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Objectives: Elevated neurofilament light chain (NFL) levels within the cerebrospinal

fluid (CSF) are a biomarker representing axonal neurodegeneration in rapid progressive

neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). It is unclear

to what extent the levels of NFL increase in the CSF (CSF-NFL) in a chronic

neuroinflammatory process with axonal neurodegeneration, as found in primary

progressive multiple sclerosis (PPMS).

Methods: We used a multicenter approach to statistically compare CSF-NFL levels

between PPMS patients (n = 50), ALS patients (n = 50), and healthy controls (n = 50).

Clinical findings, including disease duration, expanded disability status scale (EDSS),

electrophysiological recordings such as visual evoked potentials or spinal and cerebral

MRI, and previously administered treatment were selected as experimental parameters

retrospectively.

Results: Median [range] CSF-NFL concentrations in PPMS patients were significantly

higher than in the controls [1724 (799–4275) pg/ml vs. 1202 (612–2934) pg/ml,

p = 0.015], and significantly lower compared to ALS patients [1724 (799–4275) pg/ml

vs. 10238 (2610–35138) pg/ml, p< 0.001]. There was no correlation between CSF-NFL

and disease duration (p = 0.5), EDSS (p = 0.2) or treatment (p = 0.3).

Conclusion: We conclude that CSF-NFL may mirror the proposed slow axonal

degeneration in PPMS, but does not reflect the disease severity.

Keywords: multiple sclerois and neuroimmunology, neurofilament light chain (NFL), amyotrofic lateral sclerosis,

primary progressive multiple sclerosis, cerebrospical fluid (CSF)

INTRODUCTION

The pattern underlying the concentrations of neurofilament light chain (NFL) in the cerebrospinal
fluid (CSF), referred to as CSF-NFL, in diseases with slow progressive axonal degeneration,
including primary progressive multiple sclerosis (PPMS), are not clear. Aggressive axonal injury
after acute inflammatory events in patients with multiple sclerosis (MS), and rapidly progressive
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neurodegenerative diseases with a predominant affection of the
central motor system such as amyotrophic lateral sclerosis (ALS),
result in a clear pathological increase of the CSF-NFL levels
(1–3). In contrast, studies of PPMS display a wide spectrum
of CSF-NFL concentrations, including cases with low (< 500
pg/ml) (4, 5) or not detectable CSF-NFL concentrations (6),
and cases with high CSF-NFL levels (>10,000 pg/ml) (7)
comparable with the documented ranges in relapsing remitting
MS disease courses (7–9), painting a heterogeneous picture (10,
11). Reasons may be the small sample sizes selected for these
PPMS studies (6, 8) or the inclusion of patients with partially
acute inflammatory disease activity and only occasional motor
impairment, thus not the typical long-standing chronic disease
progression (12).

Here we conducted a cross-sectional multicenter study
measuring the CSF levels of the stable protein NFL (1) in
patients suffering from mainly long-standing PPMS without
acute inflammatory disease activity, and compared them to the
CSF levels in ALS patients and disease controls.

MATERIALS AND METHODS

Patients, Controls, and Clinical
Assessment
Our study was approved by the local ethics committees in
Magdeburg (No. 07/17) and Kiel (D525/16) and a general
commitment of the Charité Berlin Clinic for external analyzes
of retrospective data in line with an external German ethics
vote. We included CSF samples from (i) n = 50 patients with
clinically definite PPMS according to the McDonald criteria
2010 (13) recruited at the Departments of Neurology at the
Otto-von-Guericke University Magdeburg, the Charité Berlin
and the University Hospital Schleswig-Holstein, Kiel, Germany;
(ii) n = 50 patients suffering from probable and definite ALS
according to the revised El Escorial criteria (14) recruited at
the Department of Neurology in Magdeburg; and (iii) n = 50
healthy controls (HC) recruited in Magdeburg, comprising cases
with non-specific complaints who underwent lumbar puncture
(LP) during a routine diagnostic examination conducted to
rule out any neurological condition. None of the controls
suffered from a neurological disorder (neuroinflammatory
or neuromuscular), in particular not from MS, peripheral
polyneuropathies, muscle or motor neuron disease, nor did
they display any specific abnormalities during the neurological
examination (15, 16). In addition to the clinical classification,
patients included in the control group also fulfilled the
following laboratory criteria defining a non-inflammatory CSF:
<5 cells/µl CSF, <2mM lactate in the CSF, no disruption
of the blood/CSF barrier (defined by the albumin CSF/serum
quotient), no oligoclonal bands (OCBs) in the CSF, an no
intrathecal immunoglobulin (Ig)G, IgA, or IgM synthesis (17).
All patients were retrospectively recruited between 2012 and
2017.

Clinical scoring [Expanded disability status scale (EDSS)]
(18) was performed in close timely proximity to the LP.
Electrophysiological measurements [(visual evoked potentials

(VEP)] and cerebral as well as spinal magnetic resonance images
were available for the patients from points in time close, but not
identical to the performance of LP.

EDSS, T2-weighted MRI conducted close to the LP, and CSF
levels were selected as parameters to verify the PPMS diagnosis,
which was based on the clinical progression over the course of 1
year. These parameters were observed together with the existence
of cerebral or spinal cord T2-intense lesions or oligoclonal bands
(OCB) (13), and resulted in the following overall constellation:
either patients showed evidence for (a) a dissemination in space
(DIS) in the brain due to the existence of at least one T2-intense
lesion found in at least one cerebral area characteristic for MS
[periventricular, juxtacortical, or infratentorial; in 50 (100%) of
the patients], or (b) a DIS in the spinal cord due to the existence
of at least two T2-intense lesions [34 (68%)], or (c) CSF OCB [42
(84%)]. Moreover, neither did any of the PPMS patients present
an enhanced T2 lesion load compared to previous diagnosticMRI
scans, nor could any Gadolinium-enhanced cerebral or spinal
cord T1-weighted MRI lesions be detected. Thus, the absence
of MRI progression might mirror a mostly non-inflammatory
phenotype of PPMS patients in line with previous investigations
(19, 20).

VEP evaluations were documented to describe axonal
integrity loss in PPMS according to previously defined diagnostic
criteria of PPMS (13). Latencies of the P100 exceeding 2.5
SDs from normative data were considered as abnormal VEPs.
Twenty PPMS patients revealed abnormal VEPs in both eyes, 11
patients showed abnormal VEPs in one eye only, and 13 patients
had normal VEPs. For the remaining 6 patients, no data were
available.

Disease duration was defined as the time in months between
symptom onset and the LP.

CSF Measures
For all PPMS patients, the LP was performed at each
respective University, while for all ALS subjects and the
healthy controls, the LP was conducted in Magdeburg. At
each center, CSF cells were counted immediately after the LP
and total protein, albumin quotient (Qalb) and oligoclonal
bands (for PPMS patients only) were measured. Every
sample was stored at −80◦C and shipped on dry ice for
CSF-NFL measurement. CSF-NFL levels were determined
in Magdeburg using commercially available ELISA kits
(UmanDiagnostics NF-light R©, Umeå, Sweden, catalog
number 10-7001 CE). Intraassay coefficient of variance is
7.4% and interassay coefficient of variance is 6% (21). Every
measurement is performed together with a blank and a
commercial positive and negative control provided by the
manufacturer. Samples were measured in serial procedures and
not in batches.

Statistical Analysis
Statistical analysis was conducted using SPSS 21 (IBM). Groups
were compared with respect to categorical (using a χ²-test)
and continuous variables (using a t-test or Mann-Whitney
U-test or a Kruskal–Wallis one-way analysis of variance
(ANOVA) applying pairwise Dunn-Bonferroni post-hoc testing).
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Spearman’s rank correlations were performed between CSF-NFL
and age, between CSF-NFL and further CSF measures (cell
count, protein, Qalb), as well as between CSF-NFL and clinical
scores (EDSS). P-values < 0.05 were deemed to be statistically
significant.

RESULTS

Cohorts
The demographics, clinical and CSF data of the cohorts are
shown in Table 1. There were no age or sex (p = 0.2) related
differences between PPMS, ALS and HC, whereas the values
for the CSF cell count, protein and Qalb varied between the
diagnostic groups Table 1. Mean [SD] disease duration was
significantly longer in PPMS [86 (952) months] compared to ALS
[15 (17) months, p < 0.001]. For PPMS, disability severity was
high (median EDSS 6) at the time of the LP. The PPMS patients
recruited from the three different University centers did not differ
with respect to age, sex, CSF protein, oligoclonal band positivity,
median EDSS or disease duration. There were, however, inter-
center differences regarding the prevalence of spinal cord lesions
(p = 0.017), and the values for CSF cell count and Qalb. Several
PPMS patients, n = 11 (28%), received immunomodulatory and
immunosuppressive therapy (“treatment attempt”), comprising
Rituximab (n= 2), and intravenous (n= 3) or intrathecal (n= 6)
methylprednisolone. The Berlin cohort contained significantly
more treated patients than the Magdeburg and Kiel cohorts (p
= 0.001) Table 1.

CSF-NFL

When considering the whole sample, we found small- to
medium-effect size correlations between CSF-NFL and age
(rho = 0.2, p = 0.03), Qalb (rho = 0.3, p < 0.001), and CSF
protein (rho = 0.4, p < 0.001), while there was no correlation
with sex (Z = −0.4, p = 0.7) or CSF cell count (rho = 0.01,
p= 1.0).

There was a significant group effect of CSF-NFL levels when
comparing PPMS to ALS (p < 0.001), and post-hoc analysis
revealed lower median [range] levels for PPMS compared to
ALS [1724 (799–4275) pg/ml vs. 10238 (2610–35138) pg/ml,
p < 0.001], ALS compared to HC [1202 (612–2934) pg/ml,
p < 0.001] and PPMS compared to HC (p = 0.015) Figure 1. In
PPMS, CSF-NFL concentrations did not differ between treated or
untreated patients (z=−1.0, p= 0.3) Figure 2, between patients
with completely normal VEPs or only one eye with pathological
VEPs (rho=−1.9, p= 0.05), and also not between study centers
(p = 0.5); CSF-NFL concentrations were not related to disease
duration (rho = −0.9, p = 0.5) or EDSS (rho = 0.17, p = 0.2)
Figure 2.

DISCUSSION

We investigated CSF-NFL levels in clinically definite PPMS
patients suffering from a mainly long-standing disease without
inflammatory disease activity. To our knowledge this is the largest
cohort of patients investigated to date addressing the question

TABLE 1 | N, number of participants; unless otherwise reported mean [standard deviation] (range) is given.

PPMS

(N = 50)

ALS

(N = 50)

HC

(N = 50)

PPMS study centers P-values

MD

(N = 25)

Berlin

(N = 12)

Kiel

(N = 13)

MD vs.

Berlin

MD vs.

Kiel

Berlin

vs. Kiel

PPMS

vs. HC

PPMS

vs. ALS

ALS vs.

HC

Age at lumbar puncture (years) 53 [11]

(25–77)

54 [10]

(33–74)

53 [11]

(34–76)

51 [11]

(25–71)

57 [13]

(35–77)

55 [10]

(36–73)

0.3 0.3 0.3 0.8 0.8 0.8

Male sex, N (%) 29 (58) 33 (66) 24 (48) 17 (68) 7 (58) 5 (39) – – – – – –

Disease duration (months) 86 [92] (2–94) – – 86 [73]

(6–255)

92 [90]

(2–353)

82 [128]

(10–494)

0.5 0.5 0.5 – – –

Median EDSS 6 (2–8) – – 5 (2–7.5) 6 (3–8) 4.5 (3–8) 0.3 0.3 0.3 – – –

≥1 Spinal cord lesions N (%) 34 (68) – – 17 (68) 5 (42) 12 (92) – – – – – –

≥1 cerebral T2 lesion N (%) 50 (100) – – 25 (100) 12 (100) 13 (100) – – – – – –

Pathological VEP, N (%) 31 (62) – – 18 (72) 6 (50) 7 (54) – – – – – –

Treatment, N (%) 11 (22) – – 1 (4) 10 (83) 0 (0) – – – – – –

Median CSF Cell count /µl 2.5 (0–131) 1 (0–6) 1 (0–4) 3 (0–14) 2 (0–29) 4 (1–131) 1.0 0.02 0.3 <0.001 0.001 1.0

Median CSF protein (mg/dl) 441

(236–1047)

480

(187–1240)

351

(179–616)

407

(248–1047)

451

(236–767)

517

(312–875)

0.08 0.08 0.08 0.001 1.0 <0.001

Positive OCB, N (%) 42 (84) 0 (0) 0 (0) 24 (96) 9 (75) 9 (69) 0.1 0.1 0.1 – – –

Median Qalb 6.0

(2.0–18.8)

6.8

(2.4–16.6)

4.8

(1.5–10.5)

5.0

(2.0–18.8)

6.8

(4.2–12.6)

8.2

(3.2–15.2)

0.2 0.030 1.0 0.016 1.0 0.003

Median CSF-NFL (pg/ml) 1724

(799–4275)

10238

(2610–35138)

1202

(612–2934)

1668

(990–4275)

1591

(877–2557)

2016

(799–4158)

0.5 0.5 0.5 0.015 <0.001 <0.001

ALS, amyotrophic lateral sclerosis; CSF, cerebrospinal fluid; EDSS, Expanded Disability Status Scale; HC, healthy controls; MD, Magdeburg; NFL, neurofilament light chain; OCB,

oligoclonal bands; PPMS, primary progressive multiple sclerosis; Qalb, albumin quotient; VEP, visual evoked potential. Disease duration was defined as the timespan between symptom

onset and the date of lumbar puncture. For group comparisons a χ²-test or a Kruskal-Wallis one-way analysis of variance with post-hoc Dunn-Bonferroni-testing were conducted.

P-values < 0.05 were deemed to be statistically significant (Bold).
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FIGURE 1 | Neurofilament light (NFL) in cerebrospinal fluid (CSF). ALS,

amyotrophic lateral sclerosis; HC, healthy controls; PPMS, primary progressive

multiple sclerosis. Boxes indicates the interquartile range, bars indicates

median CSF-NFL values, and whiskers present the 95% Cl. The dots present

the individual values. Group comparisons were conducted using a

Kruskai-Wallis one-way analysis of variance with post-hoc

Dunn-Bonferroni-testing. P-values < 0.05 were deemed to be statistically

significant. PPMS and ALS patients showed higher CSF-NFL levels than HC,

while ALS had higher NFL values than PPMS.

whether CSF-NFL levels can mirror disease associated axonal
neurodegeneration and its value as a clinical biomarker in PPMS
patients. Our analysis reveals that PPMS diagnosis relates to
significantly different levels of CSF-NFL than the levels found for
the other two groups, and affirms a moderate PPMS CSF-NFL
level situated in-between values for HC and ALS patients.

Since several studies have shown contradicting results of lower
(1) or higher CSF-NFL levels (22, 23) in PPMS compared to
relapsing remitting MS, the degree of chronic axonal loss in
the absence of acute inflammatory activity remains unclear.
In line with previous results, we found significantly elevated
CSF-NFL values in PPMS compared to HC (1, 6, 22, 24). The
previously published studies comprised smaller PPMS samples,
or included patients displaying inflammatory disease activity and
short-lasting disease symptoms leading us to question whether
a common PPMS disease course was observed. We addressed
the shortcomings of former studies by taking a considerably
large PPMS cohort into account, characterized by a primary
chronic progressive disease course mainly with long-lasting
symptoms.

The subjects included in our PPMS cohort are likely to
suffer from corticospinal tract (CST) demyelination, typically
found in long-standing PPMS (12). This is supported by the
high median EDSS, reflecting manifest motor impairment, and
the considerably great prevalence of spinal cord lesions in
our PPMS cohort Table 1 NFL is a cytoskeleton protein, that
is highly abundant in large-caliber myelinated axons found

abundantly in the CST (25–27). A former study using diffusion
tensor imaging (DTI) has shown that an increase in CSF-NFL
reflects CST degeneration in ALS (28). We thus assume that
CSF-NFL elevation in PPMS particularly mirrors chronic CST
degeneration, in addition to cortical thinning (29).

We conducted a direct CSF-NFL comparison between PPMS
and ALS, with both diseases sharing clinical signs resulting from
the degeneration of the long cerebral and spinal cord tracts in
the central motor system (10). These commonalities could be
reflected by significantly elevated CSF-NFL concentrations for
both PPMS and ALS patients compared to healthy controls.
However, ALS patients have a shorter disease duration than
PPMS patients, with ALS being characterized by a more rapid
and aggressive neurodegenerative disease course relating to
a median survival time of 36 months (30), compared to
14–33 years in PPMS (31). The corresponding neuroaxonal
damage and depletion in ALS is presumed to take place in
a more accelerated manner, potentially explaining the CSF-
NFL group differences between PPMS and ALS (10). The
predominant demyelination of axons with still partially intact
cytoskeleton and neurons in PPMS could also explain the
CSF-NFL group differences between PPMS and ALS (10).
Moreover, in PPMS, a stronger CSF-NFL level increase was
documented at the disease onset, suggesting a greater progression
of neuroaxonal degeneration in early and inflammatory active
disease stages compared to the long-standing disease pattern
(22, 32).

Moreover, when considering our previous work on CSF-
NFL, PPMS patients presented significantly lower levels not only
compared to ALS patients but also compared to patients with
a slow neurodegenerative disease like frontotemporal dementia
(FTD) (21), emphasizing the differences between primary
neurodegeneration (slow: FTD, rapid: ALS) and inflammatory
driven neuro-axonal injury (PPMS).

In line with recent PPMS studies we did not find any
relationship between the clinical impact, as measured using the
EDSS, and CSF-NFL (1, 7, 8). The concentrations of CSF-NFL are
considered to reflect more cumulative underlying pathological
processes that are not captured by disability scores at any given
time, especially since slow progressive PPMS rarely presents a
disease course with acute clinical worsening or dynamic changes
in the EDSS score (33). Accordingly, those studies showing
a—modest—correlation between increased CSF-NFL levels and
clinical function mainly included patients at initial disease
stages with acute clinical exacerbations (6, 24), or patients with
relapsing remitting MS (24). The lack of relationship between
NFL and VEP could be explained by the fact, that the abnormal
VEP describes a localized, circumscribed axonal injury far away
from lumbar CSF, whichmight not trigger the release of sufficient
amounts of NFL in contrast to spinal injury (27, 34).

The PPMS patients recruited at the three different Universities
differed with respect to (i) CSF cell count and album quotient,
which were greater in the Kiel cohort, and (ii) treatment
frequency, which was highest in the Berlin cohort. These
findings lead us to assume that the Kiel patients display more
(clinically silent) inflammatory activity (without corresponding
relapses and MRI contrast-enhancing lesions), and we could
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FIGURE 2 | (A,B) The distribution of neurofilament light (NFL) levels in cerebrospinal fluid (CSF) of primary progressive multiple sclerosis patients. EDSS, Expanded

disability status scale; HC, healthy controls; PPMS, primary progressive multiple sclerosis. Figure 2A shows the missing relationship between the CSF-NFL

concentration and clinical state (EDSS) and current treatment. The CSF-NFL level. Figure 2B illustrates the missing correlation between CSF-NFL and disease

duration.

also deduct that the Berlin University regularly applies off-
label drugs in accordance with positive case series reported
by the Berlin group (19, 35). However, the above parameters
did not affect the PPMS patients’ CSF-NFL levels, which did
not differ between (i) the centers or (ii) treated and untreated
cases.

Limitations of the present study include the absence of MRI
measurements obtained exactly at the same point in time as
the LP was performed. We therefore cannot completely exclude
the presence of Gd-enhancing lesions. Moreover, longitudinal
studies are needed to evaluate if NFL is a suitable biomarker
to predict and adjudicate disability progression in PPMS.
In addition, future studies should address the questions (i)
if CSF-NFL could also aid to differentiate potential PPMS
disease mimics, e.g., hereditary spastic paraplegia, and (ii)
if composite measurement of DTI CST involvement, viewed
together with CSF-NFL levels, may provide a better correlate
with the overall functional state of PPMS patients. A further
point of interest would be to measure the contribution of
the inflammatory vs. neurodegenerative components influencing
the CSF-NFL levels, through contrasting PPMS patients with
acute inflammatory (MRI-) disease activity with those patients
in progressive disease stages and the possible relations to
therapeutic approaches.

In our current study we were able to demonstrate that CSF-
NFL levels can clearly discriminate between slowly progressive
neuroinflammatory (PPMS) and more rapid neurodegenerative
(ALS) processes, but do not correlate with assessments of PPMS
severity on a clinical disease scale. We conclude, that CSF-NFL

mirrors the inflammation driven neurodegenerative aspect in
MS and thus, CSF-NFL might not be an ideal biomarker in
PPMS.
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