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Abstract

This study investigates signals from sustained phonation and text-dependent speech

modalities for Parkinson’s disease screening. Phonation corresponds to the vowel /a/ voic-

ing task and speech to the pronunciation of a short sentence in Lithuanian language. Signals

were recorded through two channels simultaneously, namely, acoustic cardioid (AC) and

smart phone (SP) microphones. Additional modalities were obtained by splitting speech

recording into voiced and unvoiced parts. Information in each modality is summarized by 18

well-known audio feature sets. Random forest (RF) is used as a machine learning algorithm,

both for individual feature sets and for decision-level fusion. Detection performance is mea-

sured by the out-of-bag equal error rate (EER) and the cost of log-likelihood-ratio. Essentia

audio feature set was the best using the AC speech modality and YAAFE audio feature set

was the best using the SP unvoiced modality, achieving EER of 20.30% and 25.57%,

respectively. Fusion of all feature sets and modalities resulted in EER of 19.27% for the AC

and 23.00% for the SP channel. Non-linear projection of a RF-based proximity matrix into

the 2D space enriched medical decision support by visualization.

Introduction

Parkison’s disease (PD) is the second most common neurodegenerative disease after Alzhei-

mer’s [1] and it is anticipated that the prevalence of PD is going to increase due to population

ageing. The loss of dopaminergic neurons can reach up to 50% at the time of clinical diagnosis

[2] and rapidly increases completing by 4 years post-diagnosis [3]. Any neuroprotective strate-

gies that may emerge in the near future could be too late to effectively slow down the neurode-

generative process. Therefore, early objective diagnostic markers are critically needed.

Amongst many other symptoms, PD manifests itself through speech disorders, which can be

observed as early as 5 years before the diagnosis [4]. Investigations show that Parkinsonian

vocal dysfunction can be characterized by: reduced vocal tract volume and reduced tongue

flexibility, significantly narrower pitch range, longer pauses and smaller variations in pitch

range, voice intensity level, and articulation rate. Therefore, automated acoustic analysis is

considered by many researchers as an important non-invasive tool for PD screening. To this
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end, acoustic analysis aims at solving either regression or classification task: PD severity evalu-

ation based on vocal function assessment from audio samples [5–8], as in the Interspeech 2015

computational paralinguistics challenge, or early detection of PD by learning to classify audio

samples into healthy control (HC) or PD cases [9–17].

Recent computational and electronic advancements have made it possible for researchers to

explore ambitious concepts such as smart homes or personalized medicine, and to bring us

closer to the realization of ambient intelligence in our daily environments [18]. Ambient intel-

ligence has potential to provide low-cost healthcare monitoring in an unobtrusive way and

enhance healthcare domain dramatically. Usage of hand-held device, such as smart-phone, for

non-invasive measurements is getting increased attention from the researchers. Prominent

examples of this direction with respect to PD is Johns Hopkins [19] and the mPower [20] stud-

ies. In these studies performance of PD detection using smart-phone internal microphone is

not compared to the detection using professional microphone. Therefore, it remains unclear

how much the quality of the recording channel influences performance.

Size of previously used databases is a major problem undermining reported estimates of PD

detection performance. Very small datasets (usually less than 60 PD cases) are used in most

studies performed so far with various success: 98.6% detection accuracy was obtained by [11]

using /a/ phonation from 33 PD and 10 HC subjects, 92% detection accuracy was achieved by

[12] using /e/ phonation from 20 PD and 20 HC subjects, 71.6% detection accuracy was

reported by [13] using /i/ phonation from 50 PD and 50 HC subjects. Experiments of [21]

using /a/ phonation from 50 PD and 50 HC subjects achieve 82% and 90% accuracy for males

and females, respectively. Vasquez-Correa et al. [15] used running Spanish speech recorded in

non-controlled noise conditions from a set of 14 PD and 14 HC subjects to detect PD. Voiced

and unvoiced segments of the signals were analysed separately and different sets of audio fea-

tures were considered, achieving 86% and 99% detection accuracy for voiced and unvoiced

frames, respectively. Expanded corpus, containing 170 German speakers (85 PD and 85 HC),

100 Spanish speakers (50 PD and 50 HC), and 35 Czech speakers (20 PD and 15 HC), having

recordings of texts and monologues, was used by [16] and the energy content in the transitions

between voiced and unvoiced segments was estimated. Using read texts the detection accuracy

ranged from 91% to 98%, depending on the language, whereas using monologues accuracy

exceeded 98% for all the three languages. Their seminal research [17], based on probably the

largest number of PD subjects (88 German speakers in the trilingual corpora), recommends

splitting of speech recording into voiced / unvoiced parts and reports accuracies ranging up to

99%.

Another common problem in some of the previous studies [8, 9, 12–14, 22–25] is the lack

of declaration that leave-one-subject-out [17], also known as leave-one-individual-out [10],

validation scheme was respected. The importance of disjointedness with respect to subjects

arises when a subject is represented by several recordings and all subject’s recordings should

be included either in a training or in a testing sample. For example, conformity to leave-one-

subject-out validation scheme in [12, 13] could have been lacking, since methodological guide-

lines of [26] they follow do not stress the importance of disjointedness on the subject-basis.

Meanwhile, the new publication of similar authors [21] do not refer to guidelines of [26] any-

more, but explicitly declare that “each subject is in a different test fold, and the same subject

never is in both test and train groups”. The Oxford PD detection dataset, donated by [9] and

available in the UCI data repository, contains 22 pre-calculated features (signal amplitude and

fundamental frequency perturbation measures, signal-to-noise ratios) for a set of 24 PD and 8

HC subjects, each having *6 recordings with /a/ phonation. This dataset was used by many

researchers, resulting in detection accuracies ranging from 91.4% [9] or 91.8% [22] up to

99.49% [14] and even reaching 100% [23–25]. High PD recognition accuracy from voice
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recordings, reported in these researches, could be suspected to be achieved due to the lack of

conformity to leave-one-subject-out scheme. Accuracy of 79.17% was obtained by [8] when

categorizing the Oxford dataset into the healthy class and three classes of PD of different sever-

ity, but it remains not clear, if disjointedness with respect to subjects was followed. Compari-

son of validation approaches in [10] using the Oxford dataset reveal 81.53±2.17% accuracy for

leave-one-individual-out versus 92.75±1.21% accuracy for leave-one-out sampling. Naranjo

et al. [27] suggested using a subject-based Bayesian approach to deal with dependency in a

“replicated measure-based design” (several recordings from one subject), demonstrating

75.2% accuracy on a dataset of 40 PD and 40 HC subjects.

The main emphasis of the related work remains on the extraction of various feature sets.

Some researchers use large sets of audio features with an aim to comprehensively characterize

recordings [15], including the renowned cepstral coefficients such as Mel-frequency (MFCCs)

or perceptual linear predictive (PLPCCs), while others adopt only “clinically useful” measures

or apply feature selection [11] to arrive at a compact set of audio descriptors. Comprehensive

review of the related work was recently compiled by [17]. There is a lack of studies comparing

performance of popular audio feature sets on the same dataset and considering fusion of fea-

ture sets from several modalities. Due to variety of datasets and performance assessment pro-

cedures used in different studies, and also due to different preferences and approaches for

feature engineering, the question concerning the discriminatory power of various well-known

audio feature sets remains unanswered. We try to address the aforementioned problems by

exploring 18 diverse collections of audio descriptors on the same database recorded through

two channels—acoustic cardioid (AC) and smart phone (SP) microphones. Unimodal and

multimodal decision-level fusions of individual feature sets from phonation, speech, and

voiced / unvoiced modalities are considered for a robust and accurate PD detection. Variable

importance as a mean decrease in detector’s accuracy is reported. Finally, a convenient solu-

tion regarding data visualization for medical decision support is demonstrated.

Phonation and speech data

Two vocal tasks were recorded in a sound-proof booth and treated as separate modalities—

phonation and speech. Phonation modality contains a sustained voicing of vowel /a/ vocalized

at a comfortable pitch and loudness level for at least 5 s and repeated 3 times. Speech modality

contains a single pronunciation of a phonetically balanced sentence in a native Lithuanian lan-

guage,—“turėjo senelė žilą oželį”,—which translates into “granny had a little greyish goat”.

Speech recording was split using Praat software into voiced / unvoiced parts, which were

treated as additional modalities in experiments. Audio samples were recorded using two chan-

nels simultaneously—acoustic cardioid (AKG Perception 220, frequency range 20–20000 Hz)

and a smart phone (an internal microphone of Samsung Galaxy Note 3). Both microphones

were located at *10 cm distance from the mouth. The audio format was mono PCM wav (16

bits at 44.1 kHz sampling rate). A mixed gender database was collected where 99 subjects had

both AC and SP recordings. One PD male subject had AC speech recording missing, therefore,

fusion of modalities for AC channel was possible only for 98 subjects. Full details are in

Table 1.

Audio feature sets

Information from an audio recording of phonation or speech signal can be extracted using a

variety of signal analysis techniques. Computed measures are commonly known as features.

Full list of audio feature sets used in this study is provided in Table 2. All the feature sets were
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published before and most have publicly downloadable feature extractors. With regard to the

amount of signal used for calculations, features can be categorized into:

• global, long-term or high-level descriptors;

• local, short-term or low-level descriptors (LLDs).

The local features are obtained by dividing a recording into short overlapping frames and

applying an algorithm that computes a respective LLD for each frame. LLDs subsequently can

be compressed into high-level descriptors by computing various statistical functionals. The

feature sets # 1–12 had their own predefined choice from 42 statistical functionals. Statistical

functionals for the feature sets # 13–17 correspond to the following 13 characteristics: mini-

mum, maximum, mean, median, lower quartile (Qlo), upper quartile (Qup), trimean

(
2�medianþQloþQup

4
), standard deviation, inter-quartile range, lower range (median − Qlo), upper

Table 1. Summary of the database: Numbers correspond to the count of subjects (recordings).

Phonation Speech Fusion

AC SP AC SP AC SP

HC male 11 (33) 11 (33) 11 11 11 (33) 11 (33)

HC female 24 (72) 24 (72) 24 24 24 (72) 24 (72)

HC total 35 (105) 35 (105) 35 35 35 (105) 35 (105)

PD male 30 (89) 30 (90) 29 30 29 (85) 30 (90)

PD female 34 (101) 34 (102) 34 34 34 (101) 34 (102)

PD total 64 (190) 64 (192) 63 64 63 (186) 64 (192)

Total 99 (295) 99 (297) 98 99 98 (291) 99 (297)

Notes. Subject: PD—Parkinson’s disease patient, HC—healthy control subject. Microphone: AC—acustic cardioid, SP—smart phone.

https://doi.org/10.1371/journal.pone.0185613.t001

Table 2. List of the individual feature sets.

# Feature set name Size Reference

1 avec2011 1941 [28]

2 avec2013 2268 [28]

3 emo_large 6552 [28]

4 emobase 988 [28]

5 emobase2010 1582 [28]

6 IS09_emotion 384 [28]

7 IS10_paraling 1582 [28]

8 IS10_paraling_compat 1582 [28]

9 IS11_speaker_state 4368 [28]

10 IS12_speaker_trait 5757 [28]

11 IS12_speaker_trait_compat 6125 [28]

12 IS13_ComParE 6373 [28]

13 Essentia descriptors 1915 [29]

14 MPEG7 descriptors 527 [30]

15 KTU features 1267 [31, 32]

16 jAudio features 1794 [33]

17 YAAFE features 1885 [34]

18 Tsanas features 339 [35]

https://doi.org/10.1371/journal.pone.0185613.t002
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range (Qup − median), skewness, and kurtosis. The feature set # 18 uses mostly mean and stan-

dard deviation.

OpenSMILE features

The feature sets # 1–12 are computed using preconfigured setups available in the openSMILE
[28] toolkit (version 2.2 RC 1). Name of each feature set is identical to the name of the configu-

ration (.conf) file. Most of these setups are quite similar, therefore, for illustration, only con-

tents of emobase.conf are specified in Table 3. The feature set emobase, introduced for

emotion recognition, contains 26 LLDs and also the 1st derivative (delta or velocity) of each

LLD. To summarize various aspects of frame-based data distribution for each LLD and its

delta, a collection of statistical functionals is applied. The overall size of the feature set is 988

features = (26 LLDs + 26 deltas) × 19 functionals.

The file emobase.conf contains these processing-related settings:

• pitch and pitch envelope are estimated using pre-emphasis (of 0.97) and overlapping (by a

step of 10 ms) Hamming windows (of 40 ms duration);

• other LLDs are obtained without pre-emphasis and the signal is windowed into overlapping

(by a step of 10 ms) Hamming windows (of 25 ms duration).

Computed LLDs are smoothed with a simple moving average filter (window size = 3) before

compressing by statistical functionals.

Essentia descriptors

The feature set # 13 was computed using an open-source C++ library for audio analysis—

Essentia [29] (version 2.1 beta 2)—and its out-of-the-box feature extractor

streaming_extractor_freesound.exe (version 0.3). The lowlevel and sfx
descriptor types were used and the tonal and rythm descriptor types were discarded (due

to the fact that analysed signals are human voice and speech but not music). A detailed list of

1915 (17 global + 146×13 local) descriptors:

• 1 global descriptor of the lowlevel type—average loudness;

• 16 global descriptors of the sfx type—5 temporal (centroid, decrease, kurtosis, skewness,

spread), 4 morphological (the ratio between the index of the maximum value of the envelope

of a signal and the total length of the envelope, the ratio of the temporal centroid to the total

length of a signal envelope, the weighted average of the derivative after the maximum ampli-

tude, the maximum derivative before the maximum amplitude), pitch centroid, strong

decay, flatness, log attack time of a signal envelope, the ratio between the index of the maxi-

mum value of the pitch envelope of a signal and the total length of the pitch envelope, the

ratio between the index of the minimum value of the pitch envelope of a signal and the total

length of the pitch envelope, and the ratio between the pitch energy after the pitch maximum

to the pitch energy before the pitch maximum;

Table 3. Overview of the emobase.conf file settings.

Low-level descriptors Statistical functionals

intensity, loudness, pitch, pitch envelope, 12

MFCCs, 8 frequencies of line spectral pairs,

probability of voicing, zero-crossing rate

min (or max) value and its relative position in a signal,

range, arithmetic mean, standard deviation,

skewness, kurtosis, 3 quartiles, 3 inter-quartile

ranges, 2 linear regression coefficients, linear and

quadratic error

https://doi.org/10.1371/journal.pone.0185613.t003
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• 141 local descriptors of the lowlevel type—spectral energy in 77 bands (28 frequency

bands, 4 bands of low/mid-low/mid-high/high frequencies, 18 ERB bands, 27 Bark bands), 3

statistics of spectral energy in Bark bands (kurtosis, skewness, spread), 13 MFCC, 13 GFCC

(using Gammatone filterbank), 15 spectral (energy, entropy, complexity, centroid, strong

peak, crest, Masri-Bateman high frequency content measure, RMS, roll-off, decrease, flatness

in dB, flux, kurtosis, skewness, spread), 6 spectral contrasts, 6 spectral contrast valleys, 3

pitch-related (pitch, instantaneous confidence of pitch, salience of pitch), 3 silence rates (20

dB, 30 dB, 60 dB), dissonance, and zero-crossing rate;

• 5 local descriptors of sfx type—3 tristimulus values, inharmonicity, and odd-to-even har-

monic energy ratio.

MPEG7 descriptors

The feature set # 14 was composed from MPEG-7 standard-based descriptors which were

extracted using the Java library MPEG7AudioEnc [30] (version 0.4 RC 3). The MPEG-7

audio standard defines normative for audio content description as a comprehensive form of

meta-data, enhancing searchability of multimedia content. A detailed list of 527 (7 global

+ 40×13 local) descriptors:

• 7 global descriptors—4 harmonic spectral (centroid, deviation, variation, spread), 2 centroid

(spectral, temporal), and log attack time;

• 40 local descriptors—36 audio spectrum (24 flatness, 10 envelope, centroid, spread), 2 audio

harmonicity, audio fundamental frequency, and audio power.

KTU features

The feature set # 15 was introduced for voice pathology screening by [36] at Kaunas University

of Technology and later expanded to include additional features. The latest variant of this fea-

ture set was devised here by combining feature subsets # 1–13 of [31] with MFCC and PLPCC

features of [32]. For MFCC and PLPCC features the signal is pre-emphasized by 0.97 and

frames are computed using the sliding 10 ms (440 samples) Hamming window with 5 ms over-

lap. The frame-based 19 MFCCs and 19 PLPCCs were characterized by 13 statistical func-

tionals, resulting in a subset of 494 features. Combining 773 [31] and 494 [32] features formed

the KTU feature set of 1267 features.

jAudio features

The feature set # 16 was computed using the Java application jAudio [33] (version 0.4.5.1),

which was developed as a standardized audio feature extraction system for automatic music

classification. All features selected were frame-based with window size of 1024 (corresponding

to *23.3 ms frame length) and window overlap of 50%. A detailed list of 1794 (138×13 local)

features: 100 area (zeroth moment) estimates from 2D method of moments analysis of spectral

data frames, 13 MFCC, 10 LPC, 4 spectral (centroid, flux, rolloff point, variability), 3 strongest

frequency (via zero crossings, via spectral centroid, via FFT maximum), 2 partial-based spec-

tral (centroid, flux), peak-based spectral smoothness, compactness, root mean square, fraction

of low energy windows, relative difference function, and zero crossings.
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YAAFE features

The feature set # 17 was computed by yet another audio features extraction toolbox—YAAFE
[34] (version 0.65). Default settings were left intact for the following list of 1885 (145×13 local)

features: 24 loudness, 23 spectral crest factor per band, 23 spectral flatness per band, 13 MFCC,

12 shape statistics (4 envelope, 4 spectral, 4 temporal), 10 LSF, 10 OBSI, 9 OBSIR, 8 amplitude

modulation, 6 spectral (decrease, flatness, flux, rolloff, slope, variation), 2 LPC, 2 perceptual

(sharpness, spread), complex domain onset detection, energy, and zero-crossing rate.

Tsanas features

The feature set # 18 contained various dysphonia measures and was dedicated initially specifi-

cally for PD screening. The Matlab code to compute these features is publicly available as

Voice AnalysisToolbox (version 1.0) and the full list of 339 features is described in PhD

thesis of [35]. Collection of audio features contains: jitter variants, shimmer variants, har-

monic-to-noise ratio, noise-to-harmonics ratio, glottal quotient, glottal-to-noise excitation

ratio, vocal fold excitation ratio, entropy of intrinsic mode functions from empirical mode

decomposition, log energy, 13 MFCCs and their 1st and 2nd differences, de-trended fluctua-

tion analysis, pitch period entropy and recurrence period density entropy.

Methodology

Random forest (RF) [37] was used as a supervised algorithm to detect PD and also to fuse

information in the form of soft decisions, obtained using various audio feature sets from sepa-

rate modalities.

Random forest

RF is a committee of decision trees, where the final decision is obtained by majority voting.

The basic idea of RF is to combine many (B in total) unprunned CART (classification and

regression tree) models, built on different bootstrap samples of the original dataset X and a

random subset (of predetermined size q) of features x1, . . ., xp. For our experiments B was

5000 and after testing several specific values of q (
ffiffiffipp , 2 �

ffiffiffipp , 1

2
� p) the best performing (giving

the lowest Cllr) q was chosen.

RF is known to be robust against over-fitting and as the number of trees increases, the gen-

eralization error converges to a limit [37]. Low bias and low correlation are essential for the

robust generalization performance of the ensemble. To get low bias, trees are unpruned

(grown to the maximum depth). To achieve the low correlation of trees, randomization is

applied.

RF is constructed in the following steps:

1. Choose the forest size B as a number of trees to grow and the subspace size q� p as a num-

ber of features to provide for each tree node.

2. Draw a bootstrap sample (random sample with replacement) of the dataset, which generally

results in� 2
3
� n unique observations for training, thus leaving� 1

3
� n for testing as the out-

of-bag (OOB) dataset for that particular tree, where n is the number of observations in the

dataset.

3. Grow an unpruned tree using the bootstrap sample. When growing a tree, at each node, q
variables are randomly selected out of the p available.

4. Repeat steps 2 and 3, until the size of the forest reaches B.
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The generalization performance of RF was evaluated using internal out-of-bag (OOB) vali-

dation, where each observation is classified only by the trees which did not have this observa-

tion in the bootstrap sample during construction. It is well known that the OOB validation

provides an unbiased estimate of a test set error, similar to the leave-one-out scheme. Because

of the “repeated measures” aspect, often arising in the phonation modality when each subject

is represented by several recordings of voiced vowel, the sampling part of the Matlab imple-

mentation [38] had to be modified to ensure that all recordings of each subject are included

either in a bootstrap sample or left aside as OOB. Added modification conforms to the leave-

one-subject-out approach and helps to avoid biased evaluation when pathology detection

intermingles with speaker detection. Additionally, the RF setting of stratified sampling was

configured to preserve the class and gender balance of the full dataset in each bootstrap

sample.

Decision-level fusion

Individual RFs were built independently using various feature sets and OOB decisions of these

individual experts were combined in a meta-learner fashion. RF was applied both as a base-

learner and as a meta-learner. Therefore, outputs from the first stage base RFs are

concatenated into a new feature vector, which becomes an input for the second stage meta RF.

In the detection task, an input to the meta-learner is the difference between class posteriori

probabilities computed by the base-learner. Given a trained base-learner, this difference is esti-

mated as:

dðft1; :::; tbg; xÞ ¼
Pb

i¼1
f ðti; x; c ¼ 2Þ

b
�

Pb
i¼1

f ðti; x; c ¼ 1Þ

b
ð1Þ

where x is the object being classified, b is the number of trees t1, . . ., tb in the RF for which

observation x is OOB, c is a class label (1 corresponds to HC, 2 to PD), and f(ti, x, c) stands for

the c-th class frequency in the leaf node, into which x falls in the i-th tree ti of the forest:

f ðti; x; cÞ ¼
nðti; x; cÞ

PC
j¼1

nðti; x; cjÞ
ð2Þ

where C is the number of classes and n(ti, x, c) is the number of training data from class c fall-

ing into the same leaf node of ti as x.

Additionally, for the purpose of visualization, a data proximity matrix F was obtained from

the best meta-RF. Proximity matrix is constructed as follows: observations, represented by the

meta-features, are run down each tree grown and the matrix element ϕij is increased by one

when two observations xi and xj are found in the same terminal node of the tree. After the

meta-RF is constructed, proximities are obtained and divided by the total number of trees in

the meta-RF. To project data into the 2D space, the proximity matrix F was converted through

a simple 1 − F operation into a distance matrix and was provided as an input to the t-distrib-

uted stochastic neighbor embedding (t-SNE) algorithm [39] to implement dimensionality

reduction. The main tunable parameter of t-SNE is perplexity, which controls the trade-off

between concentrating on local versus global aspects of the data [40] and is comparable to the

number of nearest neighbors in other manifold learning algorithms.

Assessing detection

RF detector’s scores for OOB data were used to evaluate the goodness of detection. Votes of

RF were converted to a proper score by dividing votes for a specific class from the total number
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of times the case was OOB, as in formula (1). Soft decision (score) instead of hard decision

(predicted class) makes evaluation more precise by enabling visual summary of detection per-

formance through the detection error trade-off (DET) curve, as recommended by [26]. A

quick way to compare detectors with different DET curves is the equal error rate (EER)—the

equilibrium point where curve intersects diagonal [41] and false positive rate (miss rate)

becomes equal false negative rate (false alarm rate) or true positive rate (sensitivity) becomes

equal true negative rate (specificity). The minimum cost of log-likelihood-ratio (Cllr) is a com-

prehensive detection metric used here as the main criterion for model selection. The log-likeli-

hood-ratio is the logarithm of the ratio between the likelihood that the target (PD person)

produced the signal and the likelihood that a non-target (HC person) produced the signal. The

DET curve, EER and Cllr measures were computed by the ROC convex hull method using the

BOSARIS toolkit [42]. A well-calibrated and useful detector should provide Cllr < 1 and

EER< 50%.

Experimental results

The detection performance of individual feature sets was evaluated by estimating recording-

based Cllr and EER measures. Then various unimodal and multimodal decision-level fusions

were tested. Numbers corresponding to the minimum of each table column are denoted in

bold italic font style.

Individual feature sets

Detection performance obtained using individual feature sets is summarized in Tables 4 and 5.

DET curves of the best performing feature set (having the lowest EER) for each modality are

provided in Fig 1. Essentia descriptors were the best using the AC channel for phonation,

speech and voiced modalities, providing EER of 20.78%, 20.30%, and 24.52%, respectively. The

best performance for unvoiced modality using the AC channel was EER of 24.89% obtained by

IS13_ComParE features. The best individual performance using the SP channel for phonation,

speech, voiced and voiced modalities was observed with Tsanas, jAudio, IS11_speaker_state

and YAAFE features, providing EER of 29.02%, 26.12%, 28.36% and 25.57%, respectively. If

instead of EER we consider Cllr, the best feature set for the unvoiced modality of the AC chan-

nel is IS12_speaker_trait_compat and for the voiced modality of the SP channel is Tsanas.

Phonation is often outperformed by the speech, especially in the SP channel, where the excep-

tion to this tendency is shown only by 2 feature sets (# 1–2) according to Cllr or 5 feature sets

(# 1–4, 8) according to EER. Interestingly, the best individual performance in the AC channel

was observed for the speech recording, but in the SP channel for the unvoiced part of the

speech.

Variable importance analysis for the best performing feature sets is summarized in S1 File.

Results for the AC phonation and speech modalities indicate the frequency band, Bark fre-

quency band and the spectral statistics as the most important audio features. Results for the SP

microphone indicate the MFCCs in speech and spectral statistics in unvoiced modality as the

most important audio features.

Decision-level fusion

Decision-level fusion of individual feature sets from all modalities helped to improve detection

performance slightly according to EER (compare Table 5 with Table 6 and DET curves in Fig

1), where the best average EER was 19.27% for the AC and 23% for the SP channel. Meanwhile,

according to Cllr no fusion variant could improve over performance of the best individual fea-

ture set from the single modality (compare 0.529 of AC speech and 0.623 of SP unvoiced in
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Table 4. OOB detection performance by Cllr using individual feature sets.

# Feature set name Modalities using AC channel Modalities using SP channel

P S V U P S V U

1 avec2011 0.802 0.693 0.782 0.708 0.791 0.806 0.871 0.683

2 avec2013 0.794 0.749 0.813 0.726 0.809 0.833 0.879 0.665

3 emo_large 0.744 0.758 0.768 0.724 0.834 0.775 0.856 0.760

4 emobase 0.718 0.737 0.758 0.666 0.857 0.776 0.833 0.637

5 emobase2010 0.837 0.854 0.735 0.777 0.830 0.778 0.792 0.734

6 IS09_emotion 0.906 0.778 0.807 0.734 0.842 0.804 0.839 0.742

7 IS10_paraling 0.841 0.833 0.750 0.777 0.832 0.738 0.787 0.723

8 IS10_paraling_compat 0.838 0.879 0.706 0.777 0.826 0.764 0.792 0.729

9 IS11_speaker_state 0.822 0.722 0.767 0.636 0.838 0.777 0.758 0.737

10 IS12_speaker_trait 0.822 0.724 0.735 0.649 0.822 0.741 0.773 0.766

11 IS12_speaker_trait_compat 0.814 0.727 0.758 0.624 0.816 0.739 0.795 0.734

12 IS13_ComParE 0.819 0.701 0.745 0.641 0.817 0.755 0.783 0.767

13 Essentia_descriptors 0.606 0.529 0.580 0.747 0.912 0.804 0.839 0.713

14 MPEG7_descriptors 0.665 0.623 0.798 0.753 0.910 0.844 0.911 0.745

15 KTU_features 0.810 0.770 0.780 0.767 0.930 0.805 0.837 0.707

16 jAudio_features 0.806 0.772 0.893 0.720 0.886 0.670 0.817 0.692

17 YAAFE_features 0.717 0.761 0.770 0.713 0.892 0.701 0.812 0.623

18 Tsanas 0.790 0.762 0.719 0.719 0.790 0.747 0.749 0.700

Notes. Microphone: AC—acustic cardioid, SP—smart phone. Modality: P—phonation, S—speech, V—voiced part of speech, U—unvoiced part of speech.

https://doi.org/10.1371/journal.pone.0185613.t004

Table 5. OOB detection performance by EER (in %) using individual feature sets.

# Feature set name Modalities using AC channel Modalities using SP channel

P S V U P S V U

1 avec2011 30.65 27.40 31.38 28.46 30.74 34.08 36.67 26.96

2 avec2013 32.09 28.76 31.61 29.59 32.64 34.90 38.41 27.32

3 emo_large 25.74 29.58 28.57 30.64 29.17 30.18 34.33 32.00

4 emobase 24.14 26.41 27.82 25.54 32.59 32.78 36.15 26.07

5 emobase2010 31.84 35.76 32.22 35.71 30.89 30.17 31.34 31.34

6 IS09_emotion 37.03 28.06 33.86 32.56 34.26 32.17 33.82 28.33

7 IS10_paraling 32.59 34.01 31.71 35.20 31.89 30.53 32.62 31.54

8 IS10_paraling_compat 31.04 36.25 31.15 34.75 30.51 30.74 31.90 30.80

9 IS11_speaker_state 31.24 30.83 33.02 24.95 32.02 31.35 28.36 28.28

10 IS12_speaker_trait 32.74 30.14 31.90 26.87 31.93 30.35 31.91 31.08

11 IS12_speaker_trait_compat 30.51 29.66 31.43 25.51 31.51 29.85 31.65 31.34

12 IS13_ComParE 32.14 30.08 33.16 24.89 31.99 30.17 31.55 31.33

13 Essentia_descriptors 20.78 20.30 24.52 31.60 39.01 31.62 31.36 27.57

14 MPEG7_descriptors 21.25 22.19 32.26 31.38 38.54 32.36 37.25 27.11

15 KTU_features 29.22 30.11 29.53 31.64 43.11 29.10 33.22 29.13

16 jAudio_features 30.59 31.34 35.89 29.59 33.92 26.12 29.53 28.50

17 YAAFE_features 23.61 29.67 27.17 27.66 35.99 29.03 28.43 25.57

18 Tsanas 29.16 30.09 31.18 26.92 29.02 27.52 30.91 26.70

Notes. Microphone: AC—acustic cardioid, SP—smart phone. Modality: P—phonation, S—speech, V—voiced part of speech, U—unvoiced part of speech.

https://doi.org/10.1371/journal.pone.0185613.t005
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Table 4 with 0.553 of AC S+V+U and 0.646 of SP S+U in Table 6). Therefore, for the data

investigated decision-level fusion remains of questionable effectiveness.

Visualization by the 2D map

The proximity matrix, obtained from the meta-RF, contains information about the pair-wise

similarity between recordings with respect to the various feature sets. A compelling property

of such a matrix is that only feature sets contributing to the construction of the meta-RF have

an affect on similarity values. Therefore, the influence of unimportant, noisy feature sets gets

reduced. Proximity matrices were obtained from the ultimate meta-RF model built fusing

Fig 1. OOB detection performance by the DET curves. Microphone: AC (left) and SP (right). The best individual feature set (and

corresponding modality): Essentia (P, S, V) and IS13_ComParE (U) using AC; Tsanas (P), jAudio (S), IS11_speaker_state (V) and YAAFE

(U) using SP. Multimodal fusion (F) of all individual feature sets from all modalities.

https://doi.org/10.1371/journal.pone.0185613.g001

Table 6. Performance measures for 4 unimodal and 6 multimodal decision-level fusions.

Fusion AC channel SP channel

Cllr EER, % Cllr EER, %

P 0.583 (0.004) 21.05 (0.16) 0.804 (0.004) 32.81 (0.26)

S 0.578 (0.006) 21.96 (0.22) 0.660 (0.007) 25.33 (0.28)

V 0.576 (0.004) 25.09 (0.50) 0.739 (0.005) 25.96 (0.25)

U 0.660 (0.007) 26.36 (0.55) 0.672 (0.004) 25.21 (0.42)

P+S 0.585 (0.004) 21.09 (0.22) 0.676 (0.006) 23.90 (0.38)

S+V 0.579 (0.004) 22.55 (0.24) 0.686 (0.005) 23.58 (0.38)

S+U 0.566 (0.006) 22.32 (0.26) 0.646 (0.005) 25.36 (0.35)

V+U 0.567 (0.005) 24.73 (0.34) 0.697 (0.007) 24.48 (0.65)

S+V+U 0.553 (0.007) 23.08 (0.39) 0.660 (0.007) 25.00 (0.49)

P+S+V+U 0.563 (0.004) 19.27 (0.31) 0.652 (0.006) 23.00 (0.35)

Notes. Fusion was repeated 99 times to estimate the mean (standard deviation). Microphone: AC—acustic

cardioid, SP—smart phone. Modality: P—phonation, S—speech, V—voiced part of speech, U—unvoiced

part of speech.

https://doi.org/10.1371/journal.pone.0185613.t006
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decisions from all individual feature sets and all modalities for the AC and SP channels. The

perplexity parameter of the t-SNE algorithm was chosen empirically and set to 60. The repre-

sentational error after 1000 iterations reached 0.313 for the AC and 0.305 for the SP channel.

The resulting t-SNE visualizations are shown in Fig 2, where separate clusters of PD and HC

subjects can be noticed.

Having a new recording with an unknown diagnosis, it could be converted to the audio fea-

tures and fed to the first stage RFs, constructed on the individual feature sets. Then resulting

decisions should be streamlined to the second stage meta-RF and its proximity matrix aug-

mented with similarities of this unknown recording to the observations with available diagno-

sis. Running the t-SNE on a distance matrix, obtained from the augmented proximity matrix,

would result in a new recording located as a distinct point in the 2D space among the known

cases (among the points in Fig 2). Exploring location of the new recording with respect to the

points in the vicinity can be a useful data-driven exploratory approach for PD screening.

Conclusions and future directions

The best individual feature set was Essentia when using speech modality of the AC micro-

phone and YAAFE when using unvoiced modality of the SP microphone, achieving EER of

20.30% and 25.57%, respectively. Speech signal tends to outperform phonation in the PD

detection task when using the SP microphone. Splitting of speech signal into voiced / unvoiced

modalities, as recommended by [17], was found to be useful in the SP case.

Fusion of all feature sets and modalities resulted in EER of 19.27% for the AC microphone

and EER of 23% for the SP microphone. Improvement from fusion was evident only according

to EER, but according to the more comprehensive Cllr measure fusion is not effective for the

data analysed. The non-linear mapping of proximity matrix obtained from the meta-RF into

the 2D space was shown to enrich medical decision support by allowing to spot similar cases

conveniently.

Fig 2. Visualization of the meta-RF proximity matrix by the t-SNE. Microphone: AC (left) and SP (right). Recording from: PD

(designated by a red square□) and HC subject (designated by a blue circle○).

https://doi.org/10.1371/journal.pone.0185613.g002
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Detection performance was consistently better for the AC than for the SP microphone.

Nonetheless, text-dependent speech recordings of SP quality and especially their unvoiced part

have potential for PD detection. More vocal exercises, like rapid speech movements through

succession by the diadochokinetic task of /pa/-/ta/-/ka/ repetition, could also be useful. Addi-

tional information is worth considering by tracking an accelerometer signal in a posture test

[19] of standing still and/or holding device in a hand with an arm extended or in a gait test

[19] of walking. Tapping and reaction time tests [19] or drawing of an Archimedean spiral

[43] are an interesting type of tactile tasks which could be recorded using a hand-held device.

Fusion of information from diverse non-invasive modalities could help to develop an efficient

SP-based tool for PD screening.

Ethical statement

The study protocol has been approved by Kaunas Regional Bioethics Committee (P2-24/

2013). Written informed consent was obtained from the study participants, patient identifiers

were removed to ensure anonymity.

Supporting information

S1 File. Variable importance analysis in the task of PD detection is reported for the best

performing RF and meta-RF models.

(PDF)

S2 File. Experimental data, in the form of extracted audio features from voice and speech

recordings obtained through acoustic cardioid microphone channel.

(ZIP)

S3 File. Experimental data, in the form of extracted audio features from voice and speech

recordings obtained through internal smart-phone microphone channel.

(ZIP)

Acknowledgments

Initial findings were presented at the SPECOM 2016 [44] and DAMSS 2016 conferences.

Author Contributions

Conceptualization: Evaldas Vaiciukynas, Antanas Verikas, Adas Gelzinis.

Data curation: Evaldas Vaiciukynas, Marija Bacauskiene.

Formal analysis: Evaldas Vaiciukynas, Adas Gelzinis.

Funding acquisition: Antanas Verikas, Marija Bacauskiene.

Investigation: Evaldas Vaiciukynas.

Methodology: Evaldas Vaiciukynas, Antanas Verikas, Adas Gelzinis.

Project administration: Antanas Verikas, Marija Bacauskiene.

Resources: Marija Bacauskiene.

Software: Evaldas Vaiciukynas, Adas Gelzinis.

Supervision: Antanas Verikas.

Validation: Marija Bacauskiene.

Detecting Parkinson from phonation and speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0185613 October 5, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185613.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185613.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185613.s003
https://doi.org/10.1371/journal.pone.0185613


Visualization: Evaldas Vaiciukynas.

Writing – original draft: Evaldas Vaiciukynas, Antanas Verikas.

Writing – review & editing: Evaldas Vaiciukynas, Adas Gelzinis.

References
1. de Rijk MC, Launer LJ, Berger K, Breteler MMB, Dartigues JF, Baldereschi M, et al. Prevalence of Par-

kinson’s disease in Europe: A collaborative study of population-based cohorts. Neurology. 2000; 54(11

Suppl 5):S21–S23. PMID: 10854357

2. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain.

1991; 114(5):2283–2301. https://doi.org/10.1093/brain/114.5.2283 PMID: 1933245

3. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the

integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013; 136(8):2419. https://doi.org/10.

1093/brain/awt192 PMID: 23884810

4. Harela B, Cannizzaro M, Snyder PJ. Variability in fundamental frequency during speech in prodromal

and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition. 2004; 56(1):24–29.

https://doi.org/10.1016/j.bandc.2004.05.002

5. Khan T, Westin J, Dougherty M. Cepstral separation difference: A novel approach for speech

impairment quantification in Parkinson’s disease. Biocybernetics and Biomedical Engineering. 2014; 34

(1):25–34. https://doi.org/10.1016/j.bbe.2013.06.001

6. Tsanas A, Little MA, Fox C, Ramig LO. Objective Automatic Assessment of Rehabilitative Speech

Treatment in Parkinson’s Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineer-

ing. 2014; 22(1):181–190. https://doi.org/10.1109/TNSRE.2013.2293575 PMID: 26271131

7. An G, Brizan DG, Ma M, Morales M, Syed AR, Rosenberg A. Automatic Recognition of Unified Parkin-

son’s Disease Rating from Speech with Acoustic, i-Vector and Phonotactic Features. In: 16th Annual

Conference of the International Speech Communication Association (INTERSPEECH). Dresden, Ger-

many; 2015.

8. Caesarendra W, Putri FT, Ariyanto M, Setiawan JD. Pattern Recognition Methods for Multi Stage Clas-

sification of Parkinson’s Disease Utilizing Voice Features. In: 2015 IEEE International Conference on

Advanced Intelligent Mechatronics (AIM). Busan, Korea: IEEE; 2015. p. 802–807.

9. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of Dysphonia Measurements for

Telemonitoring of Parkinson’s Disease. IEEE Transactions on Biomedical Engineering. 2009; 56

(4):1015–1022. https://doi.org/10.1109/TBME.2008.2005954 PMID: 21399744

10. Sakar OC, Kursun O. Telediagnosis of Parkinson’s Disease Using Measurements of Dysphonia. Jour-

nal of Medical Systems. 2010; 34(4):591–599. https://doi.org/10.1007/s10916-009-9272-y PMID:

20703913

11. Tsanas A, Little MA, McSharry PE, Spielman JL, Ramig LO. Novel Speech Signal Processing Algo-

rithms for High-Accuracy Classification of Parkinson’s Disease. IEEE Transactions on Biomedical Engi-

neering. 2012; 59(5):1264–1271. https://doi.org/10.1109/TBME.2012.2183367 PMID: 22249592

12. Belalcazar-Bolaños EA, Orozco-Arroyave JR, Vargas-Bonilla JF, Arias-Londoño JD, Castellanos-Dom-
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