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Humans and others primates are highly attuned to temporal consistencies and regularities in their sensory environment and
learn to predict such statistical structure. Moreover, in several instances, the presence of temporal structure has been found
to facilitate procedural learning and to improve task performance. Here we extend these findings to visual object recogni-
tion and to presentation sequences in which mutually predictive objects form distinct clusters or “communities.” Our
results show that temporal community structure accelerates recognition learning and affects the order in which objects
are learned (“onset of familiarity”).

[Supplemental material is available for this article.]

Our understanding of theworld is grounded in sensory experience.
Typically, this experience consists of contiguous streams of sensa-
tions that are richly structured in both time and space (Schapiro
and Turk-Browne 2015). Such statistical structuremay involve sim-
ple correlations of pairs of sensory events or, more generally, clus-
ters of correlations between mutually predictive events forming a
“temporal community” (Schapiro et al. 2013). Both humans and
other primates (Miyashita 1988) can learn to predict such statistical
regularities in space and time (Fiser and Aslin 2001, 2002).
Moreover, statistical structure can be exploited explicitly or implic-
itly to enhance task performance. For example, predictable presen-
tation order can facilitate motor learning (Kahn et al. 2018),
language learning (Saffran et al. 1996), visual search (Chun and
Jiang 1998; Jiang and Wagner 2004; Sisk et al. 2019), and condi-
tional associative learning (Hamid et al. 2010).

In general, implicit (unsupervised) learning of temporal struc-
ture is thought to provide a biological basis for important cognitive
functions, including the formation of episodic memories, learning
of task-sets, model-based planning, and structural learning (e.g.,
Kemp and Tenenbaum 2008; Rigotti et al. 2010; Gershman 2017;
Russek et al. 2017). To improve experimental access to these phe-
nomena, we sought behavioral evidence for interactions between
learning at different hierarchical levels, namely, learning of indi-
vidual objects and learning of the temporal context in which
such objects are experienced.

Sequences of visual presentations may exhibit different kinds
of temporal structure arising from sequential dependencies. A sim-
ple kind of structure is sequential dependency between consecu-
tively presented items (i.e., an increased probability of item X,
given preceding item Y). A more complex kind of structure arises
when sequential dependencies are clustered within subsets of
items. This leads to longer-term dependencies (i.e., an increased
probability of itemX, given recent item Z) and extended sequences
of items that are mutually predictive (Schapiro et al. 2013; Karuza
et al. 2017; Kahn et al. 2018).

The mechanisms of visual object recognition have been stud-
ied extensively (Wallis and Bülthoff 1999) with considerable evi-
dence supporting “feature-based mechanisms” that represent

three-dimensional objects in terms of multiple two-dimensional
features/views (plus interpolations) (Bülthoff and Edelman
1992). Presumably, temporal regularities arise naturally in han-
dling three-dimensional objects and help associate distinct two-
dimensional views and/or features (Wallis and Bülthoff 1999).
For example, when nonhuman primates learn to categorize initial-
ly unfamiliar objects, they readily form neural representations for
arbitrary two-dimensional features that are diagnostic for category
(Sigala and Logothetis 2002; Sigala et al. 2002). Interestingly, such
representations automatically encompass predictive sequential de-
pendencies between successive trials, even when its diagnostic in-
formation is redundant (Miyashita 1988; Wallis 1998).

The effect of sequential dependencies between successive tri-
als on visual object recognition was investigated by two previous
studies, which found a reaction time advantage (Barakat et al.
2013) and a recognition memory advantage (Otsuka and Saiki
2016) for target objects that consistently follow particular objects,
compared with target objects that follow varying objects. Here we
extended these findings in two ways: First, we monitored the for-
mation of recognitionmemorymore closely and comprehensively
(every presentation of every object), and second, we considered the
effect of clustered dependencies creating “temporal communities”
of objects (which are typically experienced for nine successive
presentations).

We investigated performance of observers in a visual object
recognition learning task under three conditions: (1) “strongly
structured” sequences comprising distinct temporal communities
(clusters ofmutually predictive objects), (2) “weakly structured” se-
quences with uniform sequential dependence, and (3) “random”

or “unstructured” sequences without sequential dependence. All
sequences were generated as randomwalks on graphs of n =15 dis-
tinct objects (Fig. 1A), in which nodes represented distinct objects
and edges represented possible transitions (in both directions). As
one sequence comprised 180 object presentations, each graph was
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traversed multiple times (∼11.3 times). Graphs were either modu-
lar and sparsely connected (“strongly structured” sequences), or
nonmodular and sparsely connected (“weakly structured” se-
quences), or nonmodular and fully connected (“unstructured” or
“random” sequences). In “strongly structured” sequences, approx-
imately 9.2 ±0.1 successive presentations (mean± SEM) featured
objects of the same temporal community.

One presentation sequence (“run”) comprised exactly 180
objects and on average included 9.2 ±0.04 (mean± SEM) nonrecur-
ring objects appearing exactly once during the entire experiment.
Nonrecurring objects were spaced 14–19 presentations apart. The
remaining 170±0.04 objects were recurring and were selected by
performing a pseudorandom walk on a graph (Fig. 1A), albeit
with some restrictions: no direct repeats and returns were permit-
ted (e.g., X–X or X–Y–X) and all n=15 objects were repeated com-
parably often (11.4 ±0.04 repetitions). The repetition latency for
any given object ranged from three to >60 presentations. Very
short latencies (of three to five presentations) were far more com-
mon in strongly structured sequences than in weakly structured
or unstructured sequences (Supplemental Fig. S8).

To control the difficulty of shape recognition, ensure initial
unfamiliarity of all objects, and minimize interference from
semantic associations, we generated complex three-dimensional
objects by convolving two closed Bezier curves in a plane.
Complexity was controlled by number and the position of random
seeds for the two curves. The pairwise dissimilarity of the resulting

complex objects was statistically unrelat-
ed to their pairwise distance in the pre-
sentation sequence (see Supplemental
Fig. S1). To ensure this, dissimilarity was
quantified in terms of the vector distance
between depth maps (of resolution 64×
64×64) obtained from six viewing direc-
tions along the three principal compo-
nent axes.

Objects were presented for 2 sec ro-
tating with an angular velocity of 144
deg/sec about an axis in the frontal plane.
Starting angle and axis orientation were
randomized for each trial, forcing observ-
ers to become familiar with the full three-
dimensional shape (rather than just cer-
tain features). Presentation periods were
separated by 0.5-sec transition periods,
during which the previous object disap-
peared toward a distant location on the
right, while the next object approached
from a distant location on the left. This
was intended to encourage observers
to imagine a spatially extended sequence
of distinct objects (Supplemental_
Movie_S1).

Twenty healthy observers (eight
males and 12 females, aged 25 to 34 yr
old) participated in three experiments.
Two experiments compared “strongly
structured” and “unstructured” sequenc-
es, and one experiment compared
“strongly structured” and “weakly struc-
tured” sequences. All observers had nor-
mal or corrected to normal vision and
were paid for their participation. Ethical
guidelinesof theCentre forNeuroscientif-
ic Innovation and Technology, Magde-
burg, were followed.

In order to monitor the progress of
recognition learning as closely as possible, observers were required
to classify every object presented as either “familiar” (seen previ-
ously) or “unfamiliar” (never seen previously). For each observer,
a fresh set of 30 pairwise dissimilar objects was generated. The set
was divided arbitrarily into two subsets of 15 objects, one used
for “structured” sequences and the other for “unstructured” se-
quences. In addition, we generated a larger number (∼500) of non-
recurring objects, which appeared exactly once during the entire
experiment. During each trial, the observer categorized the current
object as “familiar,” “unfamiliar,” and “not sure,” by pressing a
key. No feedback was provided. Observers performed this task on
four different days within 1 wk, with six sequences per day (24 se-
quences overall). Accordingly, observers viewed 4320 presenta-
tions during which every recurring object appearing at least 250
times. After pausing for a week, observers repeated the experiment
with entirely new objects and with sequences generated from an-
other graph (Fig. 1B). Observers were told that each condition
used new objects that were never shown before. To further empha-
size this point, object color changed between conditions. The order
of conditions (structured or unstructured) was counter-balanced
between observers. Observer instructions did not mention presen-
tation order (sequence structure).

At the end of each week of testing, observers were required to
additionally perform a validation task, to assess the extent to
which objects had become familiar (Supplemental_Movie_S2;
Supplemental_Material). In this task, observers viewed for 30 sec

weakly structured
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Run 
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 (4 sessions, 6 runs per session)
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Run 
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(4 sessions, 6 runs per session)

Week 2
 (rest)

strongly structured unstructured
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B

Figure 1. Presentation sequence and trial structure. (A) Presentation sequences were generated as
(nearly) randomwalks on three types of graphs, with nodes representing a distinct object and edges rep-
resenting possible transitions (in both directions). A sparsely connected, modular graph generated
“strongly structured” sequences with distinct community structures (left), a sparsely connected, non-
modular graph generated “weakly structured” sequences (middle), and a full connected graph generat-
ed “unstructured” or “random” sequences (right). (B) Presentation sequences consisted of 180 complex,
three-dimensional objects (shown rotating for 2 sec about a randomly oriented axis in the frontal plane).
Of these, 170±0.04 (mean± SEM) objects were recurring, and 9.2 ± 0.04 objects were nonrecurring.
Observers categorized each object as “familiar” or “unfamiliar.”Over the four sessions of 1 wk, observers
performed 24 runs and viewed 4320 presentations, with every recurring object appearing at least 250
times.
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an array of 12 simultaneously rotating objects, of which three were
randomly selected from the 15 “recurring” objects andnine objects
were entirely new (never seen before). Observers were asked to pick
out the three most “familiar” objects and received binary feedback
(“all correct” or “one ormore incorrect”). All observers approached
ceiling performance (proportion correct >0.95) in all conditions
(all sequence structures), confirming that almost all recurring ob-
jects had become familiar.

To establish the progress of recognition learning, we analyzed
250 repetitions (over four sessions and 24 sequences) of every re-
curring object. To this end, we considered “sliding windows”
with Nw= 5 successive presentations of a given object (for details
see Supplemental Fig. S3). Note that somewindows bridged succes-
sive presentation sequences and/or sessions. For each window and
“recurring” object, we computed the proportion of “familiar” re-
sponses (“hit rate”) (Fig. 2A). As “familiar” objects were common,
some false positives were to be expected. To take this into account,
we also established a “false alarm rate” for each session, as the frac-
tion of “nonrecurring” objects not categorized as “unfamiliar” (Fig.
2B). Combining hit rate (of a window) with false alarm rate (of the
concomitant session), we performed a simplified sensitivity analy-
sis (Macmillan and Creelman 2004) to obtain a corrected classifica-
tion performance ρ and decision bias b for each window and
“familiar” object (see the Supplemental_Material). Alternative sen-
sitivity analyses and performance measures (A′, d′; Stanislaw and
Todorov 1999) did not materially alter the results.

The resulting corrected performance ρ (mean and SEM, as-
suming binomial variability) is shown in Figure 2C. Performance

increased nearly monotonically, but was consistently superior
when objects were presented with “strongly structured” sequences
with “temporal community structure” than when they were pre-
sented in unstructured sequences. This difference was significant
after ∼60 presentations. As expected, observers rapidly developed
a liberal bias (favoring “familiar” responses), which weakened
somewhat over subsequent sessions (Fig. 2D).

We also analyzed the time-development of average response
times (RTs). Consistent with the performance results, RTs de-
creased faster for strongly structured sequences than for unstruc-
tured sequences (Supplemental_Material; Supplemental Fig. S2).

In addition to the gradual increase in the probability of recog-
nizing recurring objects, we also sought to determine the point in
time at which individual objects became familiar (“onset of famil-
iarity”). We defined this point in two alternative ways: (1) as the
first window inwhich corrected performance exceeded a threshold
of ρ≥0.875 (high threshold approach) or (2) as the window in
which entropy Hr = −[rlog2(r)+ (1− r)log2(1− r)] of corrected
performance reached its peak value (low threshold approach).
Note that entropy peaks at the transition from exclusively “unfa-
miliar” to exclusively “familiar” responses.

After establishing the “onset of familiarity” for each object,
we ranked all objects by order of onset and established the “onset
separation” between object pairs in terms of onset rank (Δn) and
presentation rank (Δk). The median separation of successive onsets
(defined by threshold or entropy) was nine or 16 presentations, re-
spectively. Interestingly, the median separation of successive on-
sets in same cluster was roughly thrice as long, with 24 and 50
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Figure 2. Time course of recognition learning. (A) Average hit rate (recurring categorized as familiar, per window) increases with the number of presen-
tations of a given object. (B) Average false alarm rate (nonrecurring not categorized as unfamiliar, per session) decreases with the number of presentations.
(C ) Average corrected performance ρ increases nearly monotonically with presentation number. It was consistently larger for strongly structured sequences
(with temporal community structure) than for unstructured sequences. (D) Average criterion bias b, as a function of presentation number. Green regions
indicate the transition between sessions (20%–80% of objects in previous session).
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presentations, respectively, implying that successive onsets oc-
curred during separate visits to a given community.

In strongly structured sequences, onemay distinguish objects
pairs XY that are “adjacent” [follow each other with P(Y|X) = 0.25]
or “nonadjacent” [never follow each other, P(Y|X) = 0]. In addition,
one may distinguish object pairs within the same community (ei-
ther adjacent or nonadjacent) and between different communities
(also either adjacent or nonadjacent). Note that the objects linking
different communities (“linking objects”) contribute both “adja-
cent” pairs in different communities and “nonadjacent” pairs in
the same community (Fig. 3B).We analyzed the “onset of familiar-
ity” for different object pairs (as defined above), specifically, the
probability that the two members of a pair exhibit successive on-
sets (Δn=1) or nearly successive (Δn =2) onsets. Interestingly, the
probability of successive onsets was significantly higher than
chance for objects in the same community (null hypothesis H0:
“onsets” are ordered randomly) (Fig. 3A). Moreover, we found
the probability of successive “onsets” to be significantly elevated
for “adjacent” objects in the same cluster, insignificantly elevated
for “adjacent” objects in different clusters (“linking objects”), and
significantly reduced for “nonadjacent” objects in different clus-
ters (P<0.05; corrected for false discovery rate of multiple compar-
isons) (Fig. 3B; Benjamini and Hochberg 1995).

We conclude that temporal community structure had a signif-
icant effect on the order of recognition learning in the sense that
familiarity of one object in a community facilitated familiarity of
another object in the same community, provided the latter was
“adjacent” [i.e., followed the former sometimes, P(Y|X) = 0.25].
Interestingly, no such “domino effect”was observed for the objects
linking two different communities (i.e. adjacent objects in differ-
ent communities).

The results presented in Figures 2 and 3 were replicated with
an additional eight observers in a second experiment of almost
identical design (Supplemental Figs. S4, S6).

To dissociate the effects of cluster-membership and adjacen-
cy, we also conducted a third experiment, in which six further ob-
servers viewed either “weakly structured” presentation sequences
(during 1 wk) or “strongly structured” sequences (during another
week). To generate “weakly structured” sequences without tempo-
ral communities, we generated sparsely connected graphs with ex-
actly four links per node, but without any triangular link

formations (Maslov and Sneppen 2002; Rubinov and Sporns
2010). Recognition learning was faster for “strongly structured” se-
quences than for “weakly structured” ones. The “domino” effect
described above was again observed for “strongly structured” se-
quences (with both “onset” definitions), but to some extent also
for “weakly structured” sequences (for one “onset” definition).
Thus, the ordering of “onsets” of familiarity may be affected
both by community membership and by adjacency in the presen-
tation sequence (Supplemental Figs. S5, S7).

In this study, we investigated the effect of temporal commu-
nity structure by comparing more or less structured presentation
sequences. First, in “weakly structured” sequences, sparse connec-
tivity of the generative graph ensured that each object predicted
the next object with 25% probability (one of four possibilities).
Second, in “strongly structured” sequences, the (equally sparse)
generative graph was clustered into three communities of five ob-
jects, so that each object predicted the community membership
of the next object with 90% probability (18 of 20 possibilities).

Previous studies of statistical learning did not aim to closely
follow the learning of individual items (Siegelman et al. 2018).
Here we sought to monitor the degree of familiarity of each indi-
vidual object over successive presentations (Fig. 2). Whereas classi-
fication performance improved monotonically with presentation
number for all sequences, a significant performance advantage de-
veloped quickly (over 60 to 70 presentations) for “strongly struc-
tured” sequences compared with either “unstructured” or
“weakly structured” sequences (Supplemental Fig. S5). Note that
recognition performance improved comparably over time, with
or without having practiced stimulus-response mapping in a sepa-
rate training session (experiments 2 and 3). Accordingly, we do not
believe that motor learning contributed appreciably to these
results.

Thanks to close monitoring, we could almost always deter-
mine the onset of familiarity for an individual object. Interestingly,
the ordering of onsets did not appear to be fully random, in that
objects of the same community (“temporal community”) tended
to become familiar after one another more often than expected
by chance. Interestingly, this “domino effect” typically did not oc-
cur within one “extended visit” to a community but over subse-
quent visits to a given community. This “domino effect” was
particularly pronounced for adjacent objects in the same
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Figure 3. Analysis of the onset of familiarity with individual objects. (A) Successive onsets of familiarity (Δn=1) are far more likely ([**] P<0.005) for
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community, but was not observed for adjacent objects in different
communities. As a similar effect was observed for adjacent objects
in “weakly structured” sequences without communities, there
seems to be a contribution of frequent temporal proximity.

At the end of training, all objects had become familiar and
could be retrieved explicitly from long-term memory, for both
structured and unstructured sequences. The reason for the ob-
served difference in learning rates remains unclear. One possibility
is that structured sequences pose a reduced working-memory load,
facilitating encoding and accelerating learning. When large sets of
items are divided (“chunked”) into subsets, both chunked and
nonchunked items benefit and are learned more readily. Presum-
ably, chunking reduces the dimensionality of the classification
problem presented by each item (just like chunking the search ar-
ray in an odd-man-out task reduces the dimensionality of target
detection). This reduced dimensionality could then lower
working-memory load and facilitate classification by comparison
with long-termmemory for both familiar (chunked) items and un-
familiar (nonchunked) items. Another important factor might be
that temporal communities reduce repetition latencies (Supple-
mental Fig. S8). There is evidence that timely repetitions help con-
solidate memories, whereas delayed repetitions leave memories
prone to disruption (Thalmann et al. 2019).

Previous studies of the effect of “temporal community struc-
ture” have shown that cluster borders are detectable (Schapiro
et al. 2013) and that such borders elevate reaction time (Kahn
et al. 2018; Karuza et al. 2019). As border items are thought to facil-
itate encoding/retrieval (Swallow et al. 2009), one might have ex-
pected accelerated recognition learning for “linking objects” that
join two different clusters. However, in our paradigm, neither
learning rate nor ordering of onsets of familiarity distinguished
“linking objects” from other objects. In fact, our results suggest
that any chunking benefits (Thalmann et al. 2019) apply more to
objects within clusters than to objects that “link” clusters.

In summary, we showed that the presence of temporal com-
munities of mutually predictive objects accelerates recognition
learning for complex, three-dimensional objects and alters the or-
der of recognition learning such thatmembers of a group are often
learned after one another (but separated by many intervening
presentations).
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