

DCT marks cells with intrinsic resistance

in 451Lu melanoma cells

In the t-SNE project map of the C1 data
set (Fig. 3D), a small number of 451Lu-
Par cells can be seen located near the
451Lu-BR population and distinct from
the rest of the 451Lu-Par populations
(Fig. 3D,E). We wanted to test whether

these rare parental cells that are exhibiting similar transcriptomic
profiles to BRAFi-resistant cells would also display less sensitivity
to the BRAFi drug treatment. This would be consistent with an in-
trinsically resistant population already present in the parental
cells.

We used a standard differential expression analysis method,
DESeq2 (Love et al. 2014), to determine the list of statistically en-
riched genes in the parental and resistant 451Lu data, requiring
twofold mean expression changes and P<0.05 (Fig. 4A).
Althoughmany significantly altered genes showed highly variable
levels of gene expression across the two platforms (Supplemental
Fig. S6A,B; Supplemental Table S3), DCT was one of the highest
confidence candidates that showed a consistent expression pat-
tern between parental and resistant cells in both the Fluidigm C1

E
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BRAFi
DCT

Figure 4. DCT marks 451Lu melanoma cells intrinsically resistant to BRAFi drug treatments. (A) A
Volcano plot displays adjusted −log10(P-value) versus log2FoldChange between BRAFi-resistant and pa-
rental cells, which identified DCT as one of the strongest markers of the resistant population. t-SNE maps
were used to display the DCT expression levels from data generated through Fluidigm C1 platform (B),
and the 10x Genomics sequencing technologies (C). (D,E) Most of the resistant cells had higher levels
of DCT compared with the parental cells. Cells were stained with a fluorescent-labeled DCT antibody
(green) and counterstained with DAPI (blue). BRAFi-resistant cells show higher expression of DCT at
the protein level, quantified in the box plots of E. (F) MTT assays measured metabolically active cells
48 h after application of BRAFi to the media. DCT-positive cells, isolated by FACS from the 451Lu
parental population, show significantly reduced response to BRAFi and higher survival rates.
(G) DCT shows a binary expression pattern, with high levels in BRAFi-resistant single cells.
(H–J) Previously published markers of BRAFi resistance do not show similar binary expression patterns
across cell populations.
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and 10x data sets (Fig. 4B,C; Supplemental Fig. S6A,B). Parental
cells with high DCT protein expression were isolated by FACS
and tested for differential drug response following BRAF inhibitor
challenge. These DCT-high parental cells showed a significantly
reduced response to BRAF inhibitors, as measured by MTT assays
for metabolically active cells 48 h after plating the cells in media
containing 1 µM BRAFi compounds (Fig. 4F). This is consistent
with DCT protein expression marking parental cells with reduced
sensitivity to BRAF inhibitor treatment. To further confirm this, we
stained 451Lu-Par cells with DCT antibody and checked for the
proportion of cells that survived after BRAF inhibitor treatment.
If DCT-high parental cells show better tolerance to BRAF inhibi-
tion, there should be a higher percentage of DCT-positive cells re-
maining following application of BRAF inhibitor treatments to the
naïve parental population. Consistent with this, few DCT-positive
cells can be seen in the parental population prior to addition of
BRAFi compounds to the media (Fig. 4D, left panels). Following
treatment, the remaining cells can be seen to largely be DCT pos-
itive (Fig. 4D, right panels). As a positive control, most cells from
the derived BRAFi-resistant 451Lu population express high levels
of DCT (Fig. 4E).

We additionally checked a list of previously published genes
that have been identified as associated with resistance to BRAF in-
hibitors. Most of these genes did not show a binary pattern similar
to DCT, with dominant expression in one of the two populations
(Fig. 4G). Instead, most of these published resistance marker genes
showed a curious pattern of expression
that was most differential at the interface
between the two populations (Fig. 4H–J;
Supplemental Fig. S7). One possible ex-
planation for this expression pattern
would present a model in which expres-
sion of some genes is required to initiate
the process of developing drug resis-
tance, but this expression is not required
for maintenance of the drug-resistant
state. The level of support for this model
is explored next.

Support for a transient transcriptional

state allowing acquired drug

resistance

A recently published study used bulk
RNA-seq and high-throughput single-
cell RNA FISH techniques to identify a
panel of signature genes associated with
BRAF inhibitor resistance in humanmel-
anoma cells (Shaffer et al. 2017). This
study proposed that selected genes iden-
tified previously in the literature, such as
WNT5A, AXL, EGFR, PDGFRB, and JUN,
could mark a transitional stage in which
cells are better able to develop resistance
to BRAFi treatment, a state they dubbed
“pre-resistant.” After removal of BRAF
inhibitors, these intermediate cells were
more likely to revert to their naïve paren-
tal state and become drug sensitive again.
Intrigued by this finding, we checked
the expression distributions for a subset
of these transient markers in our data

(Supplemental Fig. S7). Although we did not see enrichment for
these markers in any isolated outlier groups on the t-SNE maps,
these markers were enriched at the tip of the parental population
that was proximal to the resistant populations as well as at the
tip of the resistant population that was proximal to the parental
cluster.

We ran SAKE to determine whether SAKE would also identify
the presence of this unique “cluster” of candidate transient cells
based solely on their transcriptional profile without any prior
knowledge from the marker lists. SAKE reported three major clus-
ters from the entire 10x data set: parental cells, resistant cells,
and a new population of cells that sat at the interface between
these twomajor clusters (marked in yellow on Fig. 5A and triangles
in Supplemental Fig. S9A–F). The cells in this yellow intermediate
population were marked by high levels of AXL, JUN, NGFR,
WNT5A, FGFR1, and NRG1 (Supplemental Figs. S8, S9), which is
consistent with the expression patterns displayed by the transient
population previously identified by Shaffer et al. (2017). This is
consistent with the hypothesis that some melanoma cells acquire
resistance by transiting through a transient “pre-resistant” state
marked by high levels of MAPK pathway genes. SAKE identified
several additional genes that mark this candidate “transitional”
population, which are given in Supplemental Table S4. Although
these cells do not occupy an isolated subcluster on the t-SNE pro-
jection map, the SAKE algorithm did identify this population as a
robust subcluster, highlighting the success of SAKE at finding

E

BA C

D

Figure 5. Transcriptome profiles identified an intermediate state between parental and resistant cells.
(A) A t-SNE map displays SAKE-identified groups from the 10x data set of 451Lu cells. One group of cells
(yellow) marked a potential transitional state during the acquisition of BRAFi resistance, present in both
parental and BRAFi-resistant populations. (B) FACS analysis was used to identify cells doubly positive for
two of the markers expressed in the proposed transitional state, NRG1 and AXL. These rare cells repre-
sented <1% of the 451Lu Parental population. (C) CellTiter-Glo assays were used to assess the BRAFi sen-
sitivity of AXL/NRG1 doubly positive cells (yellow), which showed significantly increased survival in a 1
µM dose of BRAFi compared with the rest of the 451Lu Parental population (blue). (D) Confocal images
of doubly positive AXL/NRG1 cells (green) show these cells are rare in both the 451Lu Parental and 451Lu
BR populations. (E) Differentially expressed genes between cells in the transitional state and the rest of the
451Lu Parental cells were used for gene set enrichment analysis.
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small subpopulations in high dimensional data. We ran each
of the five other methods listed in Figure 2 on the 10x data, find-
ing wide disagreement on the number of clusters present
(Supplemental Fig. S11A,B).Moreover, no othermethod identified
the yellow cells as an isolated population present in both parental
and BRAFi-resistant cells, although several methods did identify
clusters enriched for the yellow cell population (Supplemental
Fig. S11D).

We next sought to determine whether the yellow cells are
truly a distinct population with different phenotypic properties.
Indeed, if these cells are truly marking a pre-resistant population,
then they should be less sensitive to BRAFi treatment. Therefore,
we used two of the markers identified by SAKE, AXL, and NRG1,
to select the candidate pre-resistant cells from the 451Lu parental
population. Cells that showed high levels of both AXL and NRG1
were rare, representing <1% of the total population, as shown in
flow Figure 5B and in confocal images obtained in Figure
5D. These doubly positive cells were sorted from the larger popu-
lation and tested for their sensitivity to BRAFi treatment using a
CellTiter-Glo assay (Supplemental Methods; Supplemental Fig.
S10) to measure metabolically active cells 72 h after plating the
cells in media containing 1 µM BRAFi compounds. The yellow
cells marked by high levels of both AXL and NRG1 showed a
significantly reduced response (and higher growth rate) in the
presence of BRAFi compounds than the rest of the parental
population (Fig. 5C) at levels that were near those of the stably re-
sistant 451Lu populations. Thus, SAKE was able to identify mark-
ers of cells that do display reduced sensitivity to the BRAF
inhibitors, even when these markers do not persist as a dominant
expression pattern in the fully resistant population. This is consis-
tent with the patterns seen in the transient populations of pre-re-
sistant cells identified previously (Supplemental Fig. S12; Shaffer
et al. 2017).

Althoughwehave shown that the yellow cell population does
have both transcriptional and phenotypic differences from the rest
of the 451Lu parental population, we cannot formally rule out the
possibility that the yellow cells are in a transient rather than tran-
sitional state. Better evidence would come from obtaining both
CNVdata and gene expression profiles from the same cells in order
to determine whether the yellow cells are genetically related to
each other. As a proxy for true CNV profiles, we generated inferred
genomic copy number data from the RNA-seq profiles following a
computational method previously established (Patel et al. 2014;
Tirosh et al. 2016). To ensure that the CNV profiles we inferred us-
ing this method match what would have been found as directly
measured from the DNA, we additionally isolated DNA from
bulk cell populations from each of the parental and resistant pop-
ulations and generated DNA libraries directly (Supplemental Table
S4; Supplemental Methods). We found a high degree of concor-
dance between the CNV profiles derived from the scRNA-seq
data and the bulk DNA-seq data (Supplemental Fig. S13). The in-
ferred CNV patterns showed two major clones that corresponded
to the parental and resistant cell populations. Depletions on
Chr9p and amplifications on Chr1p, Chr7p, Chr11q, Chr20q,
and Chr22q were signatures for the resistant cells, matching
what has been reported in other CNV profiles using bulk melano-
ma samples (Beroukhim et al. 2010). Beyond the two dominant
clones, these cells were further classified into eight subgroups, or
“clonal lineages.”However, none of these eight subgroups of cells
showed an enrichment for the cells that are identified as having
the “transitional” transcriptome patterns (yellow bars in
Supplemental Fig. S13A), which could be found in several of the

eight subgroups. This suggested that these cells were derived
from several unrelated clonal lineages and were likely not derived
from a single strictly heritable lineage. This is consistent with the
hypothesis that nongenetic effects contribute to the acquisition of
resistance to BRAF inhibitors in melanoma cells and is consistent
with previous reports (Shaffer et al. 2017; Sharma et al. 2017).

Discussion

Methods developed for bulk RNA-seq data analysis can be adapted
for application to scRNA-seq data, but need to be tailored to ad-
dress the specific issues inherent in workingwith noisy, low-cover-
age, heterogeneous sample sets. We present a processing and
analysis pipeline for single-cell RNA-seq data sets, SAKE, that is de-
signed to look for quality control issues specific to scRNA-seq data,
identify subclusters present in the cell populations, and evaluate
the gene and functional group enrichments in each cluster.
Importantly, SAKE provides quantitative estimates of clustermem-
bership alongside qualitative evaluations of cluster relationships
via t-SNE projection maps. We show that SAKE can provide very
similar single-cell cluster results to those derived from a variety
of sample sources and evaluated with very different algorithms.
We also show that SAKE provides accurate and robust results for
a wide range of experimental designs. Moreover, SAKE operates
as a simple, intuitive pipeline in which the parameters are set by
quantitative metrics provided by SAKE during run time.

Having verified the success of SAKE on several published
scRNA-seq data sets, we next applied this method to uncover the
transcriptional alterations that occur asmelanoma cells develop re-
sistance to targeted inhibitors of the BRAF oncogene. Single-cell
transcriptomes were obtained from both a low-throughput high-
depth method (Fluidigm C1, approximately 100 cells per group)
as well as a high-throughput shallow sequencing technology
(10x genomics, approximately 3500 cells per group). The expres-
sion profiles and typical melanoma specific marker levels were
very similar between these two data sets. Overall, these two se-
quencing technologies provided highly concordant results, sug-
gesting that platform-specific effects did not dominate the results.

Identification of rare ‘intrinsically resistant cells’

The data sets from the Fluidigm C1 and 10x platforms were com-
bined to identify statistically differentially expressed genes be-
tween the 451Lu parental and resistant populations. Those
genes that were highly abundant in the 451Lu resistant cells,
with much lower overall expression in the 451Lu parental popula-
tion, formed a candidate list of resistance marker genes. We next
sought to determine whether rare cells in the parental population
might be expressing these candidate resistance markers. We vali-
dated one novel resistance marker gene, DCT, with high expres-
sion in the majority of the BRAFi-resistant cells and low
expression in 99% of the parental population. These rare DCT-
positive cells were sorted from the parental population and chal-
lenged to determine sensitivity to BRAFi treatment. Consistent
with DCT marking cells that are more likely to be resistant to
BRAFi treatment, the DCT-positive population showed reduced
sensitivity to BRAFi challenge. Although one report identified
DCT as a potential marker for general resistance to radiotherapy
(Pak et al. 2004), DCT has not previously been evaluated for its
role in resistance to targeted inhibitors or specifically BRAF
inhibitors.
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Identification of a ‘transitional state’ of pre-resistant cells

Most of the genes that were identified in previous studies to
confer resistance to BRAFi treatment in melanoma did not show
a similar binary expression pattern to DCT, with high levels in
one population. Instead, a large fraction of these genes showed dif-
ferential expression just at the boundary between the parental and
resistant populations. This expression pattern could be consistent
with previously proposed models that suggest a transitional cellu-
lar state dubbed “pre-resistance” in which cells transiently express
these markers as they develop resistance to BRAF inhibitors
(Shaffer et al. 2017; Sharma et al. 2017), but do not continuemark-
er expression once resistance is stably established. We experimen-
tally isolated cells expressing markers of this candidate “pre-
resistant” population and verified that they do exhibit reduced
sensitivity to BRAFi compounds. In this model, one might expect
cells with shared transient transcriptomic patterns, marking the
transitional state, to not necessarily share genomic mutational
patterns.

Integrating genomic mutational information allows for an
explanation of the clonal relationship of the cells that were select-
ed for resistance to BRAF inhibitors. If most cells in the resistant
population appear to be more genetically similar than the cells
in the parental population, this would imply a bottleneck scenario
in which a small number of clones were selected. On the other
hand, if resistance can also arise stochastically throughnongenetic
mechanisms, one would expect many genetically distinct clones
with shared transcriptome patterns. Our data seem to support a
contribution from both genetic and nongenetic mechanisms.
Specifically, the intrinsically resistant DCT-positive cells likely
mark a small number of clonally related cells that were innately re-
sistant to BRAFi treatment prior to drug application and which
were simply selected from the population. However, our proxy ge-
nomic CNV and RNA-seq information showed that the candidate
“transitional” cells appear to derive frommany distinct clonal lin-
eages. Although these results must be tempered by the caveats im-
posed by using inferred CNV information from RNA-seq data,
these results suggest that the transitional expression pattern was
not clonally inherited. Further results that obtain high-through-
put single-cell DNA and RNA from the same cells would better set-
tle the question of whether nongenetic mechanisms could offer a
path for acquired resistance to targeted inhibitors.

Methods

Cell culture

Parental cell lines A375 and 451Lu were cultured in DMEMmedia
supplemented with 10% FBS and 1% Penicillin-Streptomycin.
Resistant cell lines A375-Br and 451Lu-BR3 were cultured in
DMEM media supplemented with 10% FBS, 1% Penicillin-
Streptomycin, and1µMofBRAF inhibitor, PLX-4720 (Selleckchem
S1152).

RNA-seq library preparation

Briefly, bulk libraries were created using TruSeq Stranded
Total RNA kits. Fluidigm C1 libraries were generated using the
Clontech SMART-Seq v4 Ultra Low Input RNA Kit. 10x
Genomics platform libraries were generated using the Chromium
Single Cell 3′ Chip Kit V2. Extended details about the generation
of these libraries are available in the Methods section of the
Supplemental Materials.

RNA-seq data processing

The RNA-seq reads were mapped with STAR 2.5.2b (Dobin et al.
2013) to the hg19 reference genome. Although themost recent ge-
nomebuild, GRCh38,was released in 2013,much of the published
work used for comparison in this study was mapped to hg19. We
thus determined thatmapping to hg19wouldmaintain consisten-
cy and was unlikely to cause changes large enough to affect the
conclusions of this study. Kallisto 0.42.5 (Bray et al. 2016) was
then used for abundance estimation of genes in the UCSC
RefSeq gene list. DESeq2 (Love et al. 2014) was used to identify
differential expressed genes between conditions. Libraries were
normalized to reads per million mapped (RPM). The RPM normal-
ized gene expressionmatrix was then floored and log-transformed
prior to clustering: M′ = log2(M+1).

MTT and CellTiter-Glo Assays for measuring cell viability

in BRAFi

Parental (A375, 451Lu) and Resistant (A375-BR, 451Lu-BR3) cells
were plated in 96-well plates at a concentration of 7500–10,000
cells/well and allowed to culture overnight. Once the cells were
at 70%–75% confluency, cells were treated in triplicates with dif-
ferent concentrations (0.1–1.0 µM) of PLX-4720 in 200 µL of me-
dia for 72 h. After treatment, the media was replaced with 100 µL
fresh phenol red free media. MTT assays were then carried using
the Vybrant MTT Cell Proliferation Assay Kit from Thermo Fisher
Scientific. For CellTiter-Glo assays, the cells were plated at 3000
cells/well in 384-well plates. Otherwise, the same protocol for cul-
ture and addition of PLX-4720 was followed prior to viability as-
says using the manufacturer’s instructions (Promega, G7570).

FACS to isolate select populations

Cells were trypsinized and resuspended in FACS buffer (PBS with
0.1% BSA and 0.05% Sodium Azide) and stained with the corre-
sponding antibody. Using a BD FACS Aria, 5–10 million cells
were bulk sorted into DMEM media supplemented with 10% FBS
and 1% Penicillin-Streptomycin. The sorted cells were then imme-
diately plated on 96-well plates at a concentration of 5000 cells/
well. All antibodies were obtained from Santa Cruz Biotechnology:
DCT conjugated to Alexa Fluor 488 (SC-74439), AXL conjugated to
PE (SC-166269), and NRG1 conjugated to FITC (SC-393006).

Bulk DNA sequencing

DNA was extracted from 3 to 4 million cells using Qiagen DNeasy
Blood and Tissue kit. Two micrograms DNAwas fragmented using
a Covaris sonicator. Libraries for sequencingwere prepared by sub-
jecting the resulting DNA fragments to end-repair, 3′ adenylation,
and ligation of TruSeq barcoded adapters. A 0.75 ratio of Ampure
XP beads to sample was used to select fragments larger than 200
bp. These fragments were further amplified by PCR, cleaned using
QIAquick PCR Purification Kit, and then once again size selected
using Ampure XP beads with a 0.75 ratio of beads to sample. The
final libraries were sequenced using SE76 on an Illumina
NextSeq to a depth of 6–7 million reads per sample.

Inferred CNV profiles from RNA-seq data

The inferCNV algorithm (Tirosh et al. 2016) was used to generated
inferred copy number profiles from the scRNA-seq data in order to
estimate genetic relatedness of the thousands of cells in our 10x
data sets, using sliding windows containing 100 consecutive
genes. For additional details, see Supplemental Methods.
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Imaging

Cells were plated on glass coverslips coated with 0.1% Poly L-
Lysine solution and allowed to grow for 24 h. Cells were then treat-
ed with a 1.0 µM concentration of PLX-4720 for 72 h. After treat-
ment, cells were washed with PBS and fixed using ice-cold
methanol. Fixed cells were blocked with 5% FBS in PBS overnight
at 4°C and stained with a 1:50 concentration of Anti-DCT anti-
body conjugated to Alexa Fluor 488 (SC-74439).

This was followed by NucBlue counterstaining of nuclei
according to the manufacturer’s manual and mounted on a slide
using ProLong Diamond Antifade Mountant. Imaging was per-
formed on a confocal microscope.

Software availability

SAKE is an R-based software package (R Core Team 2017) available
for download at https://github.com/naikai/sake and provided as a
gzipped tar archive in Supplemental Material. A detailed tutorial
for using SAKE is also provided as R markdown documents that
allow for instructions, commands, and results to be presented
together.

Data access

Illumina sequencing data from this study have been submitted to
the NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject)
under accession number PRJNA427121. These data are also avail-
able from the NCBI Sequence Read Archive (SRA; https://www.
ncbi.nlm.nih.gov/sra) under accession numbers SRP127319
(bulk RNA-seq), SRP127320 (Fluidigm scRNA-seq), SRP127328
(10x Genomics scRNA-seq), and SRP127299 (DNAWGS).
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